organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Anthracen-9-yl)-3-(4-nitro­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangmlchem@263.net

(Received 25 September 2010; accepted 29 September 2010; online 9 October 2010)

In the title compound, C29H21N3O2, the five-membered pyrazoline ring is nearly planar, the maximum deviation being 0.037 (3) Å. The anthracene ring system is approximately perpendicular to the central pyrazoline ring, making a dihedral angle of 86.55 (16)°, whereas the two attached benzene rings are oriented at smaller dihedral angles of 12.9 (2) and 14.7 (2)°with respect to the pyrazoline ring. An intra­molecular C—H⋯N hydrogen bond is observed.

Related literature

For applications of pyrazoline derivatives, see: Shaharyar et al. (2006[Shaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571-4574.]); Christoph et al. (2003[Christoph, J. F., Liuchun, Y. & Donald, G. V. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Parmar et al. (1974[Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbinson, R. D. (1974). J. Pharm. Sci. 63, 1152-1155.]); Prasad et al. (2005[Prasad, Y. R., Rao, A. L., Prasoona, K., Murali, K. & Kumar, P. R. (2005). Bioorg. Med. Chem. Lett. 15, 5030-5034.]). For a related pyrazoline compound, see: Krishna et al. (1999[Krishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. & Raghunathan, R. (1999). Acta Cryst. C55, 1676-1677.]).

[Scheme 1]

Experimental

Crystal data
  • C29H21N3O2

  • Mr = 443.49

  • Orthorhombic, P c a 21

  • a = 23.023 (5) Å

  • b = 10.195 (2) Å

  • c = 9.2005 (18) Å

  • V = 2159.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • 17812 measured reflections

  • 2023 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.095

  • S = 1.08

  • 2023 reflections

  • 308 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N2 0.93 2.59 3.422 (5) 150

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

The derivatives of pyrazoline are mostly used in medicine, such as antibacterial (Shaharyar et al., 2006), antidepressant (Prasad et al., 2005) and anticonvulsant (Parmar et al., 1974), furthermore they also have application in cell biological study due to their simple structure and favorable photophysical properties (Christoph et al., 2003). Here we report the structure of the title compound (I), a new derivative of pyrazoline.

In the pyrazoline ring, the bond length of C17=N2 [1.287 (4) Å] indicates a to the normal C=N bond (1.28 Å), while the N2—N3 distance [1.366 (4) Å] agrees with the expected values (Krishna et al., 1999). The mean plane of anthryl ring makes dihedral angles of 84.98 (9) and 82.81 (8)°, with the benzene ring and 4-nitrophenyl group, respectively.

Related literature top

For applications of pyrazoline derivatives, see: Shaharyar et al. (2006); Christoph et al. (2003); Parmar et al. (1974); Prasad et al. (2005). For a related pyrazoline compound, see: Krishna et al. (1999).

Experimental top

3-(9-Anthryl)-1-(4-nitrophenylprop)-2-en-1-one (3 mmol, 1.0 g) and phenylhydrazine (6.5 mmol, 0.7 g) were dissolved in 10 ml acetic acid. The mixture was stirred for 8 h at refluxing temperature to give red solid. The product was isolated and recrystallized from ethanol/ethyl acetate (1:1 v/v) mixed solution, red single-crystal of (1) was obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). As no significant anomalous scatterings, Friedel pairs were merged.

Structure description top

The derivatives of pyrazoline are mostly used in medicine, such as antibacterial (Shaharyar et al., 2006), antidepressant (Prasad et al., 2005) and anticonvulsant (Parmar et al., 1974), furthermore they also have application in cell biological study due to their simple structure and favorable photophysical properties (Christoph et al., 2003). Here we report the structure of the title compound (I), a new derivative of pyrazoline.

In the pyrazoline ring, the bond length of C17=N2 [1.287 (4) Å] indicates a to the normal C=N bond (1.28 Å), while the N2—N3 distance [1.366 (4) Å] agrees with the expected values (Krishna et al., 1999). The mean plane of anthryl ring makes dihedral angles of 84.98 (9) and 82.81 (8)°, with the benzene ring and 4-nitrophenyl group, respectively.

For applications of pyrazoline derivatives, see: Shaharyar et al. (2006); Christoph et al. (2003); Parmar et al. (1974); Prasad et al. (2005). For a related pyrazoline compound, see: Krishna et al. (1999).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
5-(Anthracen-9-yl)-3-(4-nitrophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C29H21N3O2F(000) = 928
Mr = 443.49Dx = 1.364 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2023 reflections
a = 23.023 (5) Åθ = 2.6–25.0°
b = 10.195 (2) ŵ = 0.09 mm1
c = 9.2005 (18) ÅT = 293 K
V = 2159.6 (7) Å3Prism, red
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1675 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
Detector resolution: 13.6612 pixels mm-1h = 2727
CCD_Profile_fitting scansk = 1212
17812 measured reflectionsl = 1010
2023 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.3731P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C29H21N3O2V = 2159.6 (7) Å3
Mr = 443.49Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 23.023 (5) ŵ = 0.09 mm1
b = 10.195 (2) ÅT = 293 K
c = 9.2005 (18) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1675 reflections with I > 2σ(I)
17812 measured reflectionsRint = 0.068
2023 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
2023 reflectionsΔρmin = 0.16 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.34781 (11)0.8437 (3)0.1581 (3)0.0417 (7)
C180.33011 (15)0.6798 (3)0.0211 (4)0.0400 (8)
C60.48920 (14)0.7455 (3)0.3722 (4)0.0392 (8)
C70.49683 (14)0.8475 (3)0.2692 (4)0.0380 (8)
C50.53459 (15)0.7161 (3)0.4735 (4)0.0451 (9)
C170.36872 (14)0.7631 (4)0.0641 (4)0.0410 (9)
C210.25650 (16)0.5236 (3)0.1831 (4)0.0437 (9)
C90.59566 (15)0.8817 (4)0.3653 (4)0.0461 (9)
O10.16551 (13)0.4657 (3)0.2656 (4)0.0673 (9)
C80.55013 (14)0.9175 (3)0.2655 (4)0.0394 (9)
C150.44934 (13)0.8788 (3)0.1582 (4)0.0408 (8)
H15A0.46190.95490.10130.049*
N30.39237 (12)0.9097 (3)0.2234 (4)0.0434 (7)
C290.42219 (16)1.1131 (3)0.3361 (4)0.0437 (9)
H29A0.45951.10220.29910.052*
C10.43743 (16)0.6694 (3)0.3833 (4)0.0464 (9)
H1A0.40740.68420.31780.056*
C270.35497 (16)1.2377 (4)0.4779 (5)0.0594 (11)
H27A0.34681.30960.53670.071*
C110.65023 (17)0.9509 (4)0.3584 (5)0.0613 (12)
H11A0.68010.92700.42110.074*
C140.56258 (15)1.0242 (3)0.1698 (5)0.0482 (9)
H14A0.53391.05150.10530.058*
C240.37940 (15)1.0216 (3)0.3050 (4)0.0409 (9)
C100.58675 (16)0.7836 (4)0.4662 (4)0.0506 (10)
H10A0.61640.76240.53070.061*
N10.21739 (15)0.4423 (3)0.2714 (4)0.0558 (9)
C230.35171 (16)0.5779 (4)0.1053 (5)0.0546 (11)
H23A0.39150.56280.10760.066*
C20.43091 (17)0.5761 (4)0.4868 (5)0.0564 (11)
H2A0.39670.52770.49040.068*
C200.23398 (15)0.6237 (4)0.1030 (4)0.0476 (10)
H20A0.19420.63990.10410.057*
O20.23825 (14)0.3550 (3)0.3453 (4)0.0887 (11)
C280.40961 (17)1.2200 (4)0.4218 (5)0.0509 (10)
H28A0.43851.28100.44190.061*
C120.65894 (18)1.0493 (4)0.2635 (6)0.0689 (13)
H12A0.69461.09210.26050.083*
C160.43391 (13)0.7676 (4)0.0517 (4)0.0453 (9)
H16A0.44610.78850.04660.054*
H16B0.45140.68520.08100.054*
C130.61422 (17)1.0873 (4)0.1690 (5)0.0577 (11)
H13A0.62011.15670.10510.069*
C30.47497 (19)0.5511 (4)0.5891 (5)0.0590 (11)
H3A0.46930.48890.66170.071*
C250.32422 (17)1.0409 (4)0.3603 (5)0.0566 (11)
H25A0.29490.98120.33930.068*
C190.27035 (15)0.7011 (3)0.0203 (4)0.0474 (9)
H19A0.25490.76800.03650.057*
C40.52555 (19)0.6179 (4)0.5811 (5)0.0584 (11)
H4A0.55500.59930.64710.070*
C220.31528 (17)0.4985 (4)0.1856 (5)0.0572 (11)
H22A0.33010.42940.24030.069*
C260.31263 (17)1.1481 (4)0.4460 (6)0.0679 (13)
H26A0.27541.16000.48290.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0337 (16)0.0427 (16)0.0487 (18)0.0034 (14)0.0089 (15)0.0072 (16)
C180.0364 (18)0.0455 (19)0.038 (2)0.0010 (16)0.0049 (17)0.0013 (18)
C60.0333 (19)0.0358 (18)0.048 (2)0.0078 (15)0.0037 (16)0.0067 (18)
C70.0317 (18)0.0382 (18)0.044 (2)0.0055 (15)0.0054 (16)0.0067 (18)
C50.046 (2)0.044 (2)0.045 (2)0.0123 (17)0.0091 (19)0.005 (2)
C170.0322 (18)0.049 (2)0.041 (2)0.0033 (16)0.0077 (16)0.0047 (19)
C210.040 (2)0.052 (2)0.0393 (19)0.0063 (18)0.0050 (18)0.0046 (19)
C90.032 (2)0.054 (2)0.052 (2)0.0026 (17)0.0061 (17)0.014 (2)
O10.0474 (17)0.081 (2)0.074 (2)0.0142 (15)0.0129 (17)0.0069 (18)
C80.0347 (19)0.042 (2)0.042 (2)0.0047 (15)0.0029 (16)0.0111 (18)
C150.0331 (18)0.044 (2)0.045 (2)0.0027 (15)0.0080 (17)0.0037 (19)
N30.0310 (15)0.0459 (17)0.0534 (18)0.0040 (14)0.0084 (15)0.0110 (16)
C290.041 (2)0.041 (2)0.049 (2)0.0030 (17)0.0015 (18)0.0050 (19)
C10.041 (2)0.042 (2)0.056 (2)0.0045 (17)0.0084 (19)0.001 (2)
C270.055 (3)0.052 (2)0.071 (3)0.002 (2)0.005 (2)0.022 (2)
C110.038 (2)0.074 (3)0.072 (3)0.002 (2)0.012 (2)0.015 (3)
C140.040 (2)0.050 (2)0.055 (2)0.0007 (18)0.0018 (19)0.004 (2)
C240.040 (2)0.0387 (19)0.044 (2)0.0035 (16)0.0075 (17)0.0030 (18)
C100.038 (2)0.060 (2)0.054 (3)0.0114 (19)0.014 (2)0.012 (2)
N10.054 (2)0.064 (2)0.050 (2)0.0117 (18)0.0066 (18)0.003 (2)
C230.035 (2)0.076 (3)0.053 (2)0.0052 (19)0.0053 (19)0.021 (2)
C20.054 (2)0.045 (2)0.071 (3)0.0012 (19)0.001 (2)0.003 (2)
C200.0313 (19)0.055 (2)0.056 (2)0.0010 (17)0.0054 (19)0.002 (2)
O20.075 (2)0.097 (2)0.094 (3)0.007 (2)0.001 (2)0.055 (2)
C280.048 (2)0.041 (2)0.064 (3)0.0001 (18)0.004 (2)0.005 (2)
C120.048 (3)0.071 (3)0.088 (4)0.017 (2)0.002 (3)0.012 (3)
C160.0333 (19)0.059 (2)0.044 (2)0.0019 (17)0.0053 (17)0.010 (2)
C130.046 (2)0.060 (3)0.067 (3)0.009 (2)0.005 (2)0.007 (2)
C30.071 (3)0.047 (2)0.059 (3)0.013 (2)0.001 (2)0.011 (2)
C250.039 (2)0.056 (2)0.074 (3)0.0022 (18)0.004 (2)0.019 (2)
C190.040 (2)0.047 (2)0.055 (2)0.0028 (17)0.0064 (19)0.012 (2)
C40.061 (3)0.056 (2)0.058 (3)0.018 (2)0.011 (2)0.005 (2)
C220.048 (2)0.070 (3)0.053 (2)0.006 (2)0.002 (2)0.023 (2)
C260.044 (2)0.073 (3)0.087 (4)0.005 (2)0.013 (2)0.029 (3)
Geometric parameters (Å, º) top
N2—C171.287 (4)C27—C261.368 (5)
N2—N31.366 (4)C27—C281.372 (5)
C18—C231.388 (5)C27—H27A0.9300
C18—C191.393 (5)C11—C121.345 (6)
C18—C171.458 (5)C11—H11A0.9300
C6—C71.417 (5)C14—C131.352 (5)
C6—C11.426 (5)C14—H14A0.9300
C6—C51.432 (5)C24—C251.382 (5)
C7—C81.420 (5)C10—H10A0.9300
C7—C151.530 (5)N1—O21.219 (4)
C5—C101.386 (5)C23—C221.380 (5)
C5—C41.423 (6)C23—H23A0.9300
C17—C161.506 (5)C2—C31.407 (6)
C21—C201.361 (5)C2—H2A0.9300
C21—C221.378 (5)C20—C191.379 (5)
C21—N11.469 (5)C20—H20A0.9300
C9—C101.381 (6)C28—H28A0.9300
C9—C81.440 (5)C12—C131.402 (6)
C9—C111.442 (5)C12—H12A0.9300
O1—N11.219 (4)C16—H16A0.9700
C8—C141.429 (5)C16—H16B0.9700
C15—N31.476 (4)C13—H13A0.9300
C15—C161.540 (5)C3—C41.351 (6)
C15—H15A0.9800C3—H3A0.9300
N3—C241.398 (4)C25—C261.374 (5)
C29—C281.375 (5)C25—H25A0.9300
C29—C241.387 (5)C19—H19A0.9300
C29—H29A0.9300C4—H4A0.9300
C1—C21.354 (5)C22—H22A0.9300
C1—H1A0.9300C26—H26A0.9300
C17—N2—N3109.2 (3)C25—C24—N3120.7 (3)
C23—C18—C19118.3 (3)C29—C24—N3120.5 (3)
C23—C18—C17121.2 (3)C9—C10—C5121.4 (3)
C19—C18—C17120.6 (3)C9—C10—H10A119.3
C7—C6—C1123.4 (3)C5—C10—H10A119.3
C7—C6—C5119.9 (3)O2—N1—O1123.6 (3)
C1—C6—C5116.7 (3)O2—N1—C21118.6 (3)
C6—C7—C8119.5 (3)O1—N1—C21117.8 (3)
C6—C7—C15120.7 (3)C22—C23—C18121.3 (3)
C8—C7—C15119.8 (3)C22—C23—H23A119.3
C10—C5—C4120.7 (4)C18—C23—H23A119.3
C10—C5—C6119.8 (4)C1—C2—C3121.2 (4)
C4—C5—C6119.6 (3)C1—C2—H2A119.4
N2—C17—C18120.4 (3)C3—C2—H2A119.4
N2—C17—C16113.8 (3)C21—C20—C19119.7 (3)
C18—C17—C16125.8 (3)C21—C20—H20A120.1
C20—C21—C22121.5 (3)C19—C20—H20A120.1
C20—C21—N1119.3 (3)C27—C28—C29120.9 (4)
C22—C21—N1119.2 (3)C27—C28—H28A119.6
C10—C9—C8120.3 (3)C29—C28—H28A119.6
C10—C9—C11120.9 (4)C11—C12—C13120.0 (4)
C8—C9—C11118.8 (4)C11—C12—H12A120.0
C7—C8—C14124.8 (3)C13—C12—H12A120.0
C7—C8—C9119.1 (3)C17—C16—C15101.8 (3)
C14—C8—C9116.1 (3)C17—C16—H16A111.4
N3—C15—C7114.1 (3)C15—C16—H16A111.4
N3—C15—C16102.2 (3)C17—C16—H16B111.4
C7—C15—C16115.9 (3)C15—C16—H16B111.4
N3—C15—H15A108.1H16A—C16—H16B109.3
C7—C15—H15A108.1C14—C13—C12120.7 (4)
C16—C15—H15A108.1C14—C13—H13A119.6
N2—N3—C24118.5 (3)C12—C13—H13A119.6
N2—N3—C15112.5 (3)C4—C3—C2119.6 (4)
C24—N3—C15125.6 (3)C4—C3—H3A120.2
C28—C29—C24120.1 (3)C2—C3—H3A120.2
C28—C29—H29A120.0C26—C25—C24120.2 (4)
C24—C29—H29A120.0C26—C25—H25A119.9
C2—C1—C6121.7 (3)C24—C25—H25A119.9
C2—C1—H1A119.1C20—C19—C18120.5 (3)
C6—C1—H1A119.1C20—C19—H19A119.7
C26—C27—C28119.0 (4)C18—C19—H19A119.7
C26—C27—H27A120.5C3—C4—C5121.2 (4)
C28—C27—H27A120.5C3—C4—H4A119.4
C12—C11—C9121.5 (4)C5—C4—H4A119.4
C12—C11—H11A119.2C21—C22—C23118.6 (4)
C9—C11—H11A119.2C21—C22—H22A120.7
C13—C14—C8122.8 (4)C23—C22—H22A120.7
C13—C14—H14A118.6C27—C26—C25121.1 (4)
C8—C14—H14A118.6C27—C26—H26A119.5
C25—C24—C29118.8 (3)C25—C26—H26A119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N20.932.593.422 (5)150

Experimental details

Crystal data
Chemical formulaC29H21N3O2
Mr443.49
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)23.023 (5), 10.195 (2), 9.2005 (18)
V3)2159.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17812, 2023, 1675
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.095, 1.08
No. of reflections2023
No. of parameters308
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N20.932.593.422 (5)149.9
 

References

First citationChristoph, J. F., Liuchun, Y. & Donald, G. V. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science PubMed Google Scholar
First citationKrishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. & Raghunathan, R. (1999). Acta Cryst. C55, 1676–1677.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParmar, S. S., Pandey, B. R., Dwivedi, C. & Harbinson, R. D. (1974). J. Pharm. Sci. 63, 1152–1155.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrasad, Y. R., Rao, A. L., Prasoona, K., Murali, K. & Kumar, P. R. (2005). Bioorg. Med. Chem. Lett. 15, 5030–5034.  PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571–4574.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds