organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(3-Chloro­benzyl­­idene)-5,6-dimeth­­oxy-2,3-di­hydro-1H-inden-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 October 2010; accepted 12 October 2010; online 20 October 2010)

In the title compound, C18H15ClO3, the dihydro­indenone group makes a dihedral angle of 8.56 (6)° with the bezene ring. In the crystal, the mol­ecules are inter­connected into a three-dimensional network via inter­molecular C—H⋯O hydrogen bonds. Weak C—H⋯π and ππ [centroid–centroid distances 3.6598 (9)–3.6913 (9) Å] inter­actions are also observed.

Related literature

For general background to and the biological activity of chalcone derivatives, see: Marzinzik & Felder (1998[Marzinzik, A. L. & Felder, E. R. (1998). J. Org. Chem. 63, 723-727.]); Srikanth & Castle (2005[Srikanth, G. S. C. & Castle, S. L. (2005). Tetrahedron, 61, 10377-10441.]); Furusawa et al. (2005[Furusawa, M., Tanaka, T., Ito, T., Nishiwaka, A., Yamazaki, N., Nakaya, K. I., Matsuura, N., Tsuchiya, H., Nagayama, M. & Iinuma, M. (2005). J. Health Sci. 51, 376-378.]) Heidenreich et al. (2008[Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68-80.]); Syed et al. (2008[Syed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167-176.]). For related structures, see: Ali et al. (2010a[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, o2531-o2532.],b[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o2753.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClO3

  • Mr = 314.75

  • Tetragonal, [P \overline 42_1 c ]

  • a = 20.5004 (16) Å

  • c = 7.0241 (7) Å

  • V = 2952.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.74 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.971

  • 62722 measured reflections

  • 4499 independent reflections

  • 4251 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.06

  • 4499 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1966 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.942 (16) 2.489 (18) 3.2650 (16) 139.6 (15)
C11—H11⋯O1ii 0.951 (18) 2.561 (17) 3.3229 (16) 137.3 (14)
C18—H18C⋯O3iii 0.96 (2) 2.53 (2) 3.4684 (17) 165.2 (17)
C3—H3⋯Cg2iv 0.87 (2) 2.86 (2) 3.6072 (17) 144.4 (17)
Symmetry codes: (i) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -y+1, x, -z+3; (iv) [y+{\script{1\over 2}}, x-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

α,β-unsaturated ketones are useful key intermediates (Marzinzik & Felder, 1998, Srikanth & Castle, 2005) bearing the well known chalcone pharmacophore. Chalcones can be isolated from several plants and are precursors of flavones and anthocyan compounds. Some of them also exhibit antioxidant and anticancer properties. In fact, the pharmacological properties of chalcones are due to the presence of both α,β-unsaturation (Furusawa et al., 2005) and an aromatic ring. Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008, Syed et al., 2008).

The molecular structure of the title compound is essentially planar (Fig. 1). The torsion angles of the two methoxy groups are [C18–O3–C13–C14] 4.38 (18) and [C17–O2–C12–C11] -2.01 (17)°. The maximum deviation of the dihydroindenone group is 0.024 (1) Å and it makes dihedral angle of 8.56 (6)° with the benzene ring [C1–C6]. The geometric parameters are comparable to those observed in closely related structures (Ali et al., 2010a,b).

In the crystal structure, the molecules are linked together into a three dimensional network by the intermolecular C7—H7···O1, C11—H11···O1 and C18—H18C···O3 hydrogen bonds (Fig. 2, Table 1). Weak C—H···π and π···π interactions are also observed [Cg1···Cg2v of 3.6913 (9) Å and Cg2···Cg3vi of 3.6598 (9) Å; (v) x, y, 1 + z; (vi) x, y, -1 + z. Cg1, Cg2 and Cg3 are centroids of C8–C10/C15–C16, C1–C6 and C10–C15 rings, respectively].

Related literature top

For general background to and the biological activity of chalcone derivatives, see: Marzinzik & Felder (1998); Srikanth & Castle (2005); Furusawa et al. (2005) Heidenreich et al. (2008); Syed et al. (2008). For related structures, see: Ali et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5,6-dimethoxy-2,3-dihydro-1H-indene-1-one (0.001 mmol) and 3-chlorobenzaldehyde (0.001 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added and the mixture stirred for 5 h. After the completion of the reaction as evident from TLC, the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as light yellow crystals.

Refinement top

All hydrogen atoms were located from difference Fourier map and refined freely. A total of 1966 Friedel pairs were use to determine the absolute structure.

Structure description top

α,β-unsaturated ketones are useful key intermediates (Marzinzik & Felder, 1998, Srikanth & Castle, 2005) bearing the well known chalcone pharmacophore. Chalcones can be isolated from several plants and are precursors of flavones and anthocyan compounds. Some of them also exhibit antioxidant and anticancer properties. In fact, the pharmacological properties of chalcones are due to the presence of both α,β-unsaturation (Furusawa et al., 2005) and an aromatic ring. Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008, Syed et al., 2008).

The molecular structure of the title compound is essentially planar (Fig. 1). The torsion angles of the two methoxy groups are [C18–O3–C13–C14] 4.38 (18) and [C17–O2–C12–C11] -2.01 (17)°. The maximum deviation of the dihydroindenone group is 0.024 (1) Å and it makes dihedral angle of 8.56 (6)° with the benzene ring [C1–C6]. The geometric parameters are comparable to those observed in closely related structures (Ali et al., 2010a,b).

In the crystal structure, the molecules are linked together into a three dimensional network by the intermolecular C7—H7···O1, C11—H11···O1 and C18—H18C···O3 hydrogen bonds (Fig. 2, Table 1). Weak C—H···π and π···π interactions are also observed [Cg1···Cg2v of 3.6913 (9) Å and Cg2···Cg3vi of 3.6598 (9) Å; (v) x, y, 1 + z; (vi) x, y, -1 + z. Cg1, Cg2 and Cg3 are centroids of C8–C10/C15–C16, C1–C6 and C10–C15 rings, respectively].

For general background to and the biological activity of chalcone derivatives, see: Marzinzik & Felder (1998); Srikanth & Castle (2005); Furusawa et al. (2005) Heidenreich et al. (2008); Syed et al. (2008). For related structures, see: Ali et al. (2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, showing a three-dimensional network. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-2-(3-Chlorobenzylidene)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one top
Crystal data top
C18H15ClO3Dx = 1.416 Mg m3
Mr = 314.75Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 9872 reflections
Hall symbol: P -4 2nθ = 2.8–30.4°
a = 20.5004 (16) ŵ = 0.27 mm1
c = 7.0241 (7) ÅT = 100 K
V = 2952.0 (4) Å3Needle, yellow
Z = 80.74 × 0.13 × 0.11 mm
F(000) = 1312
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4499 independent reflections
Radiation source: fine-focus sealed tube4251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2929
Tmin = 0.826, Tmax = 0.971k = 2829
62722 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.5709P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4499 reflectionsΔρmax = 0.37 e Å3
259 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1966 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C18H15ClO3Z = 8
Mr = 314.75Mo Kα radiation
Tetragonal, P421cµ = 0.27 mm1
a = 20.5004 (16) ÅT = 100 K
c = 7.0241 (7) Å0.74 × 0.13 × 0.11 mm
V = 2952.0 (4) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4251 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.971Rint = 0.045
62722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.37 e Å3
S = 1.06Δρmin = 0.19 e Å3
4499 reflectionsAbsolute structure: Flack (1983), 1966 Friedel pairs
259 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.658402 (17)0.24083 (2)0.07331 (5)0.03382 (9)
O10.35460 (5)0.18458 (5)0.76502 (14)0.0273 (2)
O20.38949 (4)0.34023 (5)1.38581 (13)0.02125 (18)
O30.49925 (5)0.39341 (5)1.30773 (13)0.02196 (19)
C10.55261 (6)0.20587 (6)0.27855 (18)0.0204 (2)
C20.59058 (6)0.19228 (7)0.11923 (18)0.0235 (3)
C30.57575 (8)0.14194 (8)0.0056 (2)0.0300 (3)
C40.52078 (9)0.10399 (8)0.0310 (2)0.0326 (3)
C50.48177 (8)0.11719 (7)0.1883 (2)0.0275 (3)
C60.49729 (7)0.16787 (6)0.31451 (17)0.0206 (2)
C70.45338 (6)0.17840 (6)0.47637 (17)0.0207 (2)
C80.45819 (6)0.21831 (6)0.62791 (17)0.0183 (2)
C90.40455 (6)0.21715 (6)0.77302 (17)0.0190 (2)
C100.42366 (6)0.26270 (6)0.92367 (16)0.0166 (2)
C110.38957 (6)0.27681 (6)1.09221 (17)0.0173 (2)
C120.41636 (6)0.32139 (6)1.21623 (17)0.0169 (2)
C130.47750 (6)0.35135 (6)1.17248 (16)0.0168 (2)
C140.51055 (6)0.33681 (6)1.00419 (17)0.0168 (2)
C150.48283 (6)0.29164 (6)0.87923 (16)0.0156 (2)
C160.50915 (6)0.26751 (6)0.68977 (16)0.0178 (2)
C170.32745 (6)0.31173 (7)1.4304 (2)0.0237 (2)
C180.55815 (7)0.42822 (7)1.2670 (2)0.0266 (3)
H10.5664 (9)0.2390 (9)0.359 (3)0.029 (5)*
H30.6019 (10)0.1348 (10)0.102 (3)0.044 (6)*
H40.5118 (11)0.0700 (10)0.069 (4)0.051 (6)*
H50.4430 (11)0.0892 (10)0.215 (3)0.051 (6)*
H70.4154 (8)0.1528 (8)0.465 (3)0.025 (4)*
H110.3500 (9)0.2539 (8)1.115 (3)0.026 (4)*
H140.5503 (8)0.3565 (9)0.974 (3)0.024 (4)*
H18A0.5551 (10)0.4571 (9)1.158 (3)0.031 (5)*
H18B0.5953 (9)0.3989 (9)1.237 (3)0.031 (5)*
H18C0.5683 (11)0.4553 (10)1.375 (3)0.047 (6)*
H16A0.5126 (8)0.3044 (8)0.600 (3)0.020 (4)*
H16B0.5517 (8)0.2491 (8)0.703 (2)0.020 (4)*
H17A0.3144 (9)0.3303 (9)1.556 (3)0.031 (5)*
H17B0.2950 (8)0.3251 (8)1.341 (2)0.020 (4)*
H17C0.3292 (8)0.2645 (8)1.439 (3)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02695 (16)0.0484 (2)0.02614 (16)0.00242 (14)0.00952 (13)0.00399 (15)
O10.0264 (5)0.0360 (5)0.0195 (4)0.0121 (4)0.0032 (4)0.0053 (4)
O20.0214 (4)0.0246 (4)0.0178 (4)0.0037 (3)0.0070 (3)0.0051 (3)
O30.0234 (4)0.0250 (4)0.0175 (4)0.0077 (4)0.0032 (3)0.0038 (3)
C10.0232 (6)0.0233 (6)0.0147 (5)0.0064 (4)0.0015 (4)0.0019 (4)
C20.0227 (6)0.0293 (6)0.0184 (5)0.0103 (5)0.0031 (4)0.0062 (5)
C30.0372 (8)0.0338 (7)0.0189 (5)0.0146 (6)0.0066 (6)0.0015 (5)
C40.0449 (8)0.0292 (7)0.0238 (6)0.0079 (6)0.0037 (6)0.0084 (5)
C50.0341 (7)0.0271 (6)0.0213 (6)0.0015 (5)0.0031 (5)0.0048 (5)
C60.0241 (6)0.0228 (6)0.0150 (5)0.0053 (4)0.0005 (4)0.0008 (4)
C70.0234 (6)0.0235 (6)0.0154 (5)0.0006 (5)0.0024 (4)0.0003 (4)
C80.0197 (5)0.0213 (5)0.0139 (5)0.0001 (4)0.0024 (4)0.0001 (4)
C90.0205 (5)0.0222 (5)0.0144 (5)0.0021 (4)0.0022 (4)0.0004 (4)
C100.0176 (5)0.0191 (5)0.0130 (4)0.0002 (4)0.0010 (4)0.0005 (4)
C110.0173 (5)0.0195 (5)0.0152 (5)0.0011 (4)0.0027 (4)0.0001 (4)
C120.0179 (5)0.0182 (5)0.0148 (5)0.0008 (4)0.0027 (4)0.0006 (4)
C130.0184 (5)0.0172 (5)0.0150 (5)0.0000 (4)0.0003 (4)0.0011 (4)
C140.0155 (5)0.0186 (5)0.0163 (4)0.0004 (4)0.0003 (4)0.0013 (4)
C150.0166 (5)0.0180 (5)0.0122 (4)0.0018 (4)0.0012 (4)0.0015 (4)
C160.0183 (5)0.0216 (5)0.0136 (5)0.0005 (4)0.0037 (4)0.0004 (4)
C170.0206 (6)0.0310 (6)0.0195 (5)0.0026 (5)0.0064 (5)0.0010 (5)
C180.0240 (6)0.0327 (7)0.0232 (6)0.0098 (5)0.0013 (5)0.0047 (5)
Geometric parameters (Å, º) top
Cl1—C21.7401 (15)C8—C161.5160 (17)
O1—C91.2237 (15)C9—C101.4647 (16)
O2—C121.3680 (14)C10—C151.3860 (16)
O2—C171.4343 (15)C10—C111.4048 (16)
O3—C131.3582 (14)C11—C121.3768 (17)
O3—C181.4314 (16)C11—H110.951 (18)
C1—C21.3914 (17)C12—C131.4293 (16)
C1—C61.3988 (19)C13—C141.3948 (16)
C1—H10.926 (19)C14—C151.3968 (16)
C2—C31.388 (2)C14—H140.935 (17)
C3—C41.393 (2)C15—C161.5188 (16)
C3—H30.87 (2)C16—H16A0.989 (17)
C4—C51.390 (2)C16—H16B0.955 (17)
C4—H41.01 (2)C17—H17A0.994 (19)
C5—C61.4025 (18)C17—H17B0.953 (17)
C5—H51.00 (2)C17—H17C0.971 (17)
C6—C71.4661 (17)C18—H18A0.97 (2)
C7—C81.3461 (17)C18—H18B0.994 (19)
C7—H70.943 (17)C18—H18C0.96 (2)
C8—C91.4995 (16)
C12—O2—C17115.60 (10)C12—C11—H11124.0 (11)
C13—O3—C18116.98 (10)C10—C11—H11117.8 (11)
C2—C1—C6119.16 (12)O2—C12—C11125.30 (11)
C2—C1—H1117.7 (12)O2—C12—C13114.76 (10)
C6—C1—H1123.1 (12)C11—C12—C13119.94 (11)
C3—C2—C1122.31 (14)O3—C13—C14124.68 (11)
C3—C2—Cl1118.89 (11)O3—C13—C12114.23 (10)
C1—C2—Cl1118.79 (11)C14—C13—C12121.09 (11)
C2—C3—C4118.40 (13)C13—C14—C15118.47 (11)
C2—C3—H3118.6 (14)C13—C14—H14121.7 (12)
C4—C3—H3123.0 (14)C15—C14—H14119.9 (12)
C5—C4—C3120.22 (14)C10—C15—C14119.89 (11)
C5—C4—H4125.7 (14)C10—C15—C16111.65 (10)
C3—C4—H4113.9 (14)C14—C15—C16128.46 (11)
C4—C5—C6121.06 (14)C8—C16—C15102.88 (9)
C4—C5—H5119.9 (13)C8—C16—H16A112.0 (10)
C6—C5—H5119.0 (13)C15—C16—H16A109.8 (10)
C1—C6—C5118.84 (12)C8—C16—H16B113.2 (10)
C1—C6—C7123.76 (12)C15—C16—H16B111.7 (10)
C5—C6—C7117.39 (12)H16A—C16—H16B107.4 (14)
C8—C7—C6131.13 (12)O2—C17—H17A106.0 (11)
C8—C7—H7117.8 (11)O2—C17—H17B111.0 (10)
C6—C7—H7111.1 (11)H17A—C17—H17B106.4 (14)
C7—C8—C9118.31 (11)O2—C17—H17C112.8 (10)
C7—C8—C16132.96 (11)H17A—C17—H17C109.7 (15)
C9—C8—C16108.73 (10)H17B—C17—H17C110.5 (14)
O1—C9—C10127.22 (11)O3—C18—H18A114.1 (12)
O1—C9—C8126.23 (11)O3—C18—H18B112.8 (11)
C10—C9—C8106.55 (10)H18A—C18—H18B104.5 (15)
C15—C10—C11122.49 (11)O3—C18—H18C108.2 (14)
C15—C10—C9110.14 (10)H18A—C18—H18C106.5 (16)
C11—C10—C9127.37 (11)H18B—C18—H18C110.5 (17)
C12—C11—C10118.13 (11)
C6—C1—C2—C30.32 (19)C9—C10—C11—C12179.81 (12)
C6—C1—C2—Cl1178.78 (10)C17—O2—C12—C112.01 (17)
C1—C2—C3—C40.0 (2)C17—O2—C12—C13178.74 (11)
Cl1—C2—C3—C4179.06 (12)C10—C11—C12—O2179.80 (11)
C2—C3—C4—C50.7 (2)C10—C11—C12—C130.59 (17)
C3—C4—C5—C61.1 (2)C18—O3—C13—C144.38 (18)
C2—C1—C6—C50.09 (19)C18—O3—C13—C12176.10 (11)
C2—C1—C6—C7179.15 (12)O2—C12—C13—O30.50 (15)
C4—C5—C6—C10.8 (2)C11—C12—C13—O3178.79 (11)
C4—C5—C6—C7179.91 (14)O2—C12—C13—C14179.96 (11)
C1—C6—C7—C87.7 (2)C11—C12—C13—C140.74 (18)
C5—C6—C7—C8173.26 (14)O3—C13—C14—C15178.91 (11)
C6—C7—C8—C9179.20 (12)C12—C13—C14—C150.58 (17)
C6—C7—C8—C160.6 (2)C11—C10—C15—C140.16 (18)
C7—C8—C9—O12.7 (2)C9—C10—C15—C14179.73 (11)
C16—C8—C9—O1177.46 (13)C11—C10—C15—C16179.72 (10)
C7—C8—C9—C10177.72 (11)C9—C10—C15—C160.15 (14)
C16—C8—C9—C102.16 (13)C13—C14—C15—C100.29 (17)
O1—C9—C10—C15178.36 (13)C13—C14—C15—C16179.57 (11)
C8—C9—C10—C151.25 (13)C7—C8—C16—C15177.69 (13)
O1—C9—C10—C112.1 (2)C9—C8—C16—C152.15 (12)
C8—C9—C10—C11178.30 (11)C10—C15—C16—C81.44 (13)
C15—C10—C11—C120.32 (18)C14—C15—C16—C8178.43 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.942 (16)2.489 (18)3.2650 (16)139.6 (15)
C11—H11···O1ii0.951 (18)2.561 (17)3.3229 (16)137.3 (14)
C18—H18C···O3iii0.96 (2)2.53 (2)3.4684 (17)165.2 (17)
C3—H3···Cg2iv0.87 (2)2.86 (2)3.6072 (17)144.4 (17)
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) y+1, x, z+3; (iv) y+1/2, x1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H15ClO3
Mr314.75
Crystal system, space groupTetragonal, P421c
Temperature (K)100
a, c (Å)20.5004 (16), 7.0241 (7)
V3)2952.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.74 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.826, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
62722, 4499, 4251
Rint0.045
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.06
No. of reflections4499
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.19
Absolute structureFlack (1983), 1966 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.942 (16)2.489 (18)3.2650 (16)139.6 (15)
C11—H11···O1ii0.951 (18)2.561 (17)3.3229 (16)137.3 (14)
C18—H18C···O3iii0.96 (2)2.53 (2)3.4684 (17)165.2 (17)
C3—H3···Cg2iv0.87 (2)2.86 (2)3.6072 (17)144.4 (17)
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) y+1, x, z+3; (iv) y+1/2, x1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti of Sains Malysia (USM) for providing research facilities. HKF and CSY also thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, o2531–o2532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFurusawa, M., Tanaka, T., Ito, T., Nishiwaka, A., Yamazaki, N., Nakaya, K. I., Matsuura, N., Tsuchiya, H., Nagayama, M. & Iinuma, M. (2005). J. Health Sci. 51, 376–378.  Web of Science CrossRef CAS Google Scholar
First citationHeidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68–80.  Web of Science CrossRef PubMed Google Scholar
First citationMarzinzik, A. L. & Felder, E. R. (1998). J. Org. Chem. 63, 723–727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikanth, G. S. C. & Castle, S. L. (2005). Tetrahedron, 61, 10377–10441.  Web of Science CrossRef CAS Google Scholar
First citationSyed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167–176.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds