organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-4-(1,3-benzo­thia­zol-2-yl)-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 8 October 2010; online 20 October 2010)

The title compound, C20H17N3OS, is a 1H-pyrazol-3(2H)-one having aromatic 4-(1,3-benzothia­zol-2-yl)- and 2-phenyl substituents. The five-membered ring and fused ring system are planar, the r.m.s. deviations being 0.021 and 0.005 Å, respectively. The five-membered ring is aligned at 7.9 (2)° with respect to the fused-ring system. The allyl and phenyl parts of the mol­ecule are both disordered over two positions in a 1:1 ratio. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothia­zol-2-yl­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010[Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3OS

  • Mr = 347.43

  • Orthorhombic, P b c a

  • a = 17.8734 (5) Å

  • b = 10.4297 (2) Å

  • c = 18.9578 (4) Å

  • V = 3534.00 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.953

  • 18349 measured reflections

  • 3678 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.172

  • S = 1.00

  • 3678 reflections

  • 227 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.59 3.318 (3) 135
C12—H12A⋯O1ii 0.97 2.51 3.404 (4) 152
C12—H12C⋯O1ii 0.97 2.48 3.404 (4) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(E)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one is an amine that can under a nucleophilic substitution with organo bromides to form 2-substituted derivatives if tetra-n-butyl ammonium bromide is used as catalyst. In this study, the compound is reacted with allyl bromide to yield the title compound (Scheme I, Fig. 1).

Related literature top

For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010).

Experimental top

To a solution of (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1 g, 3.25 mmol) in DMF (50 ml), was added sodium carbonate (2.5 g, 23 mmol), tetra-n-butyl ammonium bromide (0.15 g, 1 mmol) and allyl bromide (5.6 g, 46 mmol). The mixture was stirred for 24 h at room temperature. The solid material was removed by filtration and the solution was evaporated under reduced. The residue was washed with dichloromethane and hexane, and the recrystallized from ethanol to afford the title compound as colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The allyl and phenyl units are disordered over two positions; the disorder could be refined, and was assumed to be a 1:1 type of disorder. For the allyl unit, the single-bond distances were restrained to 1.50±0.01 Å and the double-bond distances to 1.35±0.01 Å; the anisotropic temperature factors were restrained to be nearly isotropic. The phenyl rings were refined as rigid hexagons of 1.39 Å sides; the N–Cphenyl pair of distances were restrained to within 0.01 Å of each other. Additionally, the temperature factors of the primed atoms were restrained to those of the unprimed ones.

Structure description top

(E)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one is an amine that can under a nucleophilic substitution with organo bromides to form 2-substituted derivatives if tetra-n-butyl ammonium bromide is used as catalyst. In this study, the compound is reacted with allyl bromide to yield the title compound (Scheme I, Fig. 1).

For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H17N3OS at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. The disorder is not shown
1-Allyl-4-(1,3-benzothiazol-2-yl)-5-methyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C20H17N3OSF(000) = 1456
Mr = 347.43Dx = 1.306 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3745 reflections
a = 17.8734 (5) Åθ = 2.3–22.5°
b = 10.4297 (2) ŵ = 0.20 mm1
c = 18.9578 (4) ÅT = 293 K
V = 3534.00 (14) Å3Prism, colorless
Z = 80.30 × 0.30 × 0.25 mm
Data collection top
Bruker X8 APEXII
diffractometer
3678 independent reflections
Radiation source: fine-focus sealed tube2341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.944, Tmax = 0.953k = 1312
18349 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.096P)2 + 0.8646P]
where P = (Fo2 + 2Fc2)/3
3678 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.32 e Å3
17 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H17N3OSV = 3534.00 (14) Å3
Mr = 347.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.8734 (5) ŵ = 0.20 mm1
b = 10.4297 (2) ÅT = 293 K
c = 18.9578 (4) Å0.30 × 0.30 × 0.25 mm
Data collection top
Bruker X8 APEXII
diffractometer
3678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2341 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.953Rint = 0.032
18349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05017 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
3678 reflectionsΔρmin = 0.25 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.54022 (4)0.59623 (7)0.57529 (3)0.0590 (2)
O10.63189 (12)0.5096 (2)0.45761 (10)0.0808 (6)
N10.61613 (12)0.7853 (2)0.62953 (11)0.0590 (6)
N20.79529 (13)0.6762 (2)0.48741 (11)0.0593 (6)
N30.75432 (13)0.5809 (2)0.45335 (11)0.0627 (6)
C10.50073 (15)0.6812 (2)0.64448 (12)0.0531 (6)
C20.43115 (17)0.6640 (3)0.67650 (14)0.0669 (7)
H20.39890.59950.66170.080*
C30.41164 (19)0.7448 (3)0.73035 (15)0.0762 (9)
H30.36540.73490.75220.091*
C40.4595 (2)0.8412 (3)0.75287 (16)0.0798 (9)
H40.44540.89430.79000.096*
C50.52717 (19)0.8589 (3)0.72110 (15)0.0743 (8)
H50.55870.92420.73620.089*
C60.54904 (16)0.7785 (2)0.66569 (12)0.0566 (6)
C70.61898 (14)0.6956 (2)0.58142 (11)0.0495 (6)
C80.68208 (17)0.5800 (3)0.48056 (13)0.0603 (7)
C90.68293 (15)0.6721 (2)0.53608 (12)0.0518 (6)
C100.75276 (15)0.7255 (2)0.53898 (12)0.0548 (6)
C110.78327 (19)0.8222 (3)0.58934 (16)0.0760 (8)
H11A0.82690.86170.56930.114*
H11B0.79650.78060.63270.114*
H11C0.74610.88650.59840.114*
C120.87637 (17)0.6862 (3)0.48056 (16)0.0746 (8)
H12A0.89140.77550.48060.090*0.50
H12B0.89260.64750.43660.090*0.50
H12C0.88250.77820.48520.090*0.50
H12D0.88120.67080.43030.090*0.50
C130.9121 (11)0.6151 (15)0.5440 (7)0.101 (3)0.50
H130.89150.53980.56160.121*0.50
C140.9722 (11)0.6652 (18)0.5718 (9)0.139 (4)0.50
H14A0.99200.74070.55350.166*0.50
H14B0.99530.62540.60990.166*0.50
C13'0.9175 (11)0.5938 (15)0.5294 (7)0.101 (3)0.50
H13'0.91480.50760.51710.121*0.50
C14'0.9555 (11)0.6196 (18)0.5854 (8)0.139 (4)0.50
H14C0.96030.70410.60040.166*0.50
H14D0.97810.55380.61070.166*0.50
C150.7691 (10)0.5140 (10)0.3885 (4)0.0510 (18)0.50
C160.8277 (10)0.4304 (14)0.3741 (5)0.0863 (18)0.50
H160.85610.39690.41080.104*0.50
C170.8437 (10)0.3967 (13)0.3048 (5)0.105 (3)0.50
H170.88290.34070.29510.126*0.50
C180.8012 (11)0.4466 (10)0.2499 (4)0.110 (4)0.50
H180.81190.42410.20350.132*0.50
C190.7426 (10)0.5303 (12)0.2643 (6)0.102 (3)0.50
H190.71420.56370.22750.123*0.50
C200.7265 (9)0.5640 (12)0.3336 (7)0.0714 (19)0.50
H200.68740.61990.34320.086*0.50
C15'0.7791 (10)0.5424 (10)0.3848 (5)0.0510 (18)0.50
C16'0.8326 (10)0.4458 (14)0.3884 (4)0.0863 (18)0.50
H16'0.85710.42940.43080.104*0.50
C17'0.8494 (11)0.3738 (12)0.3288 (5)0.105 (3)0.50
H17'0.88520.30920.33120.126*0.50
C18'0.8127 (11)0.3984 (9)0.2656 (4)0.110 (4)0.50
H18'0.82400.35020.22570.132*0.50
C19'0.7593 (10)0.4949 (13)0.2620 (5)0.102 (3)0.50
H19'0.73470.51130.21970.123*0.50
C20'0.7425 (9)0.5669 (11)0.3216 (7)0.0714 (19)0.50
H20'0.70670.63150.31920.086*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (4)0.0698 (4)0.0528 (4)0.0033 (3)0.0062 (3)0.0106 (3)
O10.0647 (13)0.1020 (15)0.0756 (13)0.0228 (12)0.0166 (10)0.0337 (12)
N10.0559 (14)0.0630 (12)0.0580 (12)0.0042 (10)0.0020 (10)0.0066 (10)
N20.0529 (14)0.0655 (12)0.0594 (12)0.0072 (11)0.0080 (10)0.0040 (10)
N30.0568 (14)0.0740 (13)0.0573 (12)0.0097 (11)0.0118 (11)0.0143 (10)
C10.0521 (16)0.0634 (14)0.0438 (12)0.0102 (12)0.0007 (11)0.0048 (10)
C20.0615 (18)0.0812 (18)0.0581 (15)0.0026 (15)0.0106 (13)0.0007 (13)
C30.067 (2)0.100 (2)0.0611 (16)0.0151 (18)0.0163 (15)0.0006 (15)
C40.084 (2)0.090 (2)0.0657 (17)0.0216 (19)0.0131 (17)0.0169 (16)
C50.075 (2)0.0803 (18)0.0677 (17)0.0077 (16)0.0047 (16)0.0213 (15)
C60.0589 (17)0.0610 (14)0.0500 (13)0.0111 (13)0.0020 (12)0.0043 (11)
C70.0514 (15)0.0534 (12)0.0438 (11)0.0041 (11)0.0018 (10)0.0018 (10)
C80.0599 (17)0.0689 (15)0.0521 (13)0.0055 (14)0.0088 (13)0.0060 (12)
C90.0538 (16)0.0566 (13)0.0450 (12)0.0004 (12)0.0022 (11)0.0006 (10)
C100.0558 (16)0.0580 (13)0.0507 (13)0.0014 (12)0.0024 (12)0.0003 (11)
C110.070 (2)0.0852 (19)0.0725 (17)0.0151 (16)0.0033 (15)0.0177 (15)
C120.0580 (19)0.090 (2)0.0763 (19)0.0105 (16)0.0148 (15)0.0134 (16)
C130.072 (3)0.124 (5)0.108 (6)0.039 (3)0.021 (4)0.065 (4)
C140.136 (8)0.165 (9)0.115 (6)0.033 (7)0.001 (5)0.023 (6)
C13'0.072 (3)0.124 (5)0.108 (6)0.039 (3)0.021 (4)0.065 (4)
C14'0.136 (8)0.165 (9)0.115 (6)0.033 (7)0.001 (5)0.023 (6)
C150.059 (4)0.031 (4)0.0631 (17)0.024 (4)0.0240 (16)0.001 (2)
C160.087 (3)0.067 (3)0.105 (4)0.001 (3)0.026 (4)0.022 (3)
C170.122 (5)0.085 (5)0.108 (8)0.000 (4)0.058 (7)0.028 (5)
C180.133 (8)0.098 (8)0.098 (5)0.045 (8)0.057 (6)0.038 (5)
C190.100 (7)0.149 (8)0.0579 (19)0.034 (6)0.029 (3)0.017 (3)
C200.069 (6)0.102 (2)0.043 (4)0.020 (3)0.028 (3)0.007 (2)
C15'0.059 (4)0.031 (4)0.0631 (17)0.024 (4)0.0240 (16)0.001 (2)
C16'0.087 (3)0.067 (3)0.105 (4)0.001 (3)0.026 (4)0.022 (3)
C17'0.122 (5)0.085 (5)0.108 (8)0.000 (4)0.058 (7)0.028 (5)
C18'0.133 (8)0.098 (8)0.098 (5)0.045 (8)0.057 (6)0.038 (5)
C19'0.100 (7)0.149 (8)0.0579 (19)0.034 (6)0.029 (3)0.017 (3)
C20'0.069 (6)0.102 (2)0.043 (4)0.020 (3)0.028 (3)0.007 (2)
Geometric parameters (Å, º) top
S1—C11.733 (2)C12—H12C0.9701
S1—C71.752 (3)C12—H12D0.9701
O1—C81.238 (3)C13—C141.305 (10)
N1—C71.307 (3)C13—H130.9300
N1—C61.383 (3)C14—H14A0.9300
N2—C101.341 (3)C14—H14B0.9300
N2—N31.393 (3)C13'—C14'1.289 (9)
N2—C121.459 (3)C13'—H13'0.9300
N3—C81.391 (4)C14'—H14C0.9300
N3—C15'1.430 (6)C14'—H14D0.9300
N3—C151.438 (6)C15—C161.3900
C1—C61.392 (4)C15—C201.3900
C1—C21.395 (4)C16—C171.3900
C2—C31.369 (4)C16—H160.9300
C2—H20.9300C17—C181.3900
C3—C41.388 (5)C17—H170.9300
C3—H30.9300C18—C191.3900
C4—C51.363 (4)C18—H180.9300
C4—H40.9300C19—C201.3900
C5—C61.399 (4)C19—H190.9300
C5—H50.9300C20—H200.9300
C7—C91.451 (3)C15'—C16'1.3900
C8—C91.425 (3)C15'—C20'1.3900
C9—C101.368 (4)C16'—C17'1.3900
C10—C111.492 (4)C16'—H16'0.9300
C11—H11A0.9600C17'—C18'1.3900
C11—H11B0.9600C17'—H17'0.9300
C11—H11C0.9600C18'—C19'1.3900
C12—C13'1.525 (9)C18'—H18'0.9300
C12—C131.551 (8)C19'—C20'1.3900
C12—H12A0.9700C19'—H19'0.9300
C12—H12B0.9700C20'—H20'0.9300
C1—S1—C788.53 (12)H12A—C12—H12B108.5
C7—N1—C6110.1 (2)C13'—C12—H12C121.0
C10—N2—N3108.3 (2)C13—C12—H12C110.8
C10—N2—C12126.9 (2)C13'—C12—H12D116.7
N3—N2—C12122.1 (2)H12C—C12—H12D104.1
C8—N3—N2108.7 (2)C14—C13—C12117.5 (15)
C8—N3—C15'128.5 (7)C14—C13—H13121.3
N2—N3—C15'117.3 (6)C12—C13—H13121.3
C8—N3—C15118.9 (7)C13—C14—H14A120.0
N2—N3—C15130.3 (6)C13—C14—H14B120.0
C6—C1—C2121.4 (2)H14A—C14—H14B120.0
C6—C1—S1109.81 (19)C14'—C13'—C12128.4 (15)
C2—C1—S1128.8 (2)C14'—C13'—H13'115.8
C3—C2—C1118.2 (3)C12—C13'—H13'115.8
C3—C2—H2120.9C13'—C14'—H14C120.0
C1—C2—H2120.9C13'—C14'—H14D120.0
C2—C3—C4121.2 (3)H14C—C14'—H14D120.0
C2—C3—H3119.4C16—C15—C20120.0
C4—C3—H3119.4C16—C15—N3127.6 (11)
C5—C4—C3120.6 (3)C20—C15—N3111.0 (10)
C5—C4—H4119.7C15—C16—C17120.0
C3—C4—H4119.7C15—C16—H16120.0
C4—C5—C6119.9 (3)C17—C16—H16120.0
C4—C5—H5120.0C18—C17—C16120.0
C6—C5—H5120.0C18—C17—H17120.0
N1—C6—C1115.6 (2)C16—C17—H17120.0
N1—C6—C5125.7 (3)C17—C18—C19120.0
C1—C6—C5118.7 (3)C17—C18—H18120.0
N1—C7—C9124.4 (2)C19—C18—H18120.0
N1—C7—S1115.99 (19)C20—C19—C18120.0
C9—C7—S1119.57 (17)C20—C19—H19120.0
O1—C8—N3123.1 (2)C18—C19—H19120.0
O1—C8—C9131.8 (3)C19—C20—C15120.0
N3—C8—C9105.0 (2)C19—C20—H20120.0
C10—C9—C8108.3 (2)C15—C20—H20120.0
C10—C9—C7128.8 (2)C16'—C15'—C20'120.0
C8—C9—C7122.9 (2)C16'—C15'—N3111.8 (10)
N2—C10—C9109.4 (2)C20'—C15'—N3125.8 (11)
N2—C10—C11121.2 (3)C15'—C16'—C17'120.0
C9—C10—C11129.4 (2)C15'—C16'—H16'120.0
C10—C11—H11A109.5C17'—C16'—H16'120.0
C10—C11—H11B109.5C18'—C17'—C16'120.0
H11A—C11—H11B109.5C18'—C17'—H17'120.0
C10—C11—H11C109.5C16'—C17'—H17'120.0
H11A—C11—H11C109.5C19'—C18'—C17'120.0
H11B—C11—H11C109.5C19'—C18'—H18'120.0
N2—C12—C13'112.3 (9)C17'—C18'—H18'120.0
N2—C12—C13107.8 (9)C18'—C19'—C20'120.0
N2—C12—H12A110.1C18'—C19'—H19'120.0
C13'—C12—H12A118.2C20'—C19'—H19'120.0
C13—C12—H12A110.1C19'—C20'—C15'120.0
N2—C12—H12B110.1C19'—C20'—H20'120.0
C13—C12—H12B110.1C15'—C20'—H20'120.0
C10—N2—N3—C85.6 (3)C12—N2—C10—C1113.0 (4)
C12—N2—N3—C8168.3 (2)C8—C9—C10—N22.0 (3)
C10—N2—N3—C15'161.9 (8)C7—C9—C10—N2179.5 (2)
C12—N2—N3—C15'35.5 (8)C8—C9—C10—C11177.2 (3)
C10—N2—N3—C15168.7 (9)C7—C9—C10—C110.3 (5)
C12—N2—N3—C1528.7 (9)C10—N2—C12—C13'77.9 (7)
C7—S1—C1—C61.10 (18)N3—N2—C12—C13'81.3 (7)
C7—S1—C1—C2179.7 (2)C10—N2—C12—C1364.1 (7)
C6—C1—C2—C30.8 (4)N3—N2—C12—C1395.2 (7)
S1—C1—C2—C3179.3 (2)N2—C12—C13—C14142.4 (14)
C1—C2—C3—C40.1 (4)C13'—C12—C13—C14106 (7)
C2—C3—C4—C50.8 (5)N2—C12—C13'—C14'108 (2)
C3—C4—C5—C60.6 (5)C13—C12—C13'—C14'35 (6)
C7—N1—C6—C10.3 (3)C8—N3—C15—C16133.0 (8)
C7—N1—C6—C5179.4 (3)N2—N3—C15—C1665.4 (10)
C2—C1—C6—N1179.8 (2)C15'—N3—C15—C1691 (6)
S1—C1—C6—N11.1 (3)C8—N3—C15—C2060.6 (8)
C2—C1—C6—C51.0 (4)N2—N3—C15—C20101.0 (10)
S1—C1—C6—C5179.8 (2)C15'—N3—C15—C2075 (6)
C4—C5—C6—N1179.4 (3)C20—C15—C16—C170.0
C4—C5—C6—C10.3 (4)N3—C15—C16—C17165.3 (9)
C6—N1—C7—C9177.2 (2)C15—C16—C17—C180.0
C6—N1—C7—S10.6 (3)C16—C17—C18—C190.0
C1—S1—C7—N11.01 (19)C17—C18—C19—C200.0
C1—S1—C7—C9176.89 (19)C18—C19—C20—C150.0
N2—N3—C8—O1176.1 (3)C16—C15—C20—C190.0
C15'—N3—C8—O123.3 (8)N3—C15—C20—C19167.6 (9)
C15—N3—C8—O110.8 (7)C8—N3—C15'—C16'121.9 (9)
N2—N3—C8—C94.3 (3)N2—N3—C15'—C16'87.4 (7)
C15'—N3—C8—C9157.0 (7)C15—N3—C15'—C16'71 (6)
C15—N3—C8—C9169.5 (7)C8—N3—C15'—C20'40.7 (11)
O1—C8—C9—C10178.9 (3)N2—N3—C15'—C20'110.1 (9)
N3—C8—C9—C101.4 (3)C15—N3—C15'—C20'92 (6)
O1—C8—C9—C73.4 (5)C20'—C15'—C16'—C17'0.0
N3—C8—C9—C7176.2 (2)N3—C15'—C16'—C17'163.7 (10)
N1—C7—C9—C107.8 (4)C15'—C16'—C17'—C18'0.0
S1—C7—C9—C10169.9 (2)C16'—C17'—C18'—C19'0.0
N1—C7—C9—C8175.0 (2)C17'—C18'—C19'—C20'0.0
S1—C7—C9—C87.2 (3)C18'—C19'—C20'—C15'0.0
N3—N2—C10—C94.7 (3)C16'—C15'—C20'—C19'0.0
C12—N2—C10—C9166.3 (3)N3—C15'—C20'—C19'161.3 (9)
N3—N2—C10—C11174.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.593.318 (3)135
C12—H12A···O1ii0.972.513.404 (4)152
C12—H12C···O1ii0.972.483.404 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H17N3OS
Mr347.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)17.8734 (5), 10.4297 (2), 18.9578 (4)
V3)3534.00 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.944, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
18349, 3678, 2341
Rint0.032
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.172, 1.00
No. of reflections3678
No. of parameters227
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.593.318 (3)135
C12—H12A···O1ii0.972.513.404 (4)152
C12—H12C···O1ii0.972.483.404 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds