organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Chloro­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 28 September 2010; accepted 4 October 2010; online 9 October 2010)

In the crystal of the title compound, C21H15ClNO2+·CF3SO3, adjacent cations are linked through C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.987 (2) Å], and neighboring cations and anions via C—H⋯O and C—F⋯π inter­actions. The acridine ring system and benzene ring are oriented at a dihedral angle of 1.0 (1)° while the carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are either parallel or inclined at an angle of 78.2 (1)° in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o227-o230.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]). For inter­molecular inter­actions, see: Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn. 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15ClNO2+·CF3SO3

  • Mr = 497.87

  • Monoclinic, P 21 /n

  • a = 13.3025 (11) Å

  • b = 8.6750 (9) Å

  • c = 19.6191 (18) Å

  • β = 106.577 (10)°

  • V = 2169.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.35 × 0.28 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • 11162 measured reflections

  • 3777 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.112

  • S = 1.08

  • 3777 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O28i 0.93 2.59 3.328 (5) 136
C4—H4⋯O28 0.93 2.45 3.370 (4) 171
C5—H5⋯O27ii 0.93 2.39 3.258 (4) 154
C6—H6⋯O29ii 0.93 2.54 3.304 (5) 140
C8—H8⋯O29iii 0.93 2.59 3.332 (4) 137
C19—H19⋯O29iii 0.93 2.44 3.349 (4) 165
C25—H25C⋯O27 0.96 2.51 3.387 (4) 152
C25—H25BCg4iv 0.96 2.65 3.519 (4) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.

Table 2
C–F⋯π inter­actions (Å,°)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

X I J IJ XJ XIJ
C30 F31 Cg1ii 3.570 (3) 3.916 (4) 94.4 (2)
C30 F32 Cg1ii 3.337 (3) 3.916 (4) 105.8 (2)
C30 F33 Cg3ii 3.387 (3) 4.073 (4) 111.9 (2)
Symmetry code: (ii) [-x+{3\over 2}, y-{1\over 2}, -z+{1\over 2}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The long-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been used as chemiluminescent indicators and labels that are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0412 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are almost parallel (are oriented at a dihedral angle of 1.0 (1)°). The carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 78.2 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–H···π (Takahashi et al., 2001), C–F···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Experimental top

4-Chlorophenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 4-chlorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 488–489 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Structure description top

The long-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been used as chemiluminescent indicators and labels that are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0412 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are almost parallel (are oriented at a dihedral angle of 1.0 (1)°). The carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 78.2 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–H···π (Takahashi et al., 2001), C–F···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O interactions are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 2, –y + 1, –z + 1; (ii) –x + 3/2, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) –x + 1, –y + 1, –z + 1; (v) –x + 1, –y + 2, –z + 1.]
9-(4-Chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H15ClNO2+·CF3SO3F(000) = 1016
Mr = 497.87Dx = 1.524 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1665 reflections
a = 13.3025 (11) Åθ = 3.0–29.1°
b = 8.6750 (9) ŵ = 0.33 mm1
c = 19.6191 (18) ÅT = 295 K
β = 106.577 (10)°Plate, yellow
V = 2169.9 (4) Å30.35 × 0.28 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2679 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.031
Graphite monochromatorθmax = 25.1°, θmin = 3.2°
Detector resolution: 10.4002 pixels mm-1h = 1515
ω scansk = 108
11162 measured reflectionsl = 2323
3777 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.4339P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H15ClNO2+·CF3SO3V = 2169.9 (4) Å3
Mr = 497.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3025 (11) ŵ = 0.33 mm1
b = 8.6750 (9) ÅT = 295 K
c = 19.6191 (18) Å0.35 × 0.28 × 0.06 mm
β = 106.577 (10)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2679 reflections with I > 2σ(I)
11162 measured reflectionsRint = 0.031
3777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
3777 reflectionsΔρmin = 0.29 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6412 (3)0.7757 (4)0.51159 (16)0.0551 (8)
H10.59680.82800.53270.066*
C20.7459 (3)0.7893 (4)0.53941 (18)0.0655 (9)
H20.77360.85030.57940.079*
C30.8127 (3)0.7105 (4)0.50748 (19)0.0642 (9)
H30.88480.71930.52740.077*
C40.7761 (2)0.6220 (4)0.44874 (17)0.0545 (8)
H40.82260.57310.42840.065*
C50.4792 (3)0.3888 (4)0.27537 (17)0.0610 (9)
H50.52410.33550.25510.073*
C60.3742 (3)0.3699 (5)0.2497 (2)0.0827 (12)
H60.34800.30340.21160.099*
C70.3035 (3)0.4472 (5)0.2787 (2)0.0811 (12)
H70.23160.43270.25970.097*
C80.3403 (2)0.5423 (4)0.33414 (19)0.0610 (9)
H80.29330.59270.35360.073*
C90.4901 (2)0.6658 (3)0.42070 (14)0.0407 (7)
N100.62580 (17)0.5155 (3)0.35967 (12)0.0408 (5)
C110.5976 (2)0.6831 (3)0.45086 (14)0.0408 (7)
C120.6666 (2)0.6045 (3)0.41855 (15)0.0416 (7)
C130.4494 (2)0.5676 (3)0.36378 (15)0.0426 (7)
C140.5202 (2)0.4893 (3)0.33286 (14)0.0421 (7)
C150.4160 (2)0.7658 (3)0.44662 (15)0.0451 (7)
O160.39162 (15)0.7040 (2)0.50208 (10)0.0497 (5)
O170.3831 (2)0.8846 (3)0.41934 (13)0.0785 (8)
C180.3180 (2)0.7867 (3)0.52827 (14)0.0410 (7)
C190.2135 (2)0.7596 (4)0.49788 (15)0.0503 (8)
H190.19100.69280.45940.060*
C200.1421 (2)0.8339 (4)0.52579 (16)0.0566 (8)
H200.07060.81760.50630.068*
C210.1776 (3)0.9314 (4)0.58220 (15)0.0535 (8)
C220.2823 (3)0.9565 (4)0.61275 (15)0.0558 (8)
H220.30491.02200.65160.067*
C230.3544 (2)0.8829 (3)0.58496 (15)0.0484 (7)
H230.42590.89870.60450.058*
Cl240.08737 (9)1.02661 (14)0.61618 (5)0.0951 (4)
C250.6984 (2)0.4487 (4)0.32249 (17)0.0568 (8)
H25A0.65900.41260.27630.085*
H25B0.73600.36410.34970.085*
H25C0.74730.52620.31730.085*
S260.99146 (6)0.51449 (9)0.33370 (4)0.0456 (2)
O270.91136 (17)0.6102 (2)0.28913 (11)0.0578 (6)
O280.96649 (17)0.4501 (3)0.39381 (11)0.0709 (7)
O291.09667 (17)0.5708 (3)0.34719 (12)0.0704 (7)
C300.9908 (3)0.3493 (4)0.27794 (18)0.0641 (9)
F310.89748 (18)0.2801 (2)0.25860 (13)0.0971 (7)
F321.01300 (19)0.3885 (3)0.21805 (11)0.0974 (8)
F331.06074 (19)0.2433 (3)0.30961 (12)0.0989 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.0547 (19)0.0543 (19)0.0055 (16)0.0160 (16)0.0022 (16)
C20.064 (2)0.065 (2)0.059 (2)0.0006 (19)0.0042 (18)0.0015 (17)
C30.0434 (19)0.072 (2)0.071 (2)0.0002 (18)0.0048 (17)0.0125 (19)
C40.0419 (19)0.0549 (19)0.069 (2)0.0081 (15)0.0189 (16)0.0107 (17)
C50.057 (2)0.058 (2)0.076 (2)0.0016 (17)0.0320 (18)0.0180 (18)
C60.063 (3)0.088 (3)0.098 (3)0.015 (2)0.024 (2)0.044 (2)
C70.043 (2)0.094 (3)0.108 (3)0.013 (2)0.024 (2)0.034 (2)
C80.0386 (18)0.065 (2)0.086 (2)0.0017 (16)0.0285 (17)0.0115 (19)
C90.0458 (18)0.0348 (15)0.0479 (16)0.0071 (13)0.0235 (14)0.0073 (13)
N100.0377 (13)0.0403 (13)0.0514 (13)0.0090 (11)0.0240 (11)0.0084 (11)
C110.0454 (18)0.0338 (15)0.0455 (16)0.0060 (13)0.0167 (14)0.0081 (12)
C120.0377 (17)0.0388 (16)0.0512 (17)0.0065 (13)0.0172 (13)0.0121 (14)
C130.0396 (17)0.0387 (15)0.0554 (17)0.0060 (13)0.0227 (14)0.0039 (13)
C140.0396 (17)0.0370 (15)0.0560 (17)0.0045 (13)0.0237 (14)0.0027 (13)
C150.0490 (18)0.0407 (17)0.0517 (17)0.0095 (14)0.0239 (15)0.0049 (14)
O160.0550 (13)0.0479 (12)0.0560 (12)0.0168 (10)0.0316 (10)0.0107 (9)
O170.110 (2)0.0622 (15)0.0876 (17)0.0457 (15)0.0674 (15)0.0311 (13)
C180.0443 (18)0.0428 (16)0.0401 (15)0.0089 (13)0.0188 (14)0.0044 (13)
C190.053 (2)0.0585 (19)0.0414 (16)0.0012 (15)0.0157 (15)0.0035 (14)
C200.0387 (18)0.081 (2)0.0514 (18)0.0058 (16)0.0144 (15)0.0060 (17)
C210.057 (2)0.068 (2)0.0418 (16)0.0242 (17)0.0241 (15)0.0113 (15)
C220.068 (2)0.057 (2)0.0411 (16)0.0115 (17)0.0140 (16)0.0056 (14)
C230.0401 (17)0.0562 (19)0.0464 (16)0.0050 (15)0.0081 (14)0.0026 (15)
Cl240.0976 (8)0.1281 (9)0.0771 (6)0.0595 (7)0.0531 (6)0.0170 (6)
C250.0459 (19)0.069 (2)0.066 (2)0.0127 (16)0.0333 (16)0.0015 (16)
S260.0369 (4)0.0554 (5)0.0466 (4)0.0024 (4)0.0151 (3)0.0039 (4)
O270.0521 (13)0.0545 (13)0.0673 (14)0.0069 (11)0.0176 (11)0.0104 (11)
O280.0590 (15)0.1053 (19)0.0566 (13)0.0177 (13)0.0296 (11)0.0210 (13)
O290.0442 (13)0.0904 (17)0.0758 (15)0.0218 (12)0.0157 (11)0.0182 (13)
C300.053 (2)0.069 (2)0.063 (2)0.0070 (19)0.0048 (17)0.0033 (18)
F310.0796 (16)0.0704 (14)0.1195 (18)0.0186 (12)0.0069 (14)0.0203 (13)
F320.1092 (19)0.130 (2)0.0568 (12)0.0208 (15)0.0297 (12)0.0186 (13)
F330.0931 (17)0.0805 (15)0.1065 (17)0.0384 (13)0.0016 (14)0.0116 (13)
Geometric parameters (Å, º) top
C1—C21.349 (4)C13—C141.428 (4)
C1—C111.417 (4)C15—O171.186 (3)
C1—H10.9300C15—O161.334 (3)
C2—C31.402 (5)O16—C181.423 (3)
C2—H20.9300C18—C231.364 (4)
C3—C41.354 (5)C18—C191.367 (4)
C3—H30.9300C19—C201.384 (4)
C4—C121.415 (4)C19—H190.9300
C4—H40.9300C20—C211.366 (4)
C5—C61.353 (5)C20—H200.9300
C5—C141.407 (4)C21—C221.368 (4)
C5—H50.9300C21—Cl241.739 (3)
C6—C71.401 (5)C22—C231.386 (4)
C6—H60.9300C22—H220.9300
C7—C81.341 (5)C23—H230.9300
C7—H70.9300C25—H25A0.9600
C8—C131.418 (4)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.386 (4)S26—O281.427 (2)
C9—C111.391 (4)S26—O291.434 (2)
C9—C151.506 (4)S26—O271.434 (2)
N10—C121.367 (4)S26—C301.801 (4)
N10—C141.372 (3)C30—F331.330 (4)
N10—C251.485 (3)C30—F311.333 (4)
C11—C121.429 (4)C30—F321.335 (4)
C2—C1—C11121.2 (3)C5—C14—C13118.9 (3)
C2—C1—H1119.4O17—C15—O16125.0 (3)
C11—C1—H1119.4O17—C15—C9122.7 (3)
C1—C2—C3119.3 (3)O16—C15—C9112.2 (2)
C1—C2—H2120.4C15—O16—C18116.4 (2)
C3—C2—H2120.4C23—C18—C19122.7 (3)
C4—C3—C2122.5 (3)C23—C18—O16118.8 (3)
C4—C3—H3118.8C19—C18—O16118.3 (2)
C2—C3—H3118.8C18—C19—C20118.3 (3)
C3—C4—C12119.6 (3)C18—C19—H19120.8
C3—C4—H4120.2C20—C19—H19120.8
C12—C4—H4120.2C21—C20—C19119.5 (3)
C6—C5—C14119.7 (3)C21—C20—H20120.3
C6—C5—H5120.1C19—C20—H20120.3
C14—C5—H5120.1C20—C21—C22121.8 (3)
C5—C6—C7122.2 (3)C20—C21—Cl24119.2 (3)
C5—C6—H6118.9C22—C21—Cl24119.0 (2)
C7—C6—H6118.9C21—C22—C23119.1 (3)
C8—C7—C6119.4 (3)C21—C22—H22120.4
C8—C7—H7120.3C23—C22—H22120.4
C6—C7—H7120.3C18—C23—C22118.6 (3)
C7—C8—C13121.5 (3)C18—C23—H23120.7
C7—C8—H8119.3C22—C23—H23120.7
C13—C8—H8119.3N10—C25—H25A109.5
C13—C9—C11121.7 (2)N10—C25—H25B109.5
C13—C9—C15118.9 (3)H25A—C25—H25B109.5
C11—C9—C15119.1 (3)N10—C25—H25C109.5
C12—N10—C14122.3 (2)H25A—C25—H25C109.5
C12—N10—C25118.6 (2)H25B—C25—H25C109.5
C14—N10—C25119.1 (2)O28—S26—O29115.20 (14)
C9—C11—C1122.9 (3)O28—S26—O27115.00 (13)
C9—C11—C12118.2 (3)O29—S26—O27115.57 (14)
C1—C11—C12118.9 (3)O28—S26—C30103.23 (17)
N10—C12—C4121.8 (3)O29—S26—C30102.62 (16)
N10—C12—C11119.6 (3)O27—S26—C30102.48 (14)
C4—C12—C11118.6 (3)F33—C30—F31107.0 (3)
C9—C13—C8122.9 (3)F33—C30—F32106.6 (3)
C9—C13—C14118.8 (3)F31—C30—F32106.6 (3)
C8—C13—C14118.3 (3)F33—C30—S26112.6 (2)
N10—C14—C5122.0 (2)F31—C30—S26112.0 (2)
N10—C14—C13119.1 (2)F32—C30—S26111.6 (3)
C11—C1—C2—C30.1 (5)C6—C5—C14—C131.1 (5)
C1—C2—C3—C40.9 (5)C9—C13—C14—N101.0 (4)
C2—C3—C4—C121.3 (5)C8—C13—C14—N10178.3 (3)
C14—C5—C6—C70.3 (6)C9—C13—C14—C5179.6 (3)
C5—C6—C7—C80.6 (7)C8—C13—C14—C51.1 (4)
C6—C7—C8—C130.6 (6)C13—C9—C15—O1782.2 (4)
C13—C9—C11—C1176.2 (3)C11—C9—C15—O1792.9 (4)
C15—C9—C11—C18.8 (4)C13—C9—C15—O1696.9 (3)
C13—C9—C11—C124.3 (4)C11—C9—C15—O1688.0 (3)
C15—C9—C11—C12170.7 (2)O17—C15—O16—C181.9 (4)
C2—C1—C11—C9179.9 (3)C9—C15—O16—C18177.1 (2)
C2—C1—C11—C120.6 (4)C15—O16—C18—C2396.8 (3)
C14—N10—C12—C4175.5 (2)C15—O16—C18—C1986.8 (3)
C25—N10—C12—C46.3 (4)C23—C18—C19—C200.4 (4)
C14—N10—C12—C114.7 (4)O16—C18—C19—C20176.7 (3)
C25—N10—C12—C11173.5 (2)C18—C19—C20—C210.1 (5)
C3—C4—C12—N10179.4 (3)C19—C20—C21—C220.9 (5)
C3—C4—C12—C110.8 (4)C19—C20—C21—Cl24179.1 (2)
C9—C11—C12—N100.1 (4)C20—C21—C22—C231.1 (5)
C1—C11—C12—N10179.6 (2)Cl24—C21—C22—C23178.9 (2)
C9—C11—C12—C4179.7 (2)C19—C18—C23—C220.2 (4)
C1—C11—C12—C40.2 (4)O16—C18—C23—C22176.4 (2)
C11—C9—C13—C8177.0 (3)C21—C22—C23—C180.6 (4)
C15—C9—C13—C88.0 (4)O28—S26—C30—F3360.1 (3)
C11—C9—C13—C143.8 (4)O29—S26—C30—F3360.0 (3)
C15—C9—C13—C14171.2 (2)O27—S26—C30—F33179.9 (3)
C7—C8—C13—C9179.5 (3)O28—S26—C30—F3160.5 (3)
C7—C8—C13—C140.3 (5)O29—S26—C30—F31179.4 (2)
C12—N10—C14—C5175.4 (3)O27—S26—C30—F3159.2 (3)
C25—N10—C14—C56.4 (4)O28—S26—C30—F32180.0 (2)
C12—N10—C14—C135.2 (4)O29—S26—C30—F3260.0 (3)
C25—N10—C14—C13173.0 (2)O27—S26—C30—F3260.2 (3)
C6—C5—C14—N10178.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O28i0.932.593.328 (5)136
C4—H4···O280.932.453.370 (4)171
C5—H5···O27ii0.932.393.258 (4)154
C6—H6···O29ii0.932.543.304 (5)140
C8—H8···O29iii0.932.593.332 (4)137
C19—H19···O29iii0.932.443.349 (4)165
C25—H25C···O270.962.513.387 (4)152
C25—H25B···Cg4iv0.962.653.519 (4)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H15ClNO2+·CF3SO3
Mr497.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)13.3025 (11), 8.6750 (9), 19.6191 (18)
β (°) 106.577 (10)
V3)2169.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.28 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11162, 3777, 2679
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.112, 1.08
No. of reflections3777
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O28i0.932.593.328 (5)136
C4—H4···O280.932.453.370 (4)171
C5—H5···O27ii0.932.393.258 (4)154
C6—H6···O29ii0.932.543.304 (5)140
C8—H8···O29iii0.932.593.332 (4)137
C19—H19···O29iii0.932.443.349 (4)165
C25—H25C···O270.962.513.387 (4)152
C25—H25B···Cg4iv0.962.653.519 (4)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.
C–F···π interactions (Å,°). top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XIJI···JX···JXI···J
C30F31Cg1ii3.570 (3)3.916 (4)94.4 (2)
C30F32Cg1ii3.337 (3)3.916 (4)105.8 (2)
C30F33Cg3ii3.387 (3)4.073 (4)111.9 (2)
Symmetry code: (ii) -x + 3/2, y - 1/2, -z + 1/2.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
24v3.987 (2)2.96 (15)3.477 (2)1.951 (2)
Symmetry code: (v) –x + 1, –y + 2, –z + 1.

Notes: Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Footnotes

to whom correspondence should be addressed

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220-4-0087-0).

References

First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470.  Web of Science CrossRef Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o227–o230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn. 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds