supplementary materials


vm2052 scheme

Acta Cryst. (2010). E66, m1472    [ doi:10.1107/S1600536810042881 ]

Bis{[mu]-N-[(dimethylamino)dimethylsilyl]-2,6-dimethylanilido}-[kappa]2N:N';[kappa]2N':N-dicopper(I)

J. Chen

Abstract top

The title compound, [Cu2(C12H21N2Si)2], is a binuclear CuI complex. The dimeric molecule has an inversion center located at the mid-point of the Cu-Cu bond [Cu-Cu = 2.7209 (7) Å]. The bidentate ligand behaves in an N:N'-bridging mode, coordinating the metal atoms. The N-Cu-N unit is close to being linear [176.60 (8)°]. The two N atoms exhibit different affinities for the metal atom. The Cu-Namino bond is longer than the Cu-Nanilido bond by 0.079 Å. The core of the molecule, the [Cu-N-Si-N]2 eight-membered ring, adopts a chair configuration.

Comment top

In the past decades, considerable attention was paid to monovalent copper amides because of their potential applications in chemical vapor deposition (CVD), organic electroluminescent devices (EL), as well as their structural diversity. The tetranuclear copper(I) amide, [CuN(SiMe3)2]4, has proved to be a useful precursor in these areas (Chen et al., 1992; James et al., 1998; Noto et al., 2003). In contrast to the traditional monodentate amido ligands, the N-silylated anilido ligands with a pendant amino group were developed and supposed to be bidentate. They were employed for synthesizing compounds with different metals including Zn (Schumann et al., 2000), Zr (Chen, 2009; Yuan et al., 2010) and Fe (Chen, 2008). Here, the synthesis and crystal structure of a new copper(I) anilido complex will be described.

The molecular structure is illustrated in Fig. 1. The N-silylated anilido ligand has an N—Si—N chelating moiety, which is presumed to be a "quasi" conjugated unit owing to dπ interaction between the Si and N atoms. In the binuclear copper compound, each CuI atom coordinates to two N from two ligands, one being an anilido group and another being an amino group. Therefore, the bidentate ligand behaves as N,N'-µ-bridging mode. Each N—Cu—N unit is close to linear and the two N—Cu—N units are nearly co-planar. The two silyl groups are located above and beneath the plane, respectively, which leads to the "chair" configuration of the [Cu—N—Si—N]2 eight-membered ring. The bond lengths N1—Cu1, N2—Cu1A (Cu1A is generated by symmetry operation 1-x, 2-y, 2-z), N1—Si1 and N2—Si1 are 1.848 (2), 1.927 (2), 1.687 (2) and 1.819 (2) Å, respectively. The central Cu—Cu bond is 2.7209 (7) Å, which is comparable to the metal-metal interaction in another reported copper(I) compound (Guo et al., 2009). It is noteworthy that the packing is stablized by a C—H···π interaction between H12A and the phenyl ring C1-C6.

Related literature top

For related copper(I) compounds, see Chen et al. (1992); James et al. (1998); Noto et al. (2003); Guo et al. (2009). For related organometallic compounds with analogous analido ligands, see Schumann et al. (2000); Chen (2008, 2009); Yuan et al. (2010).

Experimental top

CuCl (0.25 g, 2.50 mmol) was added into the solution of [LiN(SiMe2NMe2)(2,6-Me2C6H3)]2 (0.57 g, 1.25 mmol) in tetrahydrofuran (30 ml) at 273 K. The reaction mixture was warmed to room temperature and kept stirring for 12 h. It was dried in vacuum to remove all volatiles and the residue was extracted with CH2Cl2 (30 ml). Concentration of the filtrate under reduced pressure and recrystallization in hexane gave the title compound as colorless crystals (yield 0.51 g, 71%).

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.97 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C–C, C–N or C–Si bonds. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.94 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code used to generate second part: 1-x, 2-y, 2-z.
Bis{µ-N-[(dimethylamino)dimethylsilyl]-2,6-dimethylanilido}- κ2N:N';κ2N':N-dicopper(I) top
Crystal data top
[Cu2(C12H21N2Si)2]Z = 1
Mr = 569.88F(000) = 300
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3609 (18) ÅCell parameters from 2538 reflections
b = 8.4384 (18) Åθ = 2.7–27.3°
c = 10.986 (2) ŵ = 1.64 mm1
α = 94.671 (3)°T = 203 K
β = 97.858 (2)°Block, colorless
γ = 113.824 (2)°0.20 × 0.20 × 0.15 mm
V = 694.3 (3) Å3
Data collection top
Bruker SMART area-detector
diffractometer
2388 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
graphiteRint = 0.013
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.736, Tmax = 0.791k = 107
2868 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.0685P]
where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu2(C12H21N2Si)2]γ = 113.824 (2)°
Mr = 569.88V = 694.3 (3) Å3
Triclinic, P1Z = 1
a = 8.3609 (18) ÅMo Kα radiation
b = 8.4384 (18) ŵ = 1.64 mm1
c = 10.986 (2) ÅT = 203 K
α = 94.671 (3)°0.20 × 0.20 × 0.15 mm
β = 97.858 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
2388 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2188 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.791Rint = 0.013
2868 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.56 e Å3
S = 1.08Δρmin = 0.29 e Å3
2388 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64341 (4)0.97861 (4)0.97011 (2)0.02987 (15)
Si10.28617 (9)0.74330 (9)0.81632 (6)0.02923 (19)
N10.5057 (3)0.8549 (3)0.81832 (18)0.0271 (4)
N20.2045 (3)0.9001 (3)0.87246 (19)0.0327 (5)
C10.5948 (3)0.8365 (3)0.7208 (2)0.0281 (5)
C20.6808 (3)0.9786 (3)0.6594 (2)0.0358 (6)
C30.7659 (4)0.9570 (4)0.5639 (3)0.0441 (7)
H3A0.82291.05310.52370.053*
C40.7696 (4)0.7998 (4)0.5261 (3)0.0464 (7)
H4A0.82590.78730.45990.056*
C50.6887 (3)0.6602 (4)0.5873 (2)0.0406 (6)
H5A0.69000.55170.56200.049*
C60.6057 (3)0.6769 (3)0.6855 (2)0.0331 (6)
C70.6796 (5)1.1541 (4)0.6940 (3)0.0546 (8)
H7A0.74511.23530.64200.082*
H7B0.73511.19850.78050.082*
H7C0.55781.14180.68170.082*
C80.5327 (4)0.5259 (4)0.7550 (3)0.0454 (7)
H8A0.55130.42780.71790.068*
H8B0.40640.49180.75110.068*
H8C0.59330.56010.84110.068*
C90.1590 (4)0.6366 (4)0.6565 (3)0.0418 (6)
H9A0.19110.72150.59960.063*
H9B0.03250.59280.65680.063*
H9C0.18740.54000.63020.063*
C100.2242 (4)0.5790 (4)0.9263 (3)0.0483 (7)
H10A0.29020.63451.00940.072*
H10B0.25270.48250.90000.072*
H10C0.09770.53510.92650.072*
C110.2158 (4)1.0308 (4)0.7866 (3)0.0482 (7)
H11A0.13950.97120.70700.072*
H11B0.33771.09050.77500.072*
H11C0.17741.11560.82200.072*
C120.0142 (4)0.8117 (4)0.8889 (3)0.0474 (7)
H12A0.06110.75070.80930.071*
H12B0.02290.89900.92160.071*
H12C0.00390.72830.94650.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (2)0.0337 (2)0.0257 (2)0.01420 (15)0.00558 (13)0.00019 (14)
Si10.0296 (4)0.0309 (4)0.0262 (4)0.0117 (3)0.0069 (3)0.0016 (3)
N10.0290 (11)0.0274 (10)0.0243 (10)0.0115 (8)0.0061 (8)0.0001 (8)
N20.0296 (11)0.0410 (12)0.0290 (11)0.0171 (9)0.0064 (8)0.0004 (9)
C10.0274 (12)0.0343 (13)0.0225 (12)0.0139 (10)0.0036 (9)0.0003 (10)
C20.0372 (14)0.0367 (14)0.0357 (14)0.0161 (11)0.0108 (11)0.0066 (11)
C30.0428 (16)0.0532 (17)0.0350 (15)0.0151 (13)0.0160 (12)0.0127 (13)
C40.0384 (15)0.068 (2)0.0342 (15)0.0234 (14)0.0123 (12)0.0031 (13)
C50.0352 (14)0.0488 (16)0.0396 (15)0.0238 (12)0.0027 (12)0.0089 (12)
C60.0297 (13)0.0367 (14)0.0334 (14)0.0171 (11)0.0012 (10)0.0018 (11)
C70.073 (2)0.0350 (16)0.062 (2)0.0207 (15)0.0328 (17)0.0155 (14)
C80.0543 (17)0.0379 (15)0.0546 (18)0.0281 (13)0.0155 (14)0.0083 (13)
C90.0386 (15)0.0474 (17)0.0363 (15)0.0185 (13)0.0031 (11)0.0070 (12)
C100.0548 (18)0.0427 (16)0.0496 (18)0.0171 (14)0.0232 (14)0.0150 (13)
C110.0650 (19)0.0586 (19)0.0360 (15)0.0418 (16)0.0069 (13)0.0073 (13)
C120.0282 (14)0.062 (2)0.0483 (17)0.0184 (13)0.0089 (12)0.0085 (14)
Geometric parameters (Å, °) top
Cu1—N11.848 (2)C5—H5A0.9400
Cu1—N2i1.927 (2)C6—C81.496 (4)
Cu1—Cu1i2.7209 (7)C7—H7A0.9700
Si1—N11.687 (2)C7—H7B0.9700
Si1—N21.819 (2)C7—H7C0.9700
Si1—C91.866 (3)C8—H8A0.9700
Si1—C101.875 (3)C8—H8B0.9700
N1—C11.418 (3)C8—H8C0.9700
N2—C111.491 (4)C9—H9A0.9700
N2—C121.504 (3)C9—H9B0.9700
N2—Cu1i1.927 (2)C9—H9C0.9700
C1—C21.407 (3)C10—H10A0.9700
C1—C61.413 (3)C10—H10B0.9700
C2—C31.385 (4)C10—H10C0.9700
C2—C71.503 (4)C11—H11A0.9700
C3—C41.371 (4)C11—H11B0.9700
C3—H3A0.9400C11—H11C0.9700
C4—C51.381 (4)C12—H12A0.9700
C4—H4A0.9400C12—H12B0.9700
C5—C61.387 (4)C12—H12C0.9700
N1—Cu1—N2i176.60 (8)C2—C7—H7A109.5
N1—Cu1—Cu1i88.78 (6)C2—C7—H7B109.5
N2i—Cu1—Cu1i94.26 (6)H7A—C7—H7B109.5
N1—Si1—N2107.39 (11)C2—C7—H7C109.5
N1—Si1—C9112.14 (12)H7A—C7—H7C109.5
N2—Si1—C9108.35 (12)H7B—C7—H7C109.5
N1—Si1—C10116.21 (12)C6—C8—H8A109.5
N2—Si1—C10102.61 (12)C6—C8—H8B109.5
C9—Si1—C10109.44 (14)H8A—C8—H8B109.5
C1—N1—Si1125.19 (16)C6—C8—H8C109.5
C1—N1—Cu1117.77 (15)H8A—C8—H8C109.5
Si1—N1—Cu1116.05 (11)H8B—C8—H8C109.5
C11—N2—C12107.8 (2)Si1—C9—H9A109.5
C11—N2—Si1112.03 (17)Si1—C9—H9B109.5
C12—N2—Si1112.00 (17)H9A—C9—H9B109.5
C11—N2—Cu1i108.72 (18)Si1—C9—H9C109.5
C12—N2—Cu1i110.13 (16)H9A—C9—H9C109.5
Si1—N2—Cu1i106.11 (10)H9B—C9—H9C109.5
C2—C1—C6117.9 (2)Si1—C10—H10A109.5
C2—C1—N1120.9 (2)Si1—C10—H10B109.5
C6—C1—N1121.1 (2)H10A—C10—H10B109.5
C3—C2—C1119.9 (2)Si1—C10—H10C109.5
C3—C2—C7119.0 (2)H10A—C10—H10C109.5
C1—C2—C7121.2 (2)H10B—C10—H10C109.5
C4—C3—C2122.1 (3)N2—C11—H11A109.5
C4—C3—H3A119.0N2—C11—H11B109.5
C2—C3—H3A119.0H11A—C11—H11B109.5
C3—C4—C5118.6 (2)N2—C11—H11C109.5
C3—C4—H4A120.7H11A—C11—H11C109.5
C5—C4—H4A120.7H11B—C11—H11C109.5
C4—C5—C6121.3 (3)N2—C12—H12A109.5
C4—C5—H5A119.3N2—C12—H12B109.5
C6—C5—H5A119.3H12A—C12—H12B109.5
C5—C6—C1120.1 (2)N2—C12—H12C109.5
C5—C6—C8119.1 (2)H12A—C12—H12C109.5
C1—C6—C8120.7 (2)H12B—C12—H12C109.5
N2—Si1—N1—C1134.55 (18)Si1—N1—C1—C2118.2 (2)
C9—Si1—N1—C115.6 (2)Cu1—N1—C1—C273.7 (3)
C10—Si1—N1—C1111.3 (2)Si1—N1—C1—C664.2 (3)
N2—Si1—N1—Cu157.14 (15)Cu1—N1—C1—C6103.9 (2)
C9—Si1—N1—Cu1176.06 (11)C6—C1—C2—C32.8 (4)
C10—Si1—N1—Cu157.01 (17)N1—C1—C2—C3179.5 (2)
N2i—Cu1—N1—C145.8 (14)C6—C1—C2—C7178.3 (2)
Cu1i—Cu1—N1—C1160.73 (16)N1—C1—C2—C70.7 (4)
N2i—Cu1—N1—Si1123.5 (13)C1—C2—C3—C40.0 (4)
Cu1i—Cu1—N1—Si130.06 (11)C7—C2—C3—C4178.9 (3)
N1—Si1—N2—C1165.4 (2)C2—C3—C4—C51.3 (4)
C9—Si1—N2—C1155.9 (2)C3—C4—C5—C60.3 (4)
C10—Si1—N2—C11171.6 (2)C4—C5—C6—C13.1 (4)
N1—Si1—N2—C12173.29 (16)C4—C5—C6—C8175.2 (2)
C9—Si1—N2—C1265.4 (2)C2—C1—C6—C54.3 (3)
C10—Si1—N2—C1250.3 (2)N1—C1—C6—C5178.0 (2)
N1—Si1—N2—Cu1i53.09 (14)C2—C1—C6—C8174.0 (2)
C9—Si1—N2—Cu1i174.41 (11)N1—C1—C6—C83.6 (4)
C10—Si1—N2—Cu1i69.89 (14)
Symmetry codes: (i) −x+1, −y+2, −z+2.
Acknowledgements top

This work was sponsored by the Natural Science Foundation of Shanxi Province (2008011024).

references
References top

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J. (2008). Acta Cryst. E64, m938.

Chen, J. (2009). Acta Cryst. E65, m1307.

Chen, H., Olmstead, M. M., Shoner, S. C. & Power, P. P. (1992). J. Chem. Soc. Dalton Trans. pp. 451–457.

Guo, D., Qiao, X., Tong, H.-B. & Zhou, M. (2009). Acta Cryst. E65, m405.

James, A. M., Laxman, R. K., Fronczek, F. R. & Maverick, A. W. (1998). Inorg. Chem. 37, 3785–3791.

Noto, M., Goto, Y. & Era, M. (2003). Chem. Lett. 32, 32–33.

Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085–2092.