metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­calcium(II)]-bis­­(μ-quinoline-3-carboxyl­ato)]

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 14 September 2010; accepted 1 October 2010; online 23 October 2010)

In the title complex, [Ca(C10H6NO2)2(H2O)2]n, the CaII ion is eight-coordinated by six carboxyl­ate O atoms from four separate quinoline-3-carboxyl­ate ligands, two of which are bidentate chelate and two bridging, and two water mol­ecules in a distorted square-anti­prismatic geometry. The bridging groups form a polymeric chain substructure extending along the c axis, the chains being connected by coordinated-water O—H⋯N and O—H⋯Ocarboxyl­ate hydrogen bonds into a three-dimensional framework structure.

Related literature

For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxyl­ate ligand, see: Hu et al. (2007[Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.]). For related structures, see: Martell & Smith (1974[Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.]); Haendler (1986[Haendler, H. M. (1986). Acta Cryst. C42, 147-149.], 1996[Haendler, H. M. (1996). Acta Cryst. C52, 801-803.]); Okabe & Koizumi (1997[Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852-854.]); Okabe & Makino (1998[Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279-1280.], 1999[Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300-302.]); Okabe & Muranishi (2002[Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287-m289.]); Odoko et al. (2001[Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267-m269.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C10H6NO2)2(H2O)2]

  • Mr = 420.43

  • Monoclinic, P 21 /c

  • a = 16.0115 (16) Å

  • b = 15.3636 (16) Å

  • c = 7.7962 (8) Å

  • β = 97.928 (1)°

  • V = 1899.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.913

  • 9735 measured reflections

  • 3411 independent reflections

  • 2433 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.02

  • 3411 reflections

  • 262 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H4W⋯N2i 0.88 2.01 2.880 (3) 170
O2W—H3W⋯O1ii 0.92 1.92 2.813 (2) 163
O1W—H2W⋯N1iii 0.72 2.18 2.885 (2) 165
O1W—H1W⋯O4iv 0.84 1.94 2.785 (2) 174
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with MnII (Haendler, 1996; Okabe & Koizumi, 1997), CuII (Haendler, 1986), VIV (Okabe & Muranishi, 2002). FeII and CoII (Okabe & Makino, 1998, 1999), and NiII (Odoko et al., 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with ZnII (Hu et al.,2007). In this paper, we report the synthesis and structure of a new CaII complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl2 under hydrothermal condition, the title compound [Ca(C20H12N2O4)(H2O)2]n (I).

In the title complex molecule the CaII atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted square-antiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate CaII centres forming a one-dimensional chain substructure extended along c (Fig.2). The chains are inter-connected by coordinated-water O—H···N and O—H···Ocarboxylate hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

Related literature top

For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxylate ligand, see: Hu et al. (2007). For related structures, see: Martell & Smith (1974); Haendler (1986), 1996); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002); Odoko et al. (2001).

Experimental top

A mixture of CaCl2 (0.02 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 Å and N—H = 0.86 Å and Uiso(H) = 1.2 or 1.5Ueq(C, N).

Structure description top

Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with MnII (Haendler, 1996; Okabe & Koizumi, 1997), CuII (Haendler, 1986), VIV (Okabe & Muranishi, 2002). FeII and CoII (Okabe & Makino, 1998, 1999), and NiII (Odoko et al., 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with ZnII (Hu et al.,2007). In this paper, we report the synthesis and structure of a new CaII complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl2 under hydrothermal condition, the title compound [Ca(C20H12N2O4)(H2O)2]n (I).

In the title complex molecule the CaII atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted square-antiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate CaII centres forming a one-dimensional chain substructure extended along c (Fig.2). The chains are inter-connected by coordinated-water O—H···N and O—H···Ocarboxylate hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxylate ligand, see: Hu et al. (2007). For related structures, see: Martell & Smith (1974); Haendler (1986), 1996); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002); Odoko et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain substructure of (I) extending along c.
[Figure 3] Fig. 3. The three-dimensional hydrogen-bonded structure of (I).
catena-Poly[[diaquacalcium(II)]-bis(µ-quinoline-3-carboxylato)] top
Crystal data top
[Ca(C10H6NO2)2(H2O)2]F(000) = 872
Mr = 420.43Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 16.0115 (16) Åθ = 1.4–25.0°
b = 15.3636 (16) ŵ = 0.37 mm1
c = 7.7962 (8) ÅT = 296 K
β = 97.928 (1)°Block, colorless
V = 1899.5 (3) Å30.30 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube2433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1916
Tmin = 0.897, Tmax = 0.913k = 1818
9735 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.6204P]
where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ca(C10H6NO2)2(H2O)2]V = 1899.5 (3) Å3
Mr = 420.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0115 (16) ŵ = 0.37 mm1
b = 15.3636 (16) ÅT = 296 K
c = 7.7962 (8) Å0.30 × 0.26 × 0.25 mm
β = 97.928 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3411 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2433 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.913Rint = 0.032
9735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3411 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.24944 (3)0.78080 (3)0.25589 (6)0.02366 (14)
C10.45779 (14)0.63295 (14)0.1201 (3)0.0284 (5)
N20.58144 (13)0.54488 (14)0.1998 (3)0.0420 (6)
C20.48749 (15)0.65988 (16)0.0265 (3)0.0349 (6)
H20.45620.69890.10080.042*
C100.50824 (16)0.57576 (17)0.2313 (3)0.0394 (6)
H100.48870.55870.33310.047*
C110.37390 (15)0.66290 (14)0.1614 (3)0.0278 (5)
C80.61064 (15)0.57047 (16)0.0508 (3)0.0360 (6)
C30.56531 (16)0.62891 (17)0.0660 (3)0.0374 (6)
C70.68710 (17)0.53586 (18)0.0112 (4)0.0471 (7)
H70.71820.49800.08850.057*
C40.59749 (19)0.6509 (2)0.2199 (4)0.0626 (9)
H40.56870.69030.29700.075*
C60.71558 (19)0.5574 (2)0.1385 (4)0.0634 (9)
H60.76590.53370.16380.076*
C50.6704 (2)0.6145 (3)0.2557 (5)0.0743 (11)
H50.69040.62790.35900.089*
N10.00972 (12)0.44091 (13)0.2997 (3)0.0352 (5)
C220.15016 (13)0.63803 (14)0.3447 (3)0.0244 (5)
C120.11785 (14)0.54892 (15)0.3760 (3)0.0272 (5)
C210.04213 (15)0.51849 (15)0.2802 (3)0.0323 (6)
H210.01340.55560.19820.039*
C130.16177 (15)0.49416 (16)0.4924 (3)0.0319 (6)
H130.21130.51290.55860.038*
C180.02177 (17)0.30129 (17)0.4363 (4)0.0423 (7)
H180.03010.28560.37520.051*
C140.13216 (16)0.40902 (15)0.5126 (3)0.0327 (6)
C190.05460 (16)0.38521 (15)0.4152 (3)0.0329 (6)
C170.0653 (2)0.24367 (19)0.5447 (4)0.0543 (8)
H170.04330.18840.55690.065*
C150.17626 (18)0.34683 (18)0.6242 (4)0.0470 (7)
H150.22800.36120.68760.056*
C160.1433 (2)0.26606 (19)0.6392 (4)0.0579 (9)
H160.17270.22540.71260.069*
O30.18843 (9)0.67991 (10)0.47024 (19)0.0292 (4)
O40.14006 (10)0.66737 (10)0.1932 (2)0.0335 (4)
O10.36040 (11)0.66234 (11)0.3145 (2)0.0405 (4)
O20.32086 (9)0.69201 (10)0.0404 (2)0.0312 (4)
O1W0.15496 (10)0.88329 (10)0.3557 (2)0.0360 (4)
H1W0.14870.87140.45880.054*
H2W0.11560.90510.32820.054*
O2W0.34752 (10)0.88362 (11)0.1592 (2)0.0414 (5)
H3W0.35770.87850.04590.062*
H4W0.37510.93130.19640.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0245 (3)0.0257 (2)0.0204 (3)0.0003 (2)0.00171 (18)0.00021 (19)
C10.0283 (13)0.0289 (13)0.0266 (13)0.0030 (10)0.0005 (10)0.0037 (10)
N20.0387 (13)0.0447 (13)0.0421 (14)0.0147 (11)0.0040 (10)0.0051 (11)
C20.0309 (14)0.0390 (14)0.0332 (15)0.0070 (11)0.0014 (11)0.0048 (12)
C100.0383 (16)0.0442 (16)0.0357 (15)0.0123 (12)0.0049 (12)0.0048 (12)
C110.0328 (14)0.0238 (12)0.0261 (14)0.0012 (10)0.0009 (11)0.0020 (10)
C80.0306 (15)0.0365 (14)0.0398 (16)0.0041 (11)0.0015 (12)0.0056 (12)
C30.0332 (15)0.0424 (15)0.0370 (15)0.0036 (12)0.0057 (12)0.0014 (12)
C70.0353 (16)0.0483 (17)0.058 (2)0.0118 (13)0.0067 (14)0.0031 (14)
C40.051 (2)0.086 (2)0.056 (2)0.0174 (17)0.0216 (16)0.0237 (18)
C60.0412 (19)0.077 (2)0.076 (2)0.0149 (17)0.0228 (17)0.006 (2)
C50.057 (2)0.111 (3)0.062 (2)0.017 (2)0.0312 (18)0.017 (2)
N10.0315 (12)0.0328 (12)0.0405 (13)0.0059 (9)0.0020 (10)0.0042 (10)
C220.0215 (12)0.0274 (12)0.0248 (13)0.0006 (10)0.0051 (10)0.0045 (10)
C120.0283 (13)0.0287 (12)0.0250 (13)0.0030 (10)0.0052 (10)0.0035 (10)
C210.0309 (14)0.0326 (14)0.0326 (14)0.0038 (11)0.0016 (11)0.0008 (11)
C130.0314 (14)0.0352 (14)0.0291 (14)0.0056 (11)0.0040 (11)0.0029 (11)
C180.0436 (17)0.0392 (15)0.0453 (18)0.0111 (13)0.0105 (13)0.0021 (13)
C140.0363 (15)0.0330 (14)0.0293 (14)0.0026 (11)0.0061 (11)0.0002 (11)
C190.0351 (15)0.0317 (14)0.0336 (15)0.0060 (11)0.0107 (11)0.0065 (11)
C170.072 (2)0.0379 (16)0.055 (2)0.0167 (15)0.0147 (17)0.0054 (14)
C150.0496 (18)0.0432 (16)0.0461 (18)0.0063 (14)0.0005 (14)0.0062 (13)
C160.073 (2)0.0407 (17)0.058 (2)0.0011 (16)0.0035 (17)0.0175 (15)
O30.0333 (9)0.0287 (9)0.0246 (9)0.0058 (7)0.0010 (7)0.0030 (7)
O40.0404 (10)0.0370 (10)0.0225 (9)0.0079 (8)0.0019 (7)0.0020 (7)
O10.0460 (11)0.0530 (11)0.0231 (10)0.0156 (9)0.0070 (8)0.0015 (8)
O20.0275 (9)0.0386 (10)0.0263 (10)0.0074 (7)0.0000 (7)0.0015 (7)
O1W0.0361 (10)0.0431 (10)0.0285 (10)0.0110 (8)0.0035 (8)0.0025 (8)
O2W0.0474 (12)0.0481 (11)0.0292 (10)0.0211 (9)0.0070 (8)0.0055 (8)
Geometric parameters (Å, º) top
Ca1—O3i2.3829 (16)C5—H50.9300
Ca1—O1W2.3871 (16)N1—C211.317 (3)
Ca1—O2ii2.3877 (16)N1—C191.371 (3)
Ca1—O2W2.4202 (17)C22—O41.254 (3)
Ca1—O42.4712 (16)C22—O31.258 (3)
Ca1—O12.5404 (17)C22—C121.495 (3)
Ca1—O22.5538 (16)C12—C131.360 (3)
Ca1—O32.5689 (16)C12—C211.413 (3)
Ca1—H1W2.7828C21—H210.9300
C1—C21.362 (3)C13—C141.407 (3)
C1—C101.408 (3)C13—H130.9300
C1—C111.496 (3)C18—C171.350 (4)
N2—C101.318 (3)C18—C191.410 (3)
N2—C81.368 (3)C18—H180.9300
C2—C31.407 (3)C14—C191.412 (3)
C2—H20.9300C14—C151.414 (4)
C10—H100.9300C17—C161.402 (4)
C11—O11.242 (3)C17—H170.9300
C11—O21.261 (3)C15—C161.360 (4)
C8—C31.407 (3)C15—H150.9300
C8—C71.408 (3)C16—H160.9300
C3—C41.410 (4)O3—Ca1ii2.3829 (16)
C7—C61.352 (4)O2—Ca1i2.3877 (16)
C7—H70.9300O1W—H1W0.8432
C4—C51.357 (4)O1W—H2W0.7195
C4—H40.9300O2W—H3W0.9231
C6—C51.395 (4)O2W—H4W0.8836
C6—H60.9300
O3i—Ca1—O1W86.63 (5)O1—C11—C1119.0 (2)
O3i—Ca1—O2ii154.94 (6)O2—C11—C1118.7 (2)
O1W—Ca1—O2ii79.95 (6)N2—C8—C3121.8 (2)
O3i—Ca1—O2W75.13 (6)N2—C8—C7119.1 (2)
O1W—Ca1—O2W97.97 (6)C3—C8—C7119.1 (3)
O2ii—Ca1—O2W85.81 (5)C2—C3—C8117.8 (2)
O3i—Ca1—O478.80 (5)C2—C3—C4122.9 (2)
O1W—Ca1—O493.79 (6)C8—C3—C4119.1 (2)
O2ii—Ca1—O4122.87 (5)C6—C7—C8120.3 (3)
O2W—Ca1—O4150.61 (6)C6—C7—H7119.9
O3i—Ca1—O1122.42 (5)C8—C7—H7119.9
O1W—Ca1—O1150.78 (6)C5—C4—C3120.1 (3)
O2ii—Ca1—O174.02 (6)C5—C4—H4119.9
O2W—Ca1—O193.21 (6)C3—C4—H4119.9
O4—Ca1—O189.39 (6)C7—C6—C5120.9 (3)
O3i—Ca1—O271.54 (5)C7—C6—H6119.6
O1W—Ca1—O2158.17 (6)C5—C6—H6119.6
O2ii—Ca1—O2120.27 (6)C4—C5—C6120.5 (3)
O2W—Ca1—O276.99 (6)C4—C5—H5119.8
O4—Ca1—O282.10 (5)C6—C5—H5119.8
O1—Ca1—O250.97 (5)C21—N1—C19117.5 (2)
O3i—Ca1—O3128.11 (6)O4—C22—O3122.3 (2)
O1W—Ca1—O382.58 (5)O4—C22—C12118.7 (2)
O2ii—Ca1—O371.20 (5)O3—C22—C12119.0 (2)
O2W—Ca1—O3156.61 (6)C13—C12—C21118.4 (2)
O4—Ca1—O351.72 (5)C13—C12—C22121.1 (2)
O1—Ca1—O376.70 (5)C21—C12—C22120.5 (2)
O2—Ca1—O3110.53 (5)N1—C21—C12124.2 (2)
O3i—Ca1—Ca1i37.49 (4)N1—C21—H21117.9
O1W—Ca1—Ca1i123.88 (4)C12—C21—H21117.9
O2ii—Ca1—Ca1i151.60 (4)C12—C13—C14119.9 (2)
O2W—Ca1—Ca1i76.36 (4)C12—C13—H13120.1
O4—Ca1—Ca1i74.71 (4)C14—C13—H13120.1
O1—Ca1—Ca1i84.96 (4)C17—C18—C19120.3 (3)
O2—Ca1—Ca1i34.37 (4)C17—C18—H18119.9
O3—Ca1—Ca1i122.74 (4)C19—C18—H18119.9
O3i—Ca1—Ca1ii155.93 (4)C13—C14—C19117.7 (2)
O1W—Ca1—Ca1ii75.75 (4)C13—C14—C15123.3 (2)
O2ii—Ca1—Ca1ii37.14 (4)C19—C14—C15118.9 (2)
O2W—Ca1—Ca1ii122.94 (4)N1—C19—C18118.5 (2)
O4—Ca1—Ca1ii86.04 (4)N1—C19—C14122.3 (2)
O1—Ca1—Ca1ii75.51 (4)C18—C19—C14119.2 (2)
O2—Ca1—Ca1ii124.99 (4)C18—C17—C16120.9 (3)
O3—Ca1—Ca1ii34.37 (3)C18—C17—H17119.5
Ca1i—Ca1—Ca1ii152.71 (2)C16—C17—H17119.5
O3i—Ca1—H1W102.1C16—C15—C14120.2 (3)
O1W—Ca1—H1W16.6C16—C15—H15119.9
O2ii—Ca1—H1W68.0C14—C15—H15119.9
O2W—Ca1—H1W107.6C15—C16—C17120.5 (3)
O4—Ca1—H1W90.8C15—C16—H16119.8
O1—Ca1—H1W134.6C17—C16—H16119.8
O2—Ca1—H1W171.3C22—O3—Ca1ii161.76 (15)
O3—Ca1—H1W68.3C22—O3—Ca189.47 (13)
Ca1i—Ca1—H1W138.4Ca1ii—O3—Ca1108.15 (6)
Ca1ii—Ca1—H1W59.2C22—O4—Ca194.08 (13)
C2—C1—C10118.0 (2)C11—O1—Ca191.84 (14)
C2—C1—C11121.0 (2)C11—O2—Ca1i160.71 (15)
C10—C1—C11121.0 (2)C11—O2—Ca190.76 (13)
C10—N2—C8118.1 (2)Ca1i—O2—Ca1108.49 (6)
C1—C2—C3120.2 (2)Ca1—O1W—H1W109.4
C1—C2—H2119.9Ca1—O1W—H2W141.1
C3—C2—H2119.9H1W—O1W—H2W99.8
N2—C10—C1124.0 (2)Ca1—O2W—H3W116.8
N2—C10—H10118.0Ca1—O2W—H4W139.0
C1—C10—H10118.0H3W—O2W—H4W103.8
O1—C11—O2122.2 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···N2iii0.882.012.880 (3)170
O2W—H3W···O1i0.921.922.813 (2)163
O1W—H2W···N1iv0.722.182.885 (2)165
O1W—H1W···O4ii0.841.942.785 (2)174
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ca(C10H6NO2)2(H2O)2]
Mr420.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.0115 (16), 15.3636 (16), 7.7962 (8)
β (°) 97.928 (1)
V3)1899.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.897, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
9735, 3411, 2433
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.02
No. of reflections3411
No. of parameters262
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···N2i0.882.012.880 (3)169.5
O2W—H3W···O1ii0.921.922.813 (2)163.4
O1W—H2W···N1iii0.722.182.885 (2)164.7
O1W—H1W···O4iv0.841.942.785 (2)174.1
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The work was supported by the Non-profit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No·A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaendler, H. M. (1986). Acta Cryst. C42, 147–149.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaendler, H. M. (1996). Acta Cryst. C52, 801–803.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.  Google Scholar
First citationOdoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds