organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)urea

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague; Hlavova 2030, 12840 Prague 2, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz

(Received 7 October 2010; accepted 15 October 2010; online 20 October 2010)

In the title compound, C7H7BrN2O, both the urea moiety [maximum deviation 0.003 (2) Å] and the benzene ring are essentially planar [maximum deviation 0.003 (2) Å] but are rotated with respect to each other by a dihedral angle of 47.8 (1)°. The crystal assembly is stabilized by N—H⋯O hydrogen bonds between all NH protons as conventional hydrogen bond donors and the C=O oxygen as a trifurcated hydrogen-bond acceptor. Both the overall mol­ecular geometry and the crystal packing of the title compound are very similar to those of N-phenyl­urea, which is underscored by a practically isostructural relationship between these two urea derivatives.

Related literature

For the crystal structure of N-phenyl­urea, see: Kashino & Haisa (1977[Kashino, S. & Haisa, M. (1977). Acta Cryst. B33, 855-860.]); Bott et al. (2000[Bott, R. C., Smith, G., Wermuth, U. D. & Dwyer, N. C. (2000). Aust. J. Chem. 53, 767-777.]). For the crystal structure of N-(4-tol­yl)urea, see: Ciajolo et al. (1982[Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A. & Tuzi, A. (1982). Acta Cryst. B38, 2928-2930.]). For the structure of a mol­ecular 1:1 adduct of N-(4-bromo­phen­yl)urea with N-(4-bromo­phen­yl)-2-{2-[2-(((4-bromo­phen­yl)carbamo­yl)amino)-2-oxoeth­yl]cyclo­hex-1-en-1-yl}-2-cyano­acetamide, see: Zhang et al. (2009[Zhang, H.-J., Meng, T., Demerseman, B., Bruneau, C. & Xi, Z. (2009). Org. Lett. 11, 4458-4461.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BrN2O

  • Mr = 215.06

  • Monoclinic, P 21

  • a = 4.6033 (2) Å

  • b = 5.3915 (2) Å

  • c = 15.9444 (8) Å

  • β = 97.994 (3)°

  • V = 391.87 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.18 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.247, Tmax = 0.475

  • 5026 measured reflections

  • 1771 independent reflections

  • 1704 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.05

  • 1771 reflections

  • 103 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 792 Friedel pairs

  • Flack parameter: −0.010 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 2.11 2.904 (3) 146
N2—H2N⋯O1ii 0.90 2.12 2.979 (3) 158
N2—H3N⋯O1i 0.93 2.12 2.865 (3) 137
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). Collect program suite. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound crystallized with the symmetry of the monoclinic space group P21. Its molecular structure (Fig. 1) compares well to those reported earlier for N-phenylurea (Kashino & Haisa 1977; Bott et al., 2000), N-(4-tolyl)urea (Ciajolo et al., 1982), and mainly to the structure of N-(4-bromophenyl)urea as recently established in the molecular adduct, N-(4-bromophenyl)-2-{2-[2-(((4-bromophenyl)carbamoyl)amino)-2-oxoethyl] cyclohex-1-en-1-yl}-2-cyanoacetamide–N-(4-bromophenyl)urea (1/1) (Zhang et al., 2009).

The four non-hydrogen atoms constituting the urea moiety in the title molecule are coplanar within 0.003 (2) Å, whilst the atoms forming the benzene ring (C1–C6) depart from their mean plane by only 0.002 (3) Å. The Br1 and N1 atoms are displaced from the latter plane by 0.016 (1) Å and 0.053 (2) Å, respectively. Whereas the bromine atoms binds symmetrically to the aromatic ring (the difference in the C(3/5)—C4—Br1 angles is less than 0.1 °), the C1—N1 bond connecting both functional parts is slightly twisted (cf. N1—C1—C2 = 121.5 (2) ° and N1—C1—C6 = 118.8 (3) °). More importantly, the benzene ring and the urea moiety are mutually rotated with a dihedral angle of their mean planes of 47.8 (1) °, which is considerably more than in the afore mentioned adduct (ca 16.5 °), but practically identical with the value reported for N-phenylurea [46.4 and 47.6 ° depending on the study (Kashino & Haisa, 1977; Bott et al., 2000)].

In the crystal, the individual molecules of N-(4-bromophenyl)urea associate predominantly by means of N—H···O hydrogen bonds (Table 1). However, because of the pronounced imbalance in the number of conventional hydrogen bond donors and acceptors, the carbonyl oxygen O1 behaves as a trifurcated hydrogen bond acceptor, interacting with two proximal molecules (Fig. 2a) related by elemental translation along the a-axis and a crystallographic twofold screw axis, respectively. This leads to the formation of layers oriented parallel to the ab plane (Fig. 2b). Notably, the same array is preserved also for N-phenylurea, resulting in similar metrical parameters and the same non-centrosymmetric space group. For N-(4-tolyl)urea, on the other hand, similar hydrogen bonded layers related via a crystallographic inversion centre, leading to the space group P21/c and a doubling of the c axis length.

Related literature top

For the crystal structure of N-phenylurea, see: Kashino & Haisa (1977); Bott et al. (2000). For the crystal structure of N-(4-tolyl)urea, see: Ciajolo et al. (1982). For the structure of a molecular 1:1 adduct of N-(4-bromophenyl)urea with N-(4-bromophenyl)-2-{2-[2-(((4-bromophenyl)carbamoyl)amino)-2-oxoethyl]cyclohex-1-en-1-yl}-2-cyanoacetamide, see: Zhang et al. (2009).

Experimental top

The title compound was obtained from the reaction of sodium cyanate with 4-bromoaniline as described in the literature (Pandeya et al., 2000), and was crystallized from hot 90% ethanol. 1H NMR (399.95 MHz, dmso-d6): δ 5.91 (s, 2H, NH2), 7.38 (s, 4H, C6H4), 8.66 (s, 1H, NH). 13C{1H} NMR (100.58 MHz, dmso-d6): δ 112.22 (Cipso of C6H4), 119.52 (2CH of C6H4), 131.18 (2CH of C6H4), 139.89 (Cipso of C6H4), 155.70 (CO).

Refinement top

The C-bound H atoms were included in calculated positions and refined as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The NH and NH2 H-atoms were located in a difference electron density map and were refined as riding atoms with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule as viewed perpendicularly to the benzene ring. Displacement ellipsoids for the non-H atoms are shown at the 50% probability level. Hydrogen atoms are presented as spheres with an arbitrary radius.
[Figure 2] Fig. 2. (a) Hydrogen bonds (dashed lines) generated by the molecules of the title compound (see Table 1 for details). (b) Section of the crystal array of the title compound as viewed along the b axis (hydrogen bonds are shown as dashed lines).
N-(4-Bromophenyl)urea top
Crystal data top
C7H7BrN2OF(000) = 212
Mr = 215.06Dx = 1.823 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4819 reflections
a = 4.6033 (2) Åθ = 1.0–27.5°
b = 5.3915 (2) ŵ = 5.18 mm1
c = 15.9444 (8) ÅT = 150 K
β = 97.994 (3)°Bar, colourless
V = 391.87 (3) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1771 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω and ϕ scans to fill the Ewald sphereh = 55
Absorption correction: gaussian
(Coppens, 1970)
k = 66
Tmin = 0.247, Tmax = 0.475l = 2020
5026 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.0852P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1771 reflectionsΔρmax = 0.30 e Å3
103 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 792 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (11)
Crystal data top
C7H7BrN2OV = 391.87 (3) Å3
Mr = 215.06Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6033 (2) ŵ = 5.18 mm1
b = 5.3915 (2) ÅT = 150 K
c = 15.9444 (8) Å0.40 × 0.20 × 0.20 mm
β = 97.994 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1771 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
1704 reflections with I > 2σ(I)
Tmin = 0.247, Tmax = 0.475Rint = 0.037
5026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.30 e Å3
1771 reflectionsAbsolute structure: Flack (1983), 792 Friedel pairs
103 parametersAbsolute structure parameter: 0.010 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two least-squares planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving least-squares planes.

Refinement. Refinement of F2 against all diffractions. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54956 (5)1.31775 (8)0.426555 (13)0.03508 (9)
O10.4501 (4)0.5276 (3)0.08842 (11)0.0251 (4)
N10.9049 (5)0.6438 (4)0.15212 (14)0.0268 (4)
H1N1.10160.62850.15450.039 (9)*
N20.8539 (5)0.3758 (4)0.03989 (15)0.0288 (6)
H2N0.72820.30420.00150.042 (8)*
H3N1.05260.33680.04910.046 (8)*
C10.8105 (5)0.7986 (7)0.21549 (13)0.0240 (5)
C20.5960 (6)0.9794 (5)0.19521 (16)0.0291 (6)
H20.50490.99710.13970.035*
C30.5192 (7)1.1329 (5)0.25844 (16)0.0313 (6)
H30.37681.25460.24540.038*
C40.6548 (6)1.1045 (5)0.34067 (16)0.0267 (5)
C50.8670 (6)0.9267 (5)0.36161 (17)0.0316 (6)
H50.95700.90950.41720.038*
C60.9445 (6)0.7738 (5)0.29848 (16)0.0329 (7)
H61.08800.65320.31190.039*
C70.7229 (6)0.5154 (4)0.09379 (15)0.0219 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04673 (17)0.03249 (14)0.02688 (12)0.00234 (17)0.00808 (9)0.00465 (14)
O10.0148 (9)0.0297 (10)0.0307 (9)0.0013 (7)0.0031 (7)0.0010 (7)
N10.0152 (11)0.0337 (11)0.0315 (11)0.0002 (8)0.0035 (8)0.0076 (9)
N20.0182 (10)0.0353 (16)0.0335 (11)0.0008 (9)0.0057 (9)0.0104 (9)
C10.0215 (11)0.0243 (13)0.0269 (10)0.0023 (14)0.0063 (8)0.0016 (13)
C20.0344 (15)0.0267 (13)0.0253 (12)0.0053 (11)0.0013 (10)0.0022 (10)
C30.0391 (16)0.0250 (12)0.0299 (13)0.0075 (12)0.0051 (12)0.0010 (11)
C40.0304 (14)0.0250 (12)0.0263 (12)0.0044 (11)0.0092 (11)0.0033 (10)
C50.0319 (15)0.0357 (12)0.0256 (12)0.0017 (12)0.0018 (11)0.0001 (10)
C60.0268 (13)0.037 (2)0.0330 (12)0.0058 (12)0.0016 (10)0.0023 (11)
C70.0189 (12)0.0221 (11)0.0246 (11)0.0009 (9)0.0025 (9)0.0012 (9)
Geometric parameters (Å, º) top
Br1—C41.901 (2)C1—C21.393 (4)
O1—C71.249 (3)C2—C31.388 (4)
N1—C71.353 (3)C2—H20.9300
N1—C11.424 (4)C3—C41.380 (4)
N1—H1N0.9044C3—H30.9300
N2—C71.346 (3)C4—C51.376 (4)
N2—H2N0.9014C5—C61.386 (4)
N2—H3N0.9301C5—H50.9300
C1—C61.386 (3)C6—H60.9300
C7—N1—C1124.5 (2)C2—C3—H3120.1
C7—N1—H1N120.2C5—C4—C3121.3 (2)
C1—N1—H1N115.2C5—C4—Br1119.3 (2)
C7—N2—H2N114.1C3—C4—Br1119.37 (19)
C7—N2—H3N122.9C4—C5—C6118.9 (2)
H2N—N2—H3N122.4C4—C5—H5120.5
C6—C1—C2119.7 (3)C6—C5—H5120.5
C6—C1—N1118.8 (3)C5—C6—C1120.7 (3)
C2—C1—N1121.4 (2)C5—C6—H6119.7
C3—C2—C1119.5 (2)C1—C6—H6119.7
C3—C2—H2120.2O1—C7—N2121.4 (2)
C1—C2—H2120.2O1—C7—N1122.8 (2)
C4—C3—C2119.8 (2)N2—C7—N1115.8 (2)
C4—C3—H3120.1
C7—N1—C1—C6132.2 (3)C3—C4—C5—C60.1 (4)
C7—N1—C1—C250.3 (4)Br1—C4—C5—C6179.3 (2)
C6—C1—C2—C30.1 (4)C4—C5—C6—C10.1 (4)
N1—C1—C2—C3177.4 (3)C2—C1—C6—C50.1 (4)
C1—C2—C3—C40.3 (4)N1—C1—C6—C5177.6 (3)
C2—C3—C4—C50.3 (4)C1—N1—C7—O12.4 (4)
C2—C3—C4—Br1179.5 (2)C1—N1—C7—N2179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.902.112.904 (3)146
N2—H2N···O1ii0.902.122.979 (3)158
N2—H3N···O1i0.932.122.865 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC7H7BrN2O
Mr215.06
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)4.6033 (2), 5.3915 (2), 15.9444 (8)
β (°) 97.994 (3)
V3)391.87 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.18
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.247, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
5026, 1771, 1704
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.05
No. of reflections1771
No. of parameters103
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30
Absolute structureFlack (1983), 792 Friedel pairs
Absolute structure parameter0.010 (11)

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.902.112.904 (3)146
N2—H2N···O1ii0.902.122.979 (3)158
N2—H3N···O1i0.932.122.865 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z.
 

Acknowledgements

Financial support from the Ministry of Education of the Czech Republic (project No. MSM0021620857) is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBott, R. C., Smith, G., Wermuth, U. D. & Dwyer, N. C. (2000). Aust. J. Chem. 53, 767–777.  Web of Science CSD CrossRef CAS
First citationCiajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A. & Tuzi, A. (1982). Acta Cryst. B38, 2928–2930.  CSD CrossRef CAS Web of Science IUCr Journals
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationKashino, S. & Haisa, M. (1977). Acta Cryst. B33, 855–860.  CSD CrossRef CAS IUCr Journals Web of Science
First citationNonius (2000). Collect program suite. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, H.-J., Meng, T., Demerseman, B., Bruneau, C. & Xi, Z. (2009). Org. Lett. 11, 4458–4461.  Web of Science CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds