organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Meth­­oxy­phen­yl)-4-methyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 20 October 2010; accepted 21 October 2010; online 30 October 2010)

In the title compound, C14H15NO3S, the geometry around the S atom of the SO2 group is distorted tetra­hedral. The meth­oxy- and methyl-substituted aromatic rings are oriented at a dihedral angle of 71.39 (9)°. Inter­molecular N—H⋯O hydrogen bonds form inversion dimers, which stabilize the crystal structure.

Related literature

For the anti­microbial activity of sulfonamide compounds, see: Gao & Pederson (2005[Gao, J. & Pederson, J. A. (2005). Environ. Sci. Technol. 39, 9509-9516.]). For a related thia­zine mol­ecule, see: Arshad et al. (2010[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070.]). For a related structure, see: Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO3S

  • Mr = 277.33

  • Orthorhombic, P b c a

  • a = 12.7395 (9) Å

  • b = 11.4906 (6) Å

  • c = 18.6968 (10) Å

  • V = 2736.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.42 × 0.33 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.951

  • 13798 measured reflections

  • 3376 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 0.91

  • 3376 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 2.35 3.112 (3) 151
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamide compounds are well known as antimicrobial agents (Gao & Pederson, 2005). The structure reported here is a precursor used in the synthesis of thiazine heterocycles (Arshad et al., 2010).

The bond lengths and angles in the title compound are similar to those observed in the recently published N-(2-methoxyphenyl)benzenesulfonamide (II) (Aziz-ur-Rehman et al., 2010). The two aromatic rings (C1/C2/C3/C4/C5/C6) and C7/C8/C9/C10/C11/C12) are oriented at dihedral angles of 71.39 (0.09)° unlike the dihedral angles observed for the two independent molecules in II. Similarly the torsion angle C—S—N(H)—C is -56.5 (3) compared with 67.25 (15)° in molecule A and -81.17 (16)° in molecule B of (II). Inversion related intermolecular N—H···O hydrogen bonds form dimers and generate an eight-membered R22(8) ring motif (Bernstein et al., 1995) Table. 1, Fig. 2.

Related literature top

For the antimicrobial activity of sulfonamide compounds, see: Gao & Pederson (2005). For a related thiazine molecule, see: Arshad et al. (2010). For a related structure, see: Aziz-ur-Rehman et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of para toluenesulfonyl chloride (0.00104 mol; 0.200 g), o-anisidine (0.00104 mol; 0.128 g), was stirred in 10–15 ml of distilled water, while maintaining pH of the reaction mixture at 8–10 using 3% sodium carbonate. The progress of the reaction was checked by TLC. On completion of reaction the precipitates obtained were filtered, washed with water and finally dried. Suitable crystals for X-Ray analysis were grown from DCM (dichloromethane) by slow evaporation.

Refinement top

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic C—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic, with Uiso(H) = 1.5 Ueq(C) for methyl. The N–H H atom was fixed in its found position with Uiso(H) = 1.2 Ueq(N).

Structure description top

Sulfonamide compounds are well known as antimicrobial agents (Gao & Pederson, 2005). The structure reported here is a precursor used in the synthesis of thiazine heterocycles (Arshad et al., 2010).

The bond lengths and angles in the title compound are similar to those observed in the recently published N-(2-methoxyphenyl)benzenesulfonamide (II) (Aziz-ur-Rehman et al., 2010). The two aromatic rings (C1/C2/C3/C4/C5/C6) and C7/C8/C9/C10/C11/C12) are oriented at dihedral angles of 71.39 (0.09)° unlike the dihedral angles observed for the two independent molecules in II. Similarly the torsion angle C—S—N(H)—C is -56.5 (3) compared with 67.25 (15)° in molecule A and -81.17 (16)° in molecule B of (II). Inversion related intermolecular N—H···O hydrogen bonds form dimers and generate an eight-membered R22(8) ring motif (Bernstein et al., 1995) Table. 1, Fig. 2.

For the antimicrobial activity of sulfonamide compounds, see: Gao & Pederson (2005). For a related thiazine molecule, see: Arshad et al. (2010). For a related structure, see: Aziz-ur-Rehman et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Inversion dimers formed through N—H···O hydrogen bonds drawn as dashed lines.
N-(2-Methoxyphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C14H15NO3SF(000) = 1168
Mr = 277.33Dx = 1.346 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1013 reflections
a = 12.7395 (9) Åθ = 3.2–19.2°
b = 11.4906 (6) ŵ = 0.24 mm1
c = 18.6968 (10) ÅT = 296 K
V = 2736.9 (3) Å3Needle, light brown
Z = 80.42 × 0.33 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3376 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
φ and ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1610
Tmin = 0.906, Tmax = 0.951k = 1115
13798 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H15NO3SV = 2736.9 (3) Å3
Mr = 277.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7395 (9) ŵ = 0.24 mm1
b = 11.4906 (6) ÅT = 296 K
c = 18.6968 (10) Å0.42 × 0.33 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3376 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1313 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.951Rint = 0.086
13798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.91Δρmax = 0.18 e Å3
3376 reflectionsΔρmin = 0.28 e Å3
174 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51740 (7)0.61649 (6)0.39096 (4)0.0571 (3)
O10.60405 (18)0.61039 (18)0.34278 (11)0.0706 (7)
N10.55946 (19)0.6656 (2)0.46723 (12)0.0529 (7)
C10.4303 (2)0.7199 (2)0.35541 (14)0.0465 (7)
O20.46120 (19)0.51265 (17)0.40827 (11)0.0751 (7)
C20.4619 (3)0.7899 (3)0.30004 (16)0.0584 (8)
H20.52980.78420.28220.070*
O30.49484 (18)0.80720 (18)0.56921 (11)0.0662 (6)
C30.3924 (3)0.8688 (3)0.27103 (16)0.0607 (9)
H30.41460.91620.23370.073*
C40.2908 (3)0.8796 (2)0.29578 (15)0.0510 (8)
C50.2613 (3)0.8091 (3)0.35213 (17)0.0598 (9)
H50.19350.81500.37030.072*
H1N0.53060.62700.49990.072*
C60.3298 (3)0.7303 (3)0.38188 (16)0.0610 (9)
H60.30820.68390.41990.073*
C70.6101 (2)0.7748 (2)0.47481 (15)0.0481 (8)
C80.5756 (2)0.8488 (2)0.52917 (16)0.0491 (8)
C90.6239 (3)0.9550 (3)0.53963 (18)0.0650 (9)
H90.60061.00470.57550.078*
C100.7065 (3)0.9868 (3)0.4967 (2)0.0742 (11)
H100.73911.05830.50380.089*
C110.7412 (3)0.9152 (3)0.4440 (2)0.0766 (11)
H110.79690.93800.41510.092*
C120.6934 (3)0.8076 (3)0.43331 (16)0.0629 (9)
H120.71820.75790.39790.075*
C130.2160 (3)0.9656 (3)0.26372 (17)0.0697 (10)
H13A0.21370.95520.21280.105*
H13B0.23911.04320.27450.105*
H13C0.14720.95360.28330.105*
C140.4637 (3)0.8720 (3)0.63051 (18)0.0889 (12)
H14A0.43960.94760.61590.133*
H14B0.52240.88040.66230.133*
H14C0.40790.83180.65470.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0728 (6)0.0410 (5)0.0575 (5)0.0023 (4)0.0082 (5)0.0047 (4)
O10.0764 (17)0.0696 (16)0.0659 (14)0.0201 (12)0.0028 (13)0.0123 (12)
N10.0685 (19)0.0410 (14)0.0491 (14)0.0108 (13)0.0068 (13)0.0069 (12)
C10.057 (2)0.0393 (17)0.0436 (16)0.0066 (15)0.0000 (15)0.0013 (14)
O20.104 (2)0.0370 (12)0.0845 (16)0.0171 (12)0.0261 (14)0.0047 (11)
C20.051 (2)0.064 (2)0.0603 (19)0.0033 (17)0.0091 (17)0.0070 (17)
O30.0647 (17)0.0638 (14)0.0700 (14)0.0036 (12)0.0084 (12)0.0086 (12)
C30.067 (2)0.064 (2)0.0515 (19)0.0029 (19)0.0090 (18)0.0179 (17)
C40.056 (2)0.0500 (19)0.0469 (18)0.0010 (16)0.0005 (16)0.0061 (16)
C50.051 (2)0.063 (2)0.065 (2)0.0016 (17)0.0114 (17)0.0007 (18)
C60.070 (3)0.057 (2)0.0552 (19)0.0038 (18)0.0124 (19)0.0129 (17)
C70.052 (2)0.0433 (18)0.0492 (18)0.0005 (16)0.0084 (16)0.0078 (15)
C80.047 (2)0.046 (2)0.0543 (18)0.0001 (16)0.0065 (16)0.0053 (15)
C90.078 (3)0.050 (2)0.066 (2)0.007 (2)0.014 (2)0.0039 (18)
C100.084 (3)0.060 (2)0.079 (2)0.024 (2)0.022 (2)0.010 (2)
C110.072 (3)0.086 (3)0.072 (3)0.028 (2)0.007 (2)0.020 (2)
C120.065 (2)0.069 (2)0.055 (2)0.0093 (19)0.0024 (18)0.0010 (18)
C130.068 (3)0.075 (2)0.066 (2)0.015 (2)0.0018 (19)0.0041 (18)
C140.098 (3)0.100 (3)0.069 (2)0.005 (2)0.012 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—O11.426 (2)C6—H60.9300
S1—O21.429 (2)C7—C121.368 (4)
S1—N11.625 (2)C7—C81.396 (4)
S1—C11.756 (3)C8—C91.381 (4)
N1—C71.418 (3)C9—C101.373 (5)
N1—H1N0.8394C9—H90.9300
C1—C21.371 (4)C10—C111.357 (5)
C1—C61.378 (4)C10—H100.9300
C2—C31.378 (4)C11—C121.393 (4)
C2—H20.9300C11—H110.9300
O3—C81.359 (3)C12—H120.9300
O3—C141.424 (3)C13—H13A0.9600
C3—C41.379 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.382 (4)C14—H14A0.9600
C4—C131.498 (4)C14—H14B0.9600
C5—C61.375 (4)C14—H14C0.9600
C5—H50.9300
O1—S1—O2119.32 (14)C12—C7—N1122.7 (3)
O1—S1—N1108.43 (13)C8—C7—N1117.9 (3)
O2—S1—N1104.86 (12)O3—C8—C9124.8 (3)
O1—S1—C1106.45 (14)O3—C8—C7115.1 (3)
O2—S1—C1109.52 (15)C9—C8—C7120.1 (3)
N1—S1—C1107.79 (13)C10—C9—C8119.6 (3)
C7—N1—S1123.03 (19)C10—C9—H9120.2
C7—N1—H1N126.5C8—C9—H9120.2
S1—N1—H1N108.1C11—C10—C9120.9 (3)
C2—C1—C6119.5 (3)C11—C10—H10119.6
C2—C1—S1119.8 (3)C9—C10—H10119.6
C6—C1—S1120.6 (2)C10—C11—C12120.0 (4)
C1—C2—C3119.7 (3)C10—C11—H11120.0
C1—C2—H2120.2C12—C11—H11120.0
C3—C2—H2120.2C7—C12—C11120.1 (3)
C8—O3—C14118.1 (3)C7—C12—H12119.9
C2—C3—C4122.0 (3)C11—C12—H12119.9
C2—C3—H3119.0C4—C13—H13A109.5
C4—C3—H3119.0C4—C13—H13B109.5
C3—C4—C5117.3 (3)H13A—C13—H13B109.5
C3—C4—C13121.4 (3)C4—C13—H13C109.5
C5—C4—C13121.2 (3)H13A—C13—H13C109.5
C6—C5—C4121.4 (3)H13B—C13—H13C109.5
C6—C5—H5119.3O3—C14—H14A109.5
C4—C5—H5119.3O3—C14—H14B109.5
C5—C6—C1120.1 (3)H14A—C14—H14B109.5
C5—C6—H6120.0O3—C14—H14C109.5
C1—C6—H6120.0H14A—C14—H14C109.5
C12—C7—C8119.3 (3)H14B—C14—H14C109.5
O1—S1—N1—C758.3 (3)C2—C1—C6—C51.0 (5)
O2—S1—N1—C7173.2 (2)S1—C1—C6—C5178.0 (2)
C1—S1—N1—C756.5 (3)S1—N1—C7—C1251.4 (4)
O1—S1—C1—C211.4 (3)S1—N1—C7—C8131.6 (2)
O2—S1—C1—C2141.7 (2)C14—O3—C8—C96.2 (4)
N1—S1—C1—C2104.7 (2)C14—O3—C8—C7173.0 (3)
O1—S1—C1—C6167.6 (2)C12—C7—C8—O3177.7 (3)
O2—S1—C1—C637.3 (3)N1—C7—C8—O30.6 (4)
N1—S1—C1—C676.3 (3)C12—C7—C8—C91.5 (4)
C6—C1—C2—C30.7 (4)N1—C7—C8—C9178.6 (3)
S1—C1—C2—C3178.3 (2)O3—C8—C9—C10178.5 (3)
C1—C2—C3—C40.3 (5)C7—C8—C9—C100.6 (5)
C2—C3—C4—C51.0 (5)C8—C9—C10—C110.1 (5)
C2—C3—C4—C13179.9 (3)C9—C10—C11—C120.5 (6)
C3—C4—C5—C60.7 (5)C8—C7—C12—C111.8 (5)
C13—C4—C5—C6179.8 (3)N1—C7—C12—C11178.9 (3)
C4—C5—C6—C10.3 (5)C10—C11—C12—C71.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.842.353.112 (3)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H15NO3S
Mr277.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.7395 (9), 11.4906 (6), 18.6968 (10)
V3)2736.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.42 × 0.33 × 0.21
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.906, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13798, 3376, 1313
Rint0.086
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 0.91
No. of reflections3376
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.842.353.112 (3)150.6
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, J. & Pederson, J. A. (2005). Environ. Sci. Technol. 39, 9509–9516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds