metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(1-adamant­yl)imidazolium tetra­chloridoferrate(III)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 25 October 2010; accepted 27 October 2010; online 31 October 2010)

The crystal structure of the title compound, (C23H33N2)[FeCl4], consists of 1,3-bis­(1-adamant­yl)imidazolium (BAIM) cations and tetra­hedral tetra­chloridoferrate(III) (TCF) anions. The BAIM cation possesses m symmetry, with the central imidazole ring and four C atoms of each terminal adamantyl group located on a mirror plane. The Fe and two Cl atoms of the TCF anion are also located on the mirror plane. The cyclo­hexane rings of the adamantyl groups adopt normal chair conformations.

Related literature

For related structures based on the 1,3-bis­(adamant­yl)­imidazolium unit, see: Grossie et al. (2006[Grossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827-m829.], 2009[Grossie, D. A., Feld, W. A. & Kelley, J. (2009). Acta Cryst. E65, m72.]). For a related synthetic procedure, see: Louie & Grubbs (2000[Louie, J. & Grubbs, R. H. (2000). Chem. Commun. pp. 1479-1480.]). For related N-heterocyclic carbene structures in general, see: Arduengo et al. (1991[Arduengo, A. J. III, Harlow, R. L. & Kline, M. J. (1991). J. Am. Chem. Soc. 113, 361-363.]).

[Scheme 1]

Experimental

Crystal data
  • (C23H33N2)[FeCl4]

  • Mr = 535.16

  • Orthorhombic, P n m a

  • a = 15.3517 (4) Å

  • b = 9.7557 (3) Å

  • c = 16.3502 (4) Å

  • V = 2448.71 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 173 K

  • 0.29 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.815

  • 14913 measured reflections

  • 3126 independent reflections

  • 2410 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.02

  • 3126 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was obtained in an attempt to couple the N-heterocyclic carbene (NHC) ligand to FeCl2 using the free carbene method. The anticipated coordination product was not obtained but a co-crystal of the ligand and FeCl4 anion was isolated as (I). Protonation of the NHC ligand and oxidation of the metal source observed in this process is of structural and synthetic interest because the free carbene method is commonly used for the preparation of NHC-metal complexes especially those supported by sterically demanding imidazolium salts. The structure of (I) is characterized by a symmetrical imidazolium unit and a tetrahedral iron cenre with the asymmetric unit containing an independent protonated 1,3 bis(adamantyl)imidazol-2-ylidene moiety and the tetrahedral tetrachloridoferrate(III) anion [FeCl4-]. The imidazolium moiety and the FeCL4- anion are held together by a network of Cl(1)··· H(9) short contacts measured to be 2.904 (2) Å. In addition the molecule of (I) has a crystallographically imposed centrosymmetry and the imidazolium ring is completely planar. The cyclohexane groups of the adamantyl ligands adopt chair conformations.

Related literature top

For related structures based on the 1,3-bis(adamantyl)imidazolium unit, see: Grossie et al. (2006, 2009). For a related synthetic procedure, see: Louie & Grubbs (2000). For related N-heterocyclic carbene structures in general, see: Arduengo et al. (1991).

Experimental top

1,3-Bis(adamantyl)imidazol-2-ylidenium chloride (0.1 g) and potassium tert-butoxide (0.04 g) were dissolved in 20 ml of THF and stirred at room temperature for 30 min. After evaporating the solvent, the free carbene was extracted in warm toluene (2 x 20 ml). This was followed by addition of 0.034 g of FeCl2 to the toluene solution and refluxed for 24 h. After removal of all volatiles, the residue was purified by recrystallization from dichloromethane/hexane to give X-ray quality orange block crystals of (I).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95-1.00 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound (I) was obtained in an attempt to couple the N-heterocyclic carbene (NHC) ligand to FeCl2 using the free carbene method. The anticipated coordination product was not obtained but a co-crystal of the ligand and FeCl4 anion was isolated as (I). Protonation of the NHC ligand and oxidation of the metal source observed in this process is of structural and synthetic interest because the free carbene method is commonly used for the preparation of NHC-metal complexes especially those supported by sterically demanding imidazolium salts. The structure of (I) is characterized by a symmetrical imidazolium unit and a tetrahedral iron cenre with the asymmetric unit containing an independent protonated 1,3 bis(adamantyl)imidazol-2-ylidene moiety and the tetrahedral tetrachloridoferrate(III) anion [FeCl4-]. The imidazolium moiety and the FeCL4- anion are held together by a network of Cl(1)··· H(9) short contacts measured to be 2.904 (2) Å. In addition the molecule of (I) has a crystallographically imposed centrosymmetry and the imidazolium ring is completely planar. The cyclohexane groups of the adamantyl ligands adopt chair conformations.

For related structures based on the 1,3-bis(adamantyl)imidazolium unit, see: Grossie et al. (2006, 2009). For a related synthetic procedure, see: Louie & Grubbs (2000). For related N-heterocyclic carbene structures in general, see: Arduengo et al. (1991).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
1,3-bis(1-adamantyl)imidazolium tetrachloridoferrate(III) top
Crystal data top
(C23H33N2)[FeCl4]F(000) = 1116
Mr = 535.16Dx = 1.452 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4384 reflections
a = 15.3517 (4) Åθ = 2.5–28.1°
b = 9.7557 (3) ŵ = 1.07 mm1
c = 16.3502 (4) ÅT = 173 K
V = 2448.71 (12) Å3Block, orange
Z = 40.29 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3126 independent reflections
Radiation source: fine-focus sealed tube2410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 208
Tmin = 0.747, Tmax = 0.815k = 129
14913 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C23H33N2)[FeCl4]V = 2448.71 (12) Å3
Mr = 535.16Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.3517 (4) ŵ = 1.07 mm1
b = 9.7557 (3) ÅT = 173 K
c = 16.3502 (4) Å0.29 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2410 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.815Rint = 0.049
14913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
3126 reflectionsΔρmin = 0.42 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25910 (14)0.25000.44556 (14)0.0244 (5)
C20.32128 (15)0.25000.51793 (15)0.0319 (6)
H2A0.31110.16770.55210.038*0.50
H2B0.31110.33230.55210.038*0.50
C30.41569 (15)0.25000.48571 (15)0.0317 (6)
H30.45700.25000.53300.038*
C40.43059 (11)0.1222 (2)0.43410 (12)0.0367 (4)
H4A0.42110.03930.46780.044*
H4B0.49140.12080.41380.044*
C50.36751 (12)0.1227 (2)0.36191 (12)0.0385 (5)
H50.37780.03930.32760.046*
C60.27317 (11)0.1213 (2)0.39388 (11)0.0320 (4)
H6A0.23180.12010.34740.038*
H6B0.26310.03830.42740.038*
C70.38239 (17)0.25000.31053 (16)0.0434 (7)
H7A0.44270.25000.28910.052*
H7B0.34190.25000.26340.052*
C80.14111 (15)0.25000.55290 (14)0.0249 (5)
H80.17880.25000.59900.030*
C90.09341 (16)0.25000.42699 (16)0.0323 (6)
H90.09220.25000.36890.039*
C100.02372 (16)0.25000.47676 (15)0.0332 (6)
H100.03560.25000.46030.040*
C110.00008 (14)0.25000.63217 (14)0.0239 (5)
C120.05956 (15)0.25000.70717 (14)0.0311 (6)
H12A0.09730.33230.70640.037*0.50
H12B0.09730.16770.70640.037*0.50
C130.00332 (15)0.25000.78484 (15)0.0315 (6)
H130.04190.25000.83410.038*
C140.05333 (13)0.1222 (2)0.78560 (11)0.0366 (4)
H14A0.01600.03940.78490.044*
H14B0.08890.12020.83610.044*
C150.11249 (13)0.1224 (2)0.71109 (12)0.0405 (5)
H150.15020.03880.71210.049*
C160.05666 (12)0.1214 (2)0.63305 (11)0.0355 (4)
H16A0.01940.03860.63200.043*
H16B0.09470.11980.58420.043*
C170.16995 (16)0.25000.71207 (17)0.0458 (8)
H17A0.20870.25000.66370.055*
H17B0.20680.25000.76180.055*
N10.16675 (12)0.25000.47532 (12)0.0253 (4)
N20.05441 (12)0.25000.55629 (12)0.0249 (4)
Cl10.63957 (4)0.25000.30305 (4)0.04157 (19)
Cl20.66517 (5)0.25000.52085 (4)0.04157 (18)
Cl30.81788 (4)0.06894 (6)0.39623 (4)0.05261 (17)
Fe10.73335 (2)0.25000.40369 (2)0.02584 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (10)0.0311 (13)0.0224 (12)0.0000.0027 (9)0.000
C20.0234 (11)0.0525 (17)0.0199 (12)0.0000.0030 (9)0.000
C30.0202 (11)0.0525 (17)0.0222 (12)0.0000.0034 (9)0.000
C40.0250 (9)0.0422 (11)0.0428 (11)0.0061 (8)0.0008 (8)0.0047 (9)
C50.0263 (9)0.0474 (12)0.0416 (11)0.0037 (8)0.0013 (8)0.0170 (9)
C60.0259 (8)0.0350 (10)0.0351 (10)0.0003 (8)0.0028 (7)0.0077 (8)
C70.0273 (13)0.082 (2)0.0209 (13)0.0000.0009 (10)0.000
C80.0222 (11)0.0310 (13)0.0216 (12)0.0000.0039 (9)0.000
C90.0265 (12)0.0488 (17)0.0216 (12)0.0000.0056 (10)0.000
C100.0243 (12)0.0500 (17)0.0252 (13)0.0000.0064 (10)0.000
C110.0211 (11)0.0288 (13)0.0216 (12)0.0000.0003 (9)0.000
C120.0224 (11)0.0463 (16)0.0247 (13)0.0000.0024 (10)0.000
C130.0255 (12)0.0460 (16)0.0228 (12)0.0000.0024 (10)0.000
C140.0426 (10)0.0354 (10)0.0317 (10)0.0042 (9)0.0069 (8)0.0065 (8)
C150.0404 (11)0.0464 (12)0.0347 (11)0.0220 (9)0.0052 (8)0.0050 (9)
C160.0387 (10)0.0364 (11)0.0314 (10)0.0119 (8)0.0010 (8)0.0062 (8)
C170.0202 (12)0.088 (3)0.0292 (15)0.0000.0004 (11)0.000
N10.0209 (9)0.0325 (11)0.0223 (10)0.0000.0026 (8)0.000
N20.0208 (9)0.0314 (11)0.0224 (10)0.0000.0030 (8)0.000
Cl10.0333 (3)0.0635 (5)0.0279 (3)0.0000.0021 (3)0.000
Cl20.0435 (4)0.0531 (4)0.0281 (3)0.0000.0058 (3)0.000
Cl30.0501 (3)0.0395 (3)0.0682 (4)0.0181 (2)0.0155 (3)0.0136 (3)
Fe10.02563 (18)0.0251 (2)0.0268 (2)0.0000.00083 (14)0.000
Geometric parameters (Å, º) top
C1—N11.499 (3)C10—N21.383 (3)
C1—C21.520 (3)C10—H100.9500
C1—C61.529 (2)C11—N21.496 (3)
C1—C6i1.529 (2)C11—C16i1.526 (2)
C2—C31.542 (3)C11—C161.526 (2)
C2—H2A0.9900C11—C121.530 (3)
C2—H2B0.9900C12—C131.536 (3)
C3—C41.522 (2)C12—H12A0.9900
C3—C4i1.522 (2)C12—H12B0.9900
C3—H31.0000C13—C141.520 (2)
C4—C51.527 (3)C13—C14i1.520 (2)
C4—H4A0.9900C13—H131.0000
C4—H4B0.9900C14—C151.519 (3)
C5—C71.517 (3)C14—H14A0.9900
C5—C61.540 (2)C14—H14B0.9900
C5—H51.0000C15—C171.526 (3)
C6—H6A0.9900C15—C161.537 (3)
C6—H6B0.9900C15—H151.0000
C7—C5i1.517 (3)C16—H16A0.9900
C7—H7A0.9900C16—H16B0.9900
C7—H7B0.9900C17—C15i1.526 (3)
C8—N11.328 (3)C17—H17A0.9900
C8—N21.332 (3)C17—H17B0.9900
C8—H80.9500Cl1—Fe12.1864 (7)
C9—C101.344 (4)Cl2—Fe12.1830 (7)
C9—N11.376 (3)Cl3—Fe12.1952 (6)
C9—H90.9500Fe1—Cl3i2.1952 (6)
N1—C1—C2109.95 (19)C16i—C11—C16110.6 (2)
N1—C1—C6108.24 (12)N2—C11—C12109.26 (17)
C2—C1—C6109.97 (13)C16i—C11—C12109.45 (13)
N1—C1—C6i108.24 (12)C16—C11—C12109.45 (13)
C2—C1—C6i109.97 (13)C11—C12—C13109.04 (18)
C6—C1—C6i110.4 (2)C11—C12—H12A109.9
C1—C2—C3108.9 (2)C13—C12—H12A109.9
C1—C2—H2A109.9C11—C12—H12B109.9
C3—C2—H2A109.9C13—C12—H12B109.9
C1—C2—H2B109.9H12A—C12—H12B108.3
C3—C2—H2B109.9C14—C13—C14i110.2 (2)
H2A—C2—H2B108.3C14—C13—C12109.17 (13)
C4—C3—C4i109.9 (2)C14i—C13—C12109.17 (13)
C4—C3—C2109.30 (13)C14—C13—H13109.4
C4i—C3—C2109.30 (13)C14i—C13—H13109.4
C4—C3—H3109.4C12—C13—H13109.4
C4i—C3—H3109.4C15—C14—C13109.52 (16)
C2—C3—H3109.4C15—C14—H14A109.8
C3—C4—C5109.33 (16)C13—C14—H14A109.8
C3—C4—H4A109.8C15—C14—H14B109.8
C5—C4—H4A109.8C13—C14—H14B109.8
C3—C4—H4B109.8H14A—C14—H14B108.2
C5—C4—H4B109.8C14—C15—C17109.78 (17)
H4A—C4—H4B108.3C14—C15—C16109.41 (16)
C7—C5—C4109.56 (17)C17—C15—C16109.65 (19)
C7—C5—C6109.68 (17)C14—C15—H15109.3
C4—C5—C6109.52 (16)C17—C15—H15109.3
C7—C5—H5109.4C16—C15—H15109.3
C4—C5—H5109.4C11—C16—C15108.65 (15)
C6—C5—H5109.4C11—C16—H16A110.0
C1—C6—C5108.25 (16)C15—C16—H16A110.0
C1—C6—H6A110.0C11—C16—H16B110.0
C5—C6—H6A110.0C15—C16—H16B110.0
C1—C6—H6B110.0H16A—C16—H16B108.3
C5—C6—H6B110.0C15i—C17—C15109.3 (2)
H6A—C6—H6B108.4C15i—C17—H17A109.8
C5i—C7—C5110.0 (2)C15—C17—H17A109.8
C5i—C7—H7A109.7C15i—C17—H17B109.8
C5—C7—H7A109.7C15—C17—H17B109.8
C5i—C7—H7B109.7H17A—C17—H17B108.3
C5—C7—H7B109.7C8—N1—C9107.82 (19)
H7A—C7—H7B108.2C8—N1—C1126.18 (19)
N1—C8—N2109.6 (2)C9—N1—C1126.0 (2)
N1—C8—H8125.2C8—N2—C10107.5 (2)
N2—C8—H8125.2C8—N2—C11126.38 (19)
C10—C9—N1107.7 (2)C10—N2—C11126.09 (19)
C10—C9—H9126.2Cl2—Fe1—Cl1110.16 (3)
N1—C9—H9126.2Cl2—Fe1—Cl3i109.40 (2)
C9—C10—N2107.3 (2)Cl1—Fe1—Cl3i110.33 (2)
C9—C10—H10126.3Cl2—Fe1—Cl3109.40 (2)
N2—C10—H10126.3Cl1—Fe1—Cl3110.33 (2)
N2—C11—C16i109.03 (12)Cl3i—Fe1—Cl3107.16 (3)
N2—C11—C16109.03 (12)
N1—C1—C2—C3180.0C16i—C11—C16—C1560.0 (2)
C6—C1—C2—C360.91 (14)C12—C11—C16—C1560.6 (2)
C6i—C1—C2—C360.91 (14)C14—C15—C16—C1160.7 (2)
C1—C2—C3—C460.16 (14)C17—C15—C16—C1159.8 (2)
C1—C2—C3—C4i60.16 (14)C14—C15—C17—C15i59.7 (3)
C4i—C3—C4—C559.7 (2)C16—C15—C17—C15i60.5 (3)
C2—C3—C4—C560.3 (2)N2—C8—N1—C90.0
C3—C4—C5—C759.5 (2)N2—C8—N1—C1180.0
C3—C4—C5—C660.9 (2)C10—C9—N1—C80.0
N1—C1—C6—C5178.92 (16)C10—C9—N1—C1180.0
C2—C1—C6—C561.0 (2)C2—C1—N1—C80.0
C6i—C1—C6—C560.6 (2)C6—C1—N1—C8120.14 (13)
C7—C5—C6—C159.7 (2)C6i—C1—N1—C8120.14 (13)
C4—C5—C6—C160.5 (2)C2—C1—N1—C9180.0
C4—C5—C7—C5i59.9 (3)C6—C1—N1—C959.86 (13)
C6—C5—C7—C5i60.4 (2)C6i—C1—N1—C959.86 (13)
N1—C9—C10—N20.0N1—C8—N2—C100.0
N2—C11—C12—C13180.0N1—C8—N2—C11180.0
C16i—C11—C12—C1360.68 (13)C9—C10—N2—C80.0
C16—C11—C12—C1360.68 (13)C9—C10—N2—C11180.0
C11—C12—C13—C1460.27 (13)C16i—C11—N2—C8119.58 (13)
C11—C12—C13—C14i60.27 (13)C16—C11—N2—C8119.58 (13)
C14i—C13—C14—C1559.3 (2)C12—C11—N2—C80.0
C12—C13—C14—C1560.6 (2)C16i—C11—N2—C1060.42 (13)
C13—C14—C15—C1759.4 (2)C16—C11—N2—C1060.42 (13)
C13—C14—C15—C1661.0 (2)C12—C11—N2—C10180.0
N2—C11—C16—C15179.91 (16)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C23H33N2)[FeCl4]
Mr535.16
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)15.3517 (4), 9.7557 (3), 16.3502 (4)
V3)2448.71 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.29 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
14913, 3126, 2410
Rint0.049
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.02
No. of reflections3126
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for data collection, and the University KwaZulu-Natal and the NRF for financial support.

References

First citationArduengo, A. J. III, Harlow, R. L. & Kline, M. J. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrossie, D. A., Feld, W. A. & Kelley, J. (2009). Acta Cryst. E65, m72.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827–m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLouie, J. & Grubbs, R. H. (2000). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds