metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­bis­­[4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl 3-oxide-κ2N1,O3]nickel(II)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 6 October 2010; accepted 19 October 2010; online 30 October 2010)

In the title compound, [Ni(N3)2(C10H14N3O2S)2], the NiII atom lies on an inversion center and adopts a distorted trans-NiO2N4 octa­hedral geometry, coordinated by two N,O-bidentate 4,4,5,5-tetra­methyl-2-(5-methyl­imidazol-4-yl)-2-imidazoline-1-oxyl 3-oxide nitronyl nitroxide radical ligands and two monodentate azide anions.

Related literature

For general background to mol­ecular magnetic materials and metal-radical magnetic materials, see: Vostrikova et al. (2000[Vostrikova, K. E., Luneau, D., Wersdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718-719.]); Fegy et al. (1998[Fegy, K., Luneau, D., Ohm, T., Paulsen, C. & Rey, P. (1998). Angew. Chem. Int. Ed. 37, 1270-1273.]); Kahn et al. (2000[Kahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413-3421.]); Omata et al. (2001[Omata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem. 40, 3954-3958.]); Yamamoto et al. (2001[Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566-1572.]); Fursova et al. (2003[Fursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett. 44, 6397-6399.]); Sroh et al. (2003[Sroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem. 42, 2938-2949.]); Chang et al. (2009[Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181.]); Schatzschneider et al. (2001[Schatzschneider, U., Weyhermüller, T. & Rentschler, E. (2001). Eur. J. Inorg. Chem. pp. 2569-2586.]). For the synthesis of nitronyl nitroxide radical ligands and the title compound, see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem. 35, 3623-3628.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(N3)2(C10H14N3O2S)2]

  • Mr = 623.37

  • Monoclinic, P 21 /c

  • a = 9.9212 (7) Å

  • b = 12.1732 (8) Å

  • c = 11.1795 (8) Å

  • β = 102.695 (1)°

  • V = 1317.17 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 291 K

  • 0.40 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.874

  • 7812 measured reflections

  • 3005 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.06

  • 3005 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and study of transition metal complexes incorporating organic free radicals is a major research focus in the field of molecular magnetism (Vostrikova et al., 2000; Fegy et al., 1998; Kahn et al., 2000; Omata et al., 2001). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions (Yamamoto et al., 2001; Fursova et al., 2003; Sroh et al., 2003; Chang et al., 2009; Schatzschneider et al., 2001). We report herein the synthesis and crystal structure of one such nickel complex.

The asymmetric unit of the title compound (Fig. 1) contains half molecule. The NiII atom, lying on a an inversion center, is six-coordinated in a distorted octahedral geometry by two N atoms and two O atoms from two 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands and two N atoms from two azide anions.

Related literature top

For general background to molecular magnetic materials and metal-radical magnetic materials see: Vostrikova et al. (2000); Fegy et al. (1998); Kahn et al. (2000); Omata et al. (2001); Yamamoto et al. (2001); Fursova et al. (2003); Sroh et al. (2003); Chang et al. (2009); Schatzschneider et al. (2001). For the synthesis of nitronyl nitroxide radical ligands and the title compound see: Ullman et al. (1970, 1972).

Experimental top

The nitronyl nitroxide radical(2-(2'-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide)was synthesized according to literature procedures (Ullman et al. 1970; Ullman et al. 1972). A mixed solution of nitronyl nitroxide radical ligands (2.00 mmol) and Ni(Ac)2.4H2O (1 mmol) in ethanol (10 ml) was added to an aqueous solution(10 mL) of NaN3(2 mmol) and the resulting mixed solution was stirred for one hour at room temperature and then filtered off. This filtrate was left to evaporate slowly. After one week, deep purple crystals suitable for X-ray analysis were isolated.

Refinement top

All C—H atoms were positioned geometrically, with C—H = 0.93 or 0.96 Å and constrained to ride on their parent atoms with Uiso(H)=1.2U (carrier) or Uiso (H)=1.5U (methyl carrier).

Structure description top

The synthesis and study of transition metal complexes incorporating organic free radicals is a major research focus in the field of molecular magnetism (Vostrikova et al., 2000; Fegy et al., 1998; Kahn et al., 2000; Omata et al., 2001). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions (Yamamoto et al., 2001; Fursova et al., 2003; Sroh et al., 2003; Chang et al., 2009; Schatzschneider et al., 2001). We report herein the synthesis and crystal structure of one such nickel complex.

The asymmetric unit of the title compound (Fig. 1) contains half molecule. The NiII atom, lying on a an inversion center, is six-coordinated in a distorted octahedral geometry by two N atoms and two O atoms from two 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands and two N atoms from two azide anions.

For general background to molecular magnetic materials and metal-radical magnetic materials see: Vostrikova et al. (2000); Fegy et al. (1998); Kahn et al. (2000); Omata et al. (2001); Yamamoto et al. (2001); Fursova et al. (2003); Sroh et al. (2003); Chang et al. (2009); Schatzschneider et al. (2001). For the synthesis of nitronyl nitroxide radical ligands and the title compound see: Ullman et al. (1970, 1972).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level [symmetry codes relating the atoms with and without the suffix A: -x + 1, -y + 2, -z + 1]
Diazidobis[4,4,5,5-tetramethyl-2-(1,3-thiazol-2-yl)-2-imidazoline-1-oxyl 3-oxide-κ2N1,O3]nickel(II) top
Crystal data top
[Ni(N3)2(C10H14N3O2S)2]F(000) = 648
Mr = 623.37Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5712 reflections
a = 9.9212 (7) Åθ = 2.7–29.3°
b = 12.1732 (8) ŵ = 0.95 mm1
c = 11.1795 (8) ÅT = 291 K
β = 102.695 (1)°Block, dark purple
V = 1317.17 (16) Å30.40 × 0.22 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3005 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick , 1996)
h = 129
Tmin = 0.703, Tmax = 0.874k = 1415
7812 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.031P)2 + 0.5195P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(N3)2(C10H14N3O2S)2]V = 1317.17 (16) Å3
Mr = 623.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9212 (7) ŵ = 0.95 mm1
b = 12.1732 (8) ÅT = 291 K
c = 11.1795 (8) Å0.40 × 0.22 × 0.15 mm
β = 102.695 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick , 1996)
2834 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.874Rint = 0.010
7812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3005 reflectionsΔρmin = 0.27 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.50000.02603 (8)
S10.75033 (4)1.27825 (3)0.38125 (4)0.04133 (11)
O10.64775 (12)0.90740 (9)0.43831 (12)0.0486 (3)
O20.89398 (15)1.14747 (11)0.24875 (14)0.0611 (4)
N10.60808 (11)1.13921 (9)0.47330 (10)0.0272 (2)
N20.72751 (11)0.94577 (9)0.37164 (10)0.0285 (2)
N30.84655 (12)1.05745 (10)0.28101 (11)0.0360 (3)
N40.61887 (17)0.99070 (14)0.67735 (14)0.0568 (4)
N50.58855 (14)0.95757 (10)0.76655 (12)0.0380 (3)
N60.5618 (2)0.92594 (14)0.85593 (15)0.0652 (5)
C10.64979 (16)1.32436 (12)0.47626 (15)0.0391 (3)
H10.64231.39760.49760.047*
C20.58239 (15)1.24038 (11)0.51644 (13)0.0329 (3)
H2A0.52311.25060.56940.039*
C30.69761 (13)1.14629 (10)0.40176 (12)0.0269 (2)
C40.75220 (13)1.05162 (11)0.35158 (12)0.0273 (3)
C50.79699 (14)0.86855 (11)0.29890 (12)0.0312 (3)
C60.90436 (14)0.94677 (12)0.25934 (13)0.0337 (3)
C70.8572 (2)0.77211 (15)0.37997 (18)0.0535 (5)
H7A0.91440.79920.45480.080*
H7B0.91170.72750.33780.080*
H7C0.78340.72880.39840.080*
C80.68251 (19)0.82790 (16)0.19319 (16)0.0524 (4)
H8A0.61100.79370.22560.079*
H8B0.72010.77550.14520.079*
H8C0.64470.88900.14240.079*
C91.04886 (16)0.94066 (17)0.34192 (17)0.0527 (4)
H9A1.10500.99860.32070.079*
H9B1.08980.87090.33100.079*
H9C1.04270.94860.42600.079*
C100.9140 (2)0.93844 (17)0.12542 (15)0.0534 (4)
H10A0.82440.95060.07360.080*
H10B0.94630.86660.10990.080*
H10C0.97720.99290.10840.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02752 (13)0.02314 (12)0.03225 (13)0.00064 (8)0.01700 (9)0.00075 (8)
S10.0393 (2)0.02794 (18)0.0629 (2)0.00619 (14)0.02443 (18)0.00477 (16)
O10.0554 (7)0.0281 (5)0.0793 (8)0.0016 (5)0.0519 (6)0.0040 (5)
O20.0673 (8)0.0448 (7)0.0892 (10)0.0049 (6)0.0564 (8)0.0112 (6)
N10.0276 (5)0.0250 (5)0.0319 (5)0.0002 (4)0.0125 (4)0.0003 (4)
N20.0263 (5)0.0278 (5)0.0360 (6)0.0008 (4)0.0166 (4)0.0009 (4)
N30.0350 (6)0.0362 (6)0.0439 (6)0.0003 (5)0.0238 (5)0.0031 (5)
N40.0533 (9)0.0743 (11)0.0408 (8)0.0261 (8)0.0058 (7)0.0125 (7)
N50.0436 (7)0.0299 (6)0.0405 (7)0.0034 (5)0.0091 (5)0.0021 (5)
N60.1006 (14)0.0528 (9)0.0498 (9)0.0085 (9)0.0332 (9)0.0077 (7)
C10.0374 (7)0.0253 (6)0.0563 (9)0.0016 (5)0.0136 (7)0.0045 (6)
C20.0341 (7)0.0276 (6)0.0392 (7)0.0018 (5)0.0128 (6)0.0042 (5)
C30.0244 (6)0.0252 (6)0.0326 (6)0.0015 (5)0.0098 (5)0.0023 (5)
C40.0242 (6)0.0302 (6)0.0300 (6)0.0003 (5)0.0114 (5)0.0021 (5)
C50.0307 (6)0.0327 (7)0.0337 (6)0.0056 (5)0.0145 (5)0.0028 (5)
C60.0293 (7)0.0421 (8)0.0339 (7)0.0037 (6)0.0159 (5)0.0027 (6)
C70.0550 (10)0.0485 (10)0.0647 (11)0.0239 (8)0.0300 (9)0.0160 (8)
C80.0515 (10)0.0551 (10)0.0507 (9)0.0137 (8)0.0115 (8)0.0167 (8)
C90.0299 (8)0.0678 (12)0.0603 (10)0.0029 (7)0.0095 (7)0.0120 (9)
C100.0586 (11)0.0703 (12)0.0397 (8)0.0009 (9)0.0288 (8)0.0049 (8)
Geometric parameters (Å, º) top
Ni1—N12.0619 (11)C2—H2A0.9300
Ni1—N1i2.0619 (11)C3—C41.4387 (18)
Ni1—N4i2.0753 (15)C5—C71.523 (2)
Ni1—N42.0753 (15)C5—C81.530 (2)
Ni1—O12.0831 (10)C5—C61.563 (2)
Ni1—O1i2.0832 (10)C6—C101.5243 (19)
S1—C11.7040 (16)C6—C91.527 (2)
S1—C31.7204 (13)C7—H7A0.9600
O1—N21.2880 (14)C7—H7B0.9600
O2—N31.2756 (17)C7—H7C0.9600
N1—C31.3222 (16)C8—H8A0.9600
N1—C21.3669 (17)C8—H8B0.9600
N2—C41.3398 (18)C8—H8C0.9600
N2—C51.5055 (16)C9—H9A0.9600
N3—C41.3520 (16)C9—H9B0.9600
N3—C61.5047 (19)C9—H9C0.9600
N4—N51.1745 (19)C10—H10A0.9600
N5—N61.1547 (19)C10—H10B0.9600
C1—C21.351 (2)C10—H10C0.9600
C1—H10.9300
N1—Ni1—N1i180.00 (5)N2—C4—C3127.35 (11)
N1—Ni1—N4i91.22 (5)N3—C4—C3123.63 (12)
N1i—Ni1—N4i88.78 (5)N2—C5—C7109.04 (11)
N1—Ni1—N488.78 (5)N2—C5—C8105.60 (12)
N1i—Ni1—N491.22 (5)C7—C5—C8109.74 (15)
N4i—Ni1—N4180.0N2—C5—C6101.18 (10)
N1—Ni1—O188.32 (4)C7—C5—C6115.82 (12)
N1i—Ni1—O191.68 (4)C8—C5—C6114.50 (12)
N4i—Ni1—O190.39 (7)N3—C6—C10109.03 (13)
N4—Ni1—O189.61 (7)N3—C6—C9106.66 (13)
N1—Ni1—O1i91.68 (4)C10—C6—C9109.73 (13)
N1i—Ni1—O1i88.32 (4)N3—C6—C5101.08 (10)
N4i—Ni1—O1i89.61 (7)C10—C6—C5115.53 (13)
N4—Ni1—O1i90.38 (7)C9—C6—C5114.01 (13)
O1—Ni1—O1i180.0C5—C7—H7A109.5
C1—S1—C389.29 (7)C5—C7—H7B109.5
N2—O1—Ni1124.18 (8)H7A—C7—H7B109.5
C3—N1—C2110.91 (11)C5—C7—H7C109.5
C3—N1—Ni1125.52 (9)H7A—C7—H7C109.5
C2—N1—Ni1123.11 (9)H7B—C7—H7C109.5
O1—N2—C4127.15 (11)C5—C8—H8A109.5
O1—N2—C5119.91 (11)C5—C8—H8B109.5
C4—N2—C5112.82 (10)H8A—C8—H8B109.5
O2—N3—C4123.76 (12)C5—C8—H8C109.5
O2—N3—C6123.12 (11)H8A—C8—H8C109.5
C4—N3—C6112.60 (11)H8B—C8—H8C109.5
N5—N4—Ni1129.20 (13)C6—C9—H9A109.5
N6—N5—N4178.30 (19)C6—C9—H9B109.5
C2—C1—S1110.99 (11)H9A—C9—H9B109.5
C2—C1—H1124.5C6—C9—H9C109.5
S1—C1—H1124.5H9A—C9—H9C109.5
C1—C2—N1114.84 (12)H9B—C9—H9C109.5
C1—C2—H2A122.6C6—C10—H10A109.5
N1—C2—H2A122.6C6—C10—H10B109.5
N1—C3—C4122.97 (11)H10A—C10—H10B109.5
N1—C3—S1113.94 (10)C6—C10—H10C109.5
C4—C3—S1122.99 (9)H10A—C10—H10C109.5
N2—C4—N3108.88 (11)H10B—C10—H10C109.5
N1—Ni1—O1—N221.29 (12)O1—N2—C4—N3177.25 (14)
N1i—Ni1—O1—N2158.71 (12)C5—N2—C4—N36.89 (15)
N4i—Ni1—O1—N269.92 (13)O1—N2—C4—C31.4 (2)
N4—Ni1—O1—N2110.08 (13)C5—N2—C4—C3177.22 (13)
O1i—Ni1—O1—N2114 (16)O2—N3—C4—N2178.14 (14)
N1i—Ni1—N1—C3177 (16)C6—N3—C4—N26.19 (16)
N4i—Ni1—N1—C370.05 (12)O2—N3—C4—C32.1 (2)
N4—Ni1—N1—C3109.95 (12)C6—N3—C4—C3169.88 (12)
O1—Ni1—N1—C320.30 (11)N1—C3—C4—N22.8 (2)
O1i—Ni1—N1—C3159.70 (11)S1—C3—C4—N2173.34 (11)
N1i—Ni1—N1—C211 (16)N1—C3—C4—N3178.16 (13)
N4i—Ni1—N1—C2101.39 (12)S1—C3—C4—N31.98 (19)
N4—Ni1—N1—C278.61 (12)O1—N2—C5—C745.32 (18)
O1—Ni1—N1—C2168.26 (11)C4—N2—C5—C7138.49 (14)
O1i—Ni1—N1—C211.74 (11)O1—N2—C5—C872.54 (16)
Ni1—O1—N2—C415.2 (2)C4—N2—C5—C8103.65 (14)
Ni1—O1—N2—C5160.42 (9)O1—N2—C5—C6167.85 (12)
N1—Ni1—N4—N5148.00 (19)C4—N2—C5—C615.96 (14)
N1i—Ni1—N4—N532.00 (19)O2—N3—C6—C1050.34 (19)
N4i—Ni1—N4—N521 (16)C4—N3—C6—C10137.65 (14)
O1—Ni1—N4—N5123.68 (18)O2—N3—C6—C968.08 (18)
O1i—Ni1—N4—N556.32 (18)C4—N3—C6—C9103.93 (14)
Ni1—N4—N5—N6172 (100)O2—N3—C6—C5172.49 (14)
C3—S1—C1—C20.63 (12)C4—N3—C6—C515.50 (15)
S1—C1—C2—N10.18 (17)N2—C5—C6—N317.26 (12)
C3—N1—C2—C11.19 (18)C7—C5—C6—N3134.97 (13)
Ni1—N1—C2—C1171.36 (10)C8—C5—C6—N395.77 (14)
C2—N1—C3—C4174.82 (12)N2—C5—C6—C10134.76 (13)
Ni1—N1—C3—C412.85 (18)C7—C5—C6—C10107.53 (16)
C2—N1—C3—S11.67 (15)C8—C5—C6—C1021.73 (19)
Ni1—N1—C3—S1170.66 (6)N2—C5—C6—C996.76 (13)
C1—S1—C3—N11.34 (11)C7—C5—C6—C920.95 (18)
C1—S1—C3—C4175.14 (12)C8—C5—C6—C9150.21 (14)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C10H14N3O2S)2]
Mr623.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.9212 (7), 12.1732 (8), 11.1795 (8)
β (°) 102.695 (1)
V3)1317.17 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.40 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick , 1996)
Tmin, Tmax0.703, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
7812, 3005, 2834
Rint0.010
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections3005
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Natural Science Foundation and Basic Research Program of Henan province (Nos. 092300410195 and 092300410240).

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationChang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFegy, K., Luneau, D., Ohm, T., Paulsen, C. & Rey, P. (1998). Angew. Chem. Int. Ed. 37, 1270–1273.  CrossRef CAS Google Scholar
First citationFursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett. 44, 6397–6399.  Web of Science CSD CrossRef CAS Google Scholar
First citationKahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413–3421.  Web of Science CSD CrossRef CAS Google Scholar
First citationOmata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem. 40, 3954–3958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchatzschneider, U., Weyhermüller, T. & Rentschler, E. (2001). Eur. J. Inorg. Chem. pp. 2569–2586.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem. 42, 2938–2949.  Web of Science PubMed Google Scholar
First citationUllman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem. 35, 3623–3628.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationVostrikova, K. E., Luneau, D., Wersdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718–719.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566–1572.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds