organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 4-chloro-3,5-di­nitro­benzoate

aGuangdong Food and Drug Vocational College, Guangzhou 510520, People's Republic of China
*Correspondence e-mail: gzsunjing@163.com

(Received 25 October 2010; accepted 26 October 2010; online 30 October 2010)

In the title compound, C10H9ClN2O6, the two nitro groups and the ester group are oriented with respect to the benzene ring at dihedral angles of 49.42 (13)/87.61 (13) and 9.10 (10)°, respectively. In the crystal structure, a weak C—H⋯O inter­action is present. A short Cl⋯O contact of 2.972 (2) Å is also observed in the crystal structure.

Related literature

For the application of the title compound as a herbicide and fungicide, see: Akira et al. (1978[Akira, S., Shoji, K. & Kenichi, S. (1978). Jpn. Patent No. 53101528.]); Ferenc et al. (1984[Ferenc, B., Gyoery, K. & Mihaly, N. (1984). Ger. Patent No. 3410566.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9ClN2O6

  • Mr = 288.64

  • Triclinic, [P \overline 1]

  • a = 4.703 (2) Å

  • b = 10.783 (5) Å

  • c = 12.734 (5) Å

  • α = 69.483 (12)°

  • β = 87.75 (2)°

  • γ = 89.61 (2)°

  • V = 604.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 103 K

  • 0.57 × 0.22 × 0.10 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.830, Tmax = 0.967

  • 5643 measured reflections

  • 2689 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.00

  • 2689 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.35 3.178 (3) 146
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isopropyl 4-chloro-3,5-dinitrobenzoate (Fig. 1) is a useful herbicide and fungicide (Akira et al., 1978; Ferenc et al., 1984). It was used as the acid compounds to combat fungal diseases and weeds. We report here the crystal structure of the title compound. Two nitro groups (O3/ N1/O4 and O5/N2/O6) attached at C2 and C4, the ester group (O1/C7/O2) attached at C6 form dihedral angles of 49.4 (1)°, 87.6 (1)° and 9.1 (1)° with the mean plane of the C1-benzene ring, respectively. In the crystal structure, adjacent molecules are linked together by the weak C—H···O hydrogen bonds (Table 1).

Related literature top

For the application of the title compound as a herbicide and fungicide, see: Akira et al. (1978); Ferenc et al. (1984).

Experimental top

Commercial isopropyl 4-chloro-3,5-dinitrobenzoate was recrystallized by slow evaporation of methanol solution. Colourless single crystals were formed after several weeks.

Refinement top

H atoms were placed in calculated positions and were allowed to ride on the parent C atoms with C—H distances of 0.95 (aromatic), 0.98 (methyl) and 1.00 Å (methine); Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

Isopropyl 4-chloro-3,5-dinitrobenzoate (Fig. 1) is a useful herbicide and fungicide (Akira et al., 1978; Ferenc et al., 1984). It was used as the acid compounds to combat fungal diseases and weeds. We report here the crystal structure of the title compound. Two nitro groups (O3/ N1/O4 and O5/N2/O6) attached at C2 and C4, the ester group (O1/C7/O2) attached at C6 form dihedral angles of 49.4 (1)°, 87.6 (1)° and 9.1 (1)° with the mean plane of the C1-benzene ring, respectively. In the crystal structure, adjacent molecules are linked together by the weak C—H···O hydrogen bonds (Table 1).

For the application of the title compound as a herbicide and fungicide, see: Akira et al. (1978); Ferenc et al. (1984).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
Isopropyl 4-chloro-3,5-dinitrobenzoate top
Crystal data top
C10H9ClN2O6Z = 2
Mr = 288.64F(000) = 296
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.703 (2) ÅCell parameters from 1327 reflections
b = 10.783 (5) Åθ = 3.1–27.5°
c = 12.734 (5) ŵ = 0.34 mm1
α = 69.483 (12)°T = 103 K
β = 87.75 (2)°Prism, colourless
γ = 89.61 (2)°0.57 × 0.22 × 0.10 mm
V = 604.3 (5) Å3
Data collection top
Rigaku SPIDER
diffractometer
2689 independent reflections
Radiation source: Rotating Anode1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.830, Tmax = 0.967k = 1413
5643 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.219P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H9ClN2O6γ = 89.61 (2)°
Mr = 288.64V = 604.3 (5) Å3
Triclinic, P1Z = 2
a = 4.703 (2) ÅMo Kα radiation
b = 10.783 (5) ŵ = 0.34 mm1
c = 12.734 (5) ÅT = 103 K
α = 69.483 (12)°0.57 × 0.22 × 0.10 mm
β = 87.75 (2)°
Data collection top
Rigaku SPIDER
diffractometer
2689 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1756 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.967Rint = 0.030
5643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
2689 reflectionsΔρmin = 0.27 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.35262 (13)0.43193 (6)0.65836 (5)0.02487 (18)
O10.4518 (3)0.85871 (15)0.76139 (13)0.0185 (4)
O20.3137 (3)0.67501 (15)0.90566 (13)0.0208 (4)
O31.2776 (4)0.83028 (19)0.51714 (14)0.0338 (5)
O41.1930 (4)0.66488 (19)0.46231 (15)0.0359 (5)
O51.2157 (4)0.31097 (18)0.93908 (16)0.0343 (5)
O60.8756 (4)0.24121 (18)0.86381 (17)0.0364 (5)
N11.1805 (4)0.7201 (2)0.53094 (17)0.0240 (5)
N21.0218 (4)0.3277 (2)0.87522 (18)0.0226 (5)
C10.8350 (5)0.7223 (2)0.67783 (18)0.0170 (5)
H10.79690.81190.63420.020*
C21.0341 (5)0.6512 (2)0.64011 (18)0.0182 (5)
C31.1009 (5)0.5203 (2)0.7020 (2)0.0187 (5)
C40.9569 (5)0.4649 (2)0.80468 (19)0.0170 (5)
C50.7538 (5)0.5317 (2)0.8453 (2)0.0177 (5)
H50.65900.48980.91610.021*
C60.6914 (5)0.6612 (2)0.78022 (19)0.0165 (5)
C70.4638 (5)0.7312 (2)0.82410 (19)0.0160 (5)
C80.2407 (5)0.9393 (2)0.7970 (2)0.0188 (5)
H80.06650.88480.83020.023*
C90.3717 (6)0.9834 (3)0.8837 (2)0.0288 (6)
H9A0.43200.90570.94610.043*
H9B0.23161.03320.91170.043*
H9C0.53721.04010.85000.043*
C100.1679 (6)1.0513 (2)0.6922 (2)0.0290 (6)
H10A0.33991.10340.65910.043*
H10B0.02611.10820.71080.043*
H10C0.09021.01550.63830.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0219 (3)0.0263 (3)0.0289 (3)0.0080 (2)0.0003 (2)0.0129 (3)
O10.0203 (9)0.0125 (8)0.0194 (8)0.0043 (6)0.0027 (7)0.0019 (7)
O20.0215 (9)0.0166 (8)0.0197 (9)0.0035 (7)0.0035 (7)0.0011 (7)
O30.0334 (11)0.0378 (12)0.0238 (10)0.0102 (9)0.0041 (8)0.0030 (9)
O40.0432 (12)0.0413 (12)0.0239 (10)0.0147 (9)0.0041 (9)0.0130 (9)
O50.0284 (11)0.0266 (10)0.0409 (11)0.0075 (8)0.0108 (9)0.0020 (9)
O60.0382 (12)0.0172 (9)0.0545 (13)0.0016 (8)0.0044 (10)0.0131 (9)
N10.0205 (11)0.0307 (12)0.0175 (10)0.0076 (9)0.0001 (8)0.0049 (9)
N20.0201 (11)0.0172 (11)0.0291 (11)0.0044 (8)0.0030 (9)0.0068 (9)
C10.0176 (12)0.0161 (12)0.0170 (12)0.0022 (9)0.0039 (9)0.0050 (10)
C20.0174 (12)0.0212 (12)0.0155 (12)0.0012 (9)0.0005 (9)0.0057 (10)
C30.0149 (11)0.0200 (12)0.0248 (13)0.0037 (9)0.0022 (10)0.0122 (10)
C40.0172 (12)0.0125 (11)0.0210 (12)0.0014 (9)0.0049 (9)0.0049 (9)
C50.0182 (12)0.0155 (12)0.0193 (12)0.0002 (9)0.0000 (9)0.0059 (10)
C60.0155 (11)0.0169 (11)0.0184 (12)0.0007 (9)0.0007 (9)0.0078 (10)
C70.0183 (12)0.0128 (11)0.0162 (11)0.0021 (9)0.0039 (9)0.0041 (9)
C80.0190 (12)0.0140 (11)0.0243 (13)0.0043 (9)0.0013 (10)0.0081 (10)
C90.0336 (15)0.0229 (14)0.0324 (14)0.0073 (11)0.0029 (12)0.0128 (12)
C100.0358 (16)0.0197 (13)0.0272 (14)0.0096 (11)0.0017 (12)0.0029 (11)
Geometric parameters (Å, º) top
Cl1—C31.709 (2)C3—C41.384 (3)
O1—C71.328 (3)C4—C51.382 (3)
O1—C81.475 (3)C5—C61.388 (3)
O2—C71.205 (3)C5—H50.9500
O3—N11.227 (3)C6—C71.505 (3)
O4—N11.217 (3)C8—C91.500 (3)
O5—N21.216 (3)C8—C101.503 (3)
O6—N21.215 (3)C8—H81.0000
N1—C21.472 (3)C9—H9A0.9800
N2—C41.474 (3)C9—H9B0.9800
C1—C21.382 (3)C9—H9C0.9800
C1—C61.388 (3)C10—H10A0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.395 (3)C10—H10C0.9800
C7—O1—C8116.83 (18)C1—C6—C7121.8 (2)
O4—N1—O3125.7 (2)C5—C6—C7117.9 (2)
O4—N1—C2118.2 (2)O2—C7—O1125.9 (2)
O3—N1—C2116.1 (2)O2—C7—C6122.6 (2)
O6—N2—O5125.8 (2)O1—C7—C6111.5 (2)
O6—N2—C4116.5 (2)O1—C8—C9107.98 (19)
O5—N2—C4117.61 (19)O1—C8—C10105.83 (19)
C2—C1—C6119.1 (2)C9—C8—C10113.8 (2)
C2—C1—H1120.4O1—C8—H8109.7
C6—C1—H1120.4C9—C8—H8109.7
C1—C2—C3122.5 (2)C10—C8—H8109.7
C1—C2—N1117.2 (2)C8—C9—H9A109.5
C3—C2—N1120.3 (2)C8—C9—H9B109.5
C4—C3—C2116.1 (2)H9A—C9—H9B109.5
C4—C3—Cl1120.62 (18)C8—C9—H9C109.5
C2—C3—Cl1123.26 (19)H9A—C9—H9C109.5
C5—C4—C3123.4 (2)H9B—C9—H9C109.5
C5—C4—N2117.8 (2)C8—C10—H10A109.5
C3—C4—N2118.8 (2)C8—C10—H10B109.5
C4—C5—C6118.5 (2)H10A—C10—H10B109.5
C4—C5—H5120.7C8—C10—H10C109.5
C6—C5—H5120.7H10A—C10—H10C109.5
C1—C6—C5120.3 (2)H10B—C10—H10C109.5
C6—C1—C2—C31.1 (3)O6—N2—C4—C392.1 (3)
C6—C1—C2—N1179.8 (2)O5—N2—C4—C387.7 (3)
O4—N1—C2—C1131.1 (2)C3—C4—C5—C60.3 (3)
O3—N1—C2—C148.2 (3)N2—C4—C5—C6179.6 (2)
O4—N1—C2—C349.9 (3)C2—C1—C6—C52.0 (3)
O3—N1—C2—C3130.8 (2)C2—C1—C6—C7177.5 (2)
C1—C2—C3—C40.4 (3)C4—C5—C6—C11.3 (3)
N1—C2—C3—C4178.6 (2)C4—C5—C6—C7178.3 (2)
C1—C2—C3—Cl1178.36 (18)C8—O1—C7—O21.9 (3)
N1—C2—C3—Cl10.6 (3)C8—O1—C7—C6178.73 (17)
C2—C3—C4—C51.2 (3)C1—C6—C7—O2170.8 (2)
Cl1—C3—C4—C5179.18 (18)C5—C6—C7—O28.8 (3)
C2—C3—C4—N2178.78 (19)C1—C6—C7—O18.7 (3)
Cl1—C3—C4—N20.8 (3)C5—C6—C7—O1171.78 (19)
O6—N2—C4—C587.9 (3)C7—O1—C8—C984.7 (2)
O5—N2—C4—C592.3 (3)C7—O1—C8—C10153.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.353.178 (3)146
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H9ClN2O6
Mr288.64
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)4.703 (2), 10.783 (5), 12.734 (5)
α, β, γ (°)69.483 (12), 87.75 (2), 89.61 (2)
V3)604.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.57 × 0.22 × 0.10
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.830, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
5643, 2689, 1756
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.00
No. of reflections2689
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.353.178 (3)146
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial support from Guangdong Food and Drug Vocational College, China.

References

First citationAkira, S., Shoji, K. & Kenichi, S. (1978). Jpn. Patent No. 53101528.  Google Scholar
First citationFerenc, B., Gyoery, K. & Mihaly, N. (1984). Ger. Patent No. 3410566.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds