organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′,3,4,4′,5-Penta­meth­­oxy­chalcone

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: Muller.theunis@gmail.com

(Received 23 September 2010; accepted 12 October 2010; online 23 October 2010)

In the title chalcone [systemetic name 1-(2,4-dimeth­oxy­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one], C20H22O6, the dihedral angle between the plane of the two benzene rings is 7.03 (4)° with all but one of the meth­oxy groups essentially co-planar with these rings [C—C—O—C torsion angles = −76.1 (2), −0.7 (3), 1.8 (3), −6.2 (3), 2.0 (3)°]. An intra­molecular C—H⋯O inter­action occurs. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Patil et al. (2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.]); van Tonder et al. (2010[Tonder, J. H. van, Muller, T. J. & Bezuidenhoudt, B. C. B. (2010). Acta Cryst. E66, o1798-o1799.]); Teh et al. (2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o890-o892.]); Rosli et al. (2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4228-o4230.]). For the synthesis of the title compound, see: Kraus & Roy (2008[Kraus, G. & Roy, S. (2008). J. Nat. Prod. 71, 1961-1962.]). For the biological activity of flavonoids, see: Pietta et al. (2003[Pietta, P., Gardana, C. & Pietta, A. (2003). Flavonoids in Health and Disease edited by C. A. Rice-Evans & L. Packer, 2nd ed. New York: Marcel Dekker, Inc.]). For non-linear optical (NLO) properties of chalcones, see: Marais et al. (2005)[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochem. 66, 2145-2176.]; Uchida et al. (1998)[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 62, 135-140.]; Kitaoka et al. (1990[Kitaoka, Y., Sasaki, T., Nakai, S., Yokotani, A., Goto, Y. & Nakayama, M. (1990). Appl. Phys. Lett. 56, 659.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]); Zhang et al. (1990[Zhang, G., Kinoshita, T., Sasaki, K., Goto, Y. & Nakayama, M. (1990). J. Cryst. Growth 100, 411-416.]). For applications of NLO crystals, see: Chemla & Zyss (1987[Chemla, D. S. & Zyss, J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. Boston: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O6

  • Mr = 358.38

  • Orthorhombic, P 21 21 21

  • a = 7.3041 (2) Å

  • b = 8.0288 (3) Å

  • c = 29.217 (1) Å

  • V = 1713.38 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.40 × 0.28 × 0.27 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.973

  • 30899 measured reflections

  • 2488 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.113

  • S = 1.21

  • 2488 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.13 2.798 (2) 127
C11—H11⋯O3i 0.93 2.4 3.306 (2) 164
C17—H17B⋯O4ii 0.96 2.52 3.455 (2) 165
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+2, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.]); software used to prepare material for publication: WingGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Flavonoids are a prominent class of secondary plant metabolites known for their wide range of biological activity that include antibacterial, antifungal, anti-tumor and anti-inflammatory properties (Pietta et al., 2003). Chalcones are an important subclass of these compounds and are often utilized as intermediates in the synthesis of a variety of cyclic flavonoids (Marais et al., 2005). Furthermore, many chalcone derivatives are a class of organic compounds with excellent NLO properties (Kitaoka et al., 1990; Goto et al., 1991; Zhang et al., 1990; Uchida et al., 1998; Patil et al., 2006), much better than those observed in inorganic crystals. Nonlinear optical materials capable of generating second harmonic frequency play an important role in the domain of optoelectronics and photonics (Rosli et al., 2006). NLO crystals with high conversion efficiencies for second harmonic generation (SHG) and which are transparent in the visible and ultraviolet ranges are required for numerous device applications (Chemla & Zyss, 1987). Advantages of using organic molecules as NLO materials stem from the fact that they can be designed to optimize the desired NLO properties. At the molecular level, compounds likely to exhibit larger values of molecular hyperpolarizability (β), must have polarizable electrons (e.g. π electrons) spread over a large distance. We report here the synthesis and structure of a new chalcone, the title compound C20H22O6, (I).

Crystals of (I) exhibit second-order nonlinear optical properties. Bond distances in (I) have normal values (Allen et al., 1987) and these and bond angles are comparable to those in related structures (van Tonder et al., 2010; Teh et al., 2006; Patil et al., 2006; Rosli et al., 2006). The least-squares plane through the enone group (C7, C8, C9 and O3) exhibit dihedral angles of 5.25 (5)° and 3.32 (6)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 7.03 (4)°. The methoxy group attached at C13 is twisted away from the C10—C15 benzene ring plane, with a C19—O5—C13—C12 torsion angle of -76.1 (2)°. The methoxy groups at C1, C3, C12 and C14 are almost coplanar with the C1—C6 and C10—C15 benzene rings with C16—O1—C1—C2, C17—O2—C3—C2, C18—O4—C12—C11 and C20—O6—C14—C15 torsion angles of -0.7 (3), 1.8 (3), -6.2 (3) and 2.0 (3)°, respectively. The C8—C9 bond [1.332 (3) Å] is significantly shorter than the C6—C7, C7—C8 and C9—C10 bonds [1.498 (3), 1.483 (3) and 1.473 (2) respectively]. The C8—C9 bond length indicates a double bond rather than single bonds as in the other bonds. This corresponds well with literature values (Van Tonder et al. 2010). Intramolecular C5—H5···O3, C8—H8···O1, C9—H9···O3 and C19—H19C···O4 interactions are found in the molecular structure of (I), while the molecules form chains through weak intermolecular C11—H11···O3i and C17—H17B···O4ii hydrogen bonds (Table 1).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For related structures, see: Patil et al. (2006); van Tonder et al. (2010); Teh et al. (2006); Rosli et al. (2006). For the synthesis of the title compound, see: Kraus & Roy (2008). For the biological activity of flavonoids, see: Pietta et al. (2003). For non-linear optical (NLO) properties of chalcones, see: Marais et al. (2005); Uchida et al. (1998); Kitaoka et al. (1990); Goto et al. (1991); Zhang et al. (1990). For applications of NLO crystals, see: Chemla & Zyss (1987).

Experimental top

Freshly ground KOH (15.1 g; 270 mmol; 32 eq.) was added to a cold (ice bath) stirred solution of 2',4'-dimethoxyacetophenone (1.52 g; 8.4 mmol) and 3,4,5-trimethoxybenzaldehyde (1.95 g; 10.0 mmol; 1.2 eq.) in ethanol (60 ml). The temperature of the reaction mixture was allowed to rise to room temperature and stirring contined until completion of the reaction (TLC). Extraction of the water phase with ethyl acetate (3 x 100 ml) followed by neutralization with aqueous NaHCO3 (litmus) and washing with water gave the crude chalcone after drying of the solution (Na2SO4) and evaporation of the solvent in vacuo at ca. 40° C. Crystallization from ethanol afforded the desired chalcone (2.15 g; 71.2%) as yellow needles. Rf 0.17 (H:A; 8:2); m.p. 85.1° C; 1H NMR (600 MHz, CDCl3) δ 7.70 (1H, d, J = 8.61 Hz, H-6'), 7.54 (1H, d, J = 15.72 Hz, H-β), 7.35 (1H, d, J = 15.72 Hz, H-α), 6.79 (2H, s, H-2,6), 6.53 (1H, dd, J = 2.27, 8.61 Hz, H-5'), 6.47 (1H, d, J = 2.27 Hz, H-3'), 3.86 (9H, s, –OCH3), 3.85 (3H, s, –OCH3), 3.83 (3H, s, –OCH3); 13C NMR (151 MHz, CDCl3) δ 190.47 (CO), 164.13, 160.31, 153.39, 142.23 (C-β), 139.97, 132.72 (C-6'), 131.01, 126.68 (C-α), 122.21, 105.49 (C-2,6), 105.23 (C-5'), 98.70 (C-3'), 60.96 (–OCH3), 56.15 (–OCH3), 55.75 (–OCH3), 55.54 (–OCH3).

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with with C—H(aromatic and methine) = 0.93 Å and C–H(methyl) = 0.96 ° and Uiso(H) = 1.2Ueq(C)(aromatic and methine) or 1.5U<i/>eq(C)(methyl). The absolute structure parameter is meaningless and has been removed from the CIF file. Friedel pairs were therefore averaged in the final cycles of the refinement.

Structure description top

Flavonoids are a prominent class of secondary plant metabolites known for their wide range of biological activity that include antibacterial, antifungal, anti-tumor and anti-inflammatory properties (Pietta et al., 2003). Chalcones are an important subclass of these compounds and are often utilized as intermediates in the synthesis of a variety of cyclic flavonoids (Marais et al., 2005). Furthermore, many chalcone derivatives are a class of organic compounds with excellent NLO properties (Kitaoka et al., 1990; Goto et al., 1991; Zhang et al., 1990; Uchida et al., 1998; Patil et al., 2006), much better than those observed in inorganic crystals. Nonlinear optical materials capable of generating second harmonic frequency play an important role in the domain of optoelectronics and photonics (Rosli et al., 2006). NLO crystals with high conversion efficiencies for second harmonic generation (SHG) and which are transparent in the visible and ultraviolet ranges are required for numerous device applications (Chemla & Zyss, 1987). Advantages of using organic molecules as NLO materials stem from the fact that they can be designed to optimize the desired NLO properties. At the molecular level, compounds likely to exhibit larger values of molecular hyperpolarizability (β), must have polarizable electrons (e.g. π electrons) spread over a large distance. We report here the synthesis and structure of a new chalcone, the title compound C20H22O6, (I).

Crystals of (I) exhibit second-order nonlinear optical properties. Bond distances in (I) have normal values (Allen et al., 1987) and these and bond angles are comparable to those in related structures (van Tonder et al., 2010; Teh et al., 2006; Patil et al., 2006; Rosli et al., 2006). The least-squares plane through the enone group (C7, C8, C9 and O3) exhibit dihedral angles of 5.25 (5)° and 3.32 (6)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 7.03 (4)°. The methoxy group attached at C13 is twisted away from the C10—C15 benzene ring plane, with a C19—O5—C13—C12 torsion angle of -76.1 (2)°. The methoxy groups at C1, C3, C12 and C14 are almost coplanar with the C1—C6 and C10—C15 benzene rings with C16—O1—C1—C2, C17—O2—C3—C2, C18—O4—C12—C11 and C20—O6—C14—C15 torsion angles of -0.7 (3), 1.8 (3), -6.2 (3) and 2.0 (3)°, respectively. The C8—C9 bond [1.332 (3) Å] is significantly shorter than the C6—C7, C7—C8 and C9—C10 bonds [1.498 (3), 1.483 (3) and 1.473 (2) respectively]. The C8—C9 bond length indicates a double bond rather than single bonds as in the other bonds. This corresponds well with literature values (Van Tonder et al. 2010). Intramolecular C5—H5···O3, C8—H8···O1, C9—H9···O3 and C19—H19C···O4 interactions are found in the molecular structure of (I), while the molecules form chains through weak intermolecular C11—H11···O3i and C17—H17B···O4ii hydrogen bonds (Table 1).

For standard bond lengths, see: Allen et al. (1987). For related structures, see: Patil et al. (2006); van Tonder et al. (2010); Teh et al. (2006); Rosli et al. (2006). For the synthesis of the title compound, see: Kraus & Roy (2008). For the biological activity of flavonoids, see: Pietta et al. (2003). For non-linear optical (NLO) properties of chalcones, see: Marais et al. (2005); Uchida et al. (1998); Kitaoka et al. (1990); Goto et al. (1991); Zhang et al. (1990). For applications of NLO crystals, see: Chemla & Zyss (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WingGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation of the title compound, showing the atom numbering scheme and displacement ellipsoids (50% probability).
1-(2,4-Dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C20H22O6Dx = 1.389 Mg m3
Mr = 358.38Melting point: 358.1 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9978 reflections
a = 7.3041 (2) Åθ = 2.8–28.2°
b = 8.0288 (3) ŵ = 0.10 mm1
c = 29.217 (1) ÅT = 100 K
V = 1713.38 (10) Å3Cuboid, colourless
Z = 40.40 × 0.28 × 0.27 mm
F(000) = 760
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.960, Tmax = 0.973k = 1010
30899 measured reflectionsl = 3939
2488 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1972P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H22O6V = 1713.38 (10) Å3
Mr = 358.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3041 (2) ŵ = 0.10 mm1
b = 8.0288 (3) ÅT = 100 K
c = 29.217 (1) Å0.40 × 0.28 × 0.27 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2488 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2343 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.973Rint = 0.049
30899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.21Δρmax = 0.47 e Å3
2488 reflectionsΔρmin = 0.44 e Å3
241 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6645 (3)0.6440 (2)0.61028 (6)0.0137 (4)
C20.8307 (3)0.7258 (2)0.61820 (6)0.0148 (4)
H20.85570.77040.64690.018*
C30.9589 (3)0.7405 (2)0.58310 (6)0.0154 (4)
C40.9214 (3)0.6751 (2)0.53980 (6)0.0165 (4)
H41.00580.68620.51620.02*
C50.7583 (3)0.5942 (2)0.53265 (6)0.0152 (4)
H50.73470.55080.50370.018*
C60.6251 (3)0.5738 (2)0.56704 (6)0.0133 (4)
C70.4581 (3)0.4776 (2)0.55344 (6)0.0145 (4)
C80.3112 (3)0.4413 (2)0.58701 (6)0.0156 (4)
H80.31910.48640.61630.019*
C90.1683 (3)0.3459 (2)0.57636 (6)0.0145 (4)
H90.16190.30420.54670.017*
C100.0196 (3)0.3017 (2)0.60816 (6)0.0128 (3)
C110.1257 (3)0.2052 (2)0.59173 (6)0.0132 (4)
H110.12950.17460.56110.016*
C120.2650 (3)0.1548 (2)0.62144 (6)0.0130 (3)
C130.2581 (3)0.1996 (2)0.66793 (6)0.0123 (4)
C140.1169 (3)0.3024 (2)0.68353 (6)0.0127 (3)
C150.0224 (3)0.3523 (2)0.65412 (6)0.0125 (3)
H150.11720.4190.66490.015*
C160.5751 (3)0.7012 (3)0.68799 (6)0.0193 (4)
H16A0.68180.64870.70070.029*
H16B0.47250.68320.70790.029*
H16C0.59680.81860.68490.029*
C171.1706 (3)0.8786 (3)0.63268 (6)0.0187 (4)
H17A1.08570.96470.6410.028*
H17B1.29250.92330.63220.028*
H17C1.16420.78990.65470.028*
C180.4316 (3)0.0238 (3)0.56113 (6)0.0166 (4)
H18A0.44630.12590.54440.025*
H18B0.53740.04520.55670.025*
H18C0.32460.03350.55030.025*
C190.5600 (3)0.2182 (3)0.69496 (7)0.0201 (4)
H19A0.55080.33060.70590.03*
H19B0.64780.15840.71310.03*
H19C0.59860.21890.66360.03*
C200.0107 (3)0.4563 (3)0.74565 (7)0.0213 (4)
H20A0.12720.40110.74430.032*
H20B0.0160.4860.77680.032*
H20C0.01430.5550.72720.032*
O10.5368 (2)0.63145 (19)0.64410 (4)0.0188 (3)
O21.1249 (2)0.81565 (19)0.58822 (5)0.0185 (3)
O30.4459 (2)0.4251 (2)0.51410 (5)0.0239 (4)
O40.41125 (19)0.06034 (18)0.60910 (4)0.0154 (3)
O50.38532 (19)0.13860 (18)0.69848 (4)0.0154 (3)
O60.12802 (19)0.34736 (18)0.72892 (4)0.0160 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0133 (8)0.0133 (8)0.0145 (8)0.0019 (7)0.0011 (7)0.0027 (7)
C20.0145 (9)0.0153 (8)0.0148 (8)0.0001 (7)0.0002 (7)0.0012 (7)
C30.0126 (9)0.0140 (8)0.0195 (8)0.0011 (7)0.0002 (7)0.0018 (7)
C40.0150 (8)0.0184 (9)0.0160 (8)0.0003 (8)0.0041 (7)0.0010 (7)
C50.0168 (9)0.0165 (9)0.0124 (8)0.0010 (7)0.0017 (7)0.0003 (7)
C60.0117 (8)0.0135 (8)0.0148 (8)0.0007 (7)0.0003 (6)0.0021 (7)
C70.0140 (9)0.0153 (8)0.0142 (8)0.0010 (7)0.0008 (7)0.0010 (7)
C80.0140 (8)0.0188 (9)0.0140 (8)0.0005 (8)0.0022 (7)0.0000 (7)
C90.0140 (9)0.0174 (8)0.0120 (7)0.0001 (7)0.0006 (6)0.0009 (7)
C100.0114 (8)0.0128 (8)0.0141 (8)0.0003 (7)0.0008 (6)0.0008 (6)
C110.0139 (9)0.0150 (8)0.0107 (7)0.0002 (7)0.0001 (6)0.0003 (7)
C120.0117 (8)0.0121 (8)0.0153 (8)0.0002 (7)0.0009 (7)0.0003 (7)
C130.0110 (8)0.0138 (8)0.0121 (8)0.0002 (7)0.0010 (6)0.0024 (7)
C140.0144 (9)0.0123 (8)0.0116 (7)0.0021 (7)0.0005 (6)0.0006 (6)
C150.0110 (8)0.0131 (8)0.0135 (8)0.0014 (7)0.0016 (6)0.0007 (6)
C160.0191 (10)0.0262 (10)0.0127 (8)0.0054 (9)0.0012 (7)0.0029 (7)
C170.0146 (9)0.0215 (10)0.0199 (9)0.0030 (8)0.0017 (7)0.0021 (7)
C180.0167 (9)0.0198 (9)0.0134 (8)0.0014 (8)0.0033 (7)0.0025 (7)
C190.0127 (9)0.0282 (10)0.0193 (9)0.0004 (8)0.0024 (7)0.0003 (8)
C200.0225 (10)0.0263 (10)0.0152 (8)0.0049 (9)0.0007 (7)0.0066 (8)
O10.0162 (7)0.0273 (7)0.0130 (6)0.0067 (6)0.0030 (5)0.0038 (5)
O20.0135 (7)0.0235 (7)0.0187 (6)0.0052 (6)0.0026 (5)0.0016 (6)
O30.0227 (8)0.0333 (9)0.0158 (6)0.0109 (7)0.0020 (5)0.0044 (6)
O40.0133 (6)0.0195 (7)0.0132 (6)0.0044 (6)0.0010 (5)0.0017 (5)
O50.0125 (6)0.0189 (6)0.0149 (6)0.0009 (6)0.0031 (5)0.0030 (5)
O60.0173 (7)0.0198 (7)0.0108 (6)0.0028 (6)0.0004 (5)0.0026 (5)
Geometric parameters (Å, º) top
C1—O11.362 (2)C13—C141.398 (3)
C1—C21.400 (3)C14—O61.377 (2)
C1—C61.413 (3)C14—C151.390 (3)
C2—C31.394 (3)C15—H150.93
C2—H20.93C16—O11.427 (2)
C3—O21.363 (2)C16—H16A0.96
C3—C41.397 (3)C16—H16B0.96
C4—C51.373 (3)C16—H16C0.96
C4—H40.93C17—O21.433 (2)
C5—C61.408 (2)C17—H17A0.96
C5—H50.93C17—H17B0.96
C6—C71.498 (3)C17—H17C0.96
C7—O31.227 (2)C18—O41.439 (2)
C7—C81.483 (3)C18—H18A0.96
C8—C91.332 (3)C18—H18B0.96
C8—H80.93C18—H18C0.96
C9—C101.473 (2)C19—O51.430 (2)
C9—H90.93C19—H19A0.96
C10—C111.398 (3)C19—H19B0.96
C10—C151.403 (2)C19—H19C0.96
C11—C121.397 (3)C20—O61.425 (3)
C11—H110.93C20—H20A0.96
C12—O41.359 (2)C20—H20B0.96
C12—C131.406 (2)C20—H20C0.96
C13—O51.378 (2)
O1—C1—C2120.57 (16)O6—C14—C13115.16 (16)
O1—C1—C6118.67 (16)C15—C14—C13120.58 (16)
C2—C1—C6120.75 (17)C14—C15—C10119.79 (17)
C3—C2—C1120.05 (17)C14—C15—H15120.1
C3—C2—H2120C10—C15—H15120.1
C1—C2—H2120O1—C16—H16A109.5
O2—C3—C2123.66 (17)O1—C16—H16B109.5
O2—C3—C4116.11 (17)H16A—C16—H16B109.5
C2—C3—C4120.23 (17)O1—C16—H16C109.5
C5—C4—C3119.04 (17)H16A—C16—H16C109.5
C5—C4—H4120.5H16B—C16—H16C109.5
C3—C4—H4120.5O2—C17—H17A109.5
C4—C5—C6123.08 (17)O2—C17—H17B109.5
C4—C5—H5118.5H17A—C17—H17B109.5
C6—C5—H5118.5O2—C17—H17C109.5
C5—C6—C1116.83 (17)H17A—C17—H17C109.5
C5—C6—C7115.67 (16)H17B—C17—H17C109.5
C1—C6—C7127.49 (17)O4—C18—H18A109.5
O3—C7—C8119.95 (18)O4—C18—H18B109.5
O3—C7—C6119.01 (17)H18A—C18—H18B109.5
C8—C7—C6121.01 (16)O4—C18—H18C109.5
C9—C8—C7121.71 (16)H18A—C18—H18C109.5
C9—C8—H8119.1H18B—C18—H18C109.5
C7—C8—H8119.1O5—C19—H19A109.5
C8—C9—C10124.71 (17)O5—C19—H19B109.5
C8—C9—H9117.6H19A—C19—H19B109.5
C10—C9—H9117.6O5—C19—H19C109.5
C11—C10—C15120.02 (16)H19A—C19—H19C109.5
C11—C10—C9118.46 (16)H19B—C19—H19C109.5
C15—C10—C9121.52 (17)O6—C20—H20A109.5
C12—C11—C10119.98 (16)O6—C20—H20B109.5
C12—C11—H11120H20A—C20—H20B109.5
C10—C11—H11120O6—C20—H20C109.5
O4—C12—C11124.71 (16)H20A—C20—H20C109.5
O4—C12—C13115.28 (16)H20B—C20—H20C109.5
C11—C12—C13120.01 (17)C1—O1—C16119.25 (15)
O5—C13—C14119.75 (16)C3—O2—C17117.57 (15)
O5—C13—C12120.72 (16)C12—O4—C18116.94 (14)
C14—C13—C12119.49 (16)C13—O5—C19113.32 (14)
O6—C14—C15124.26 (17)C14—O6—C20116.70 (15)
C16—O1—C1—C20.7 (3)C5—C6—C7—C8177.43 (16)
C16—O1—C1—C6179.75 (17)C1—C6—C7—O3180.00 (18)
C17—O2—C3—C21.8 (3)C1—C6—C7—C81.8 (3)
C17—O2—C3—C4177.72 (17)O3—C7—C8—C93.1 (3)
C18—O4—C12—C13174.86 (17)C6—C7—C8—C9175.10 (17)
C18—O4—C12—C116.2 (3)C7—C8—C9—C10178.64 (17)
C19—O5—C13—C14106.1 (2)C8—C9—C10—C11177.67 (18)
C19—O5—C13—C1276.1 (2)C8—C9—C10—C153.1 (3)
C20—O6—C14—C13178.15 (17)C9—C10—C15—C14177.41 (17)
C20—O6—C14—C152.0 (3)C15—C10—C11—C122.0 (3)
C2—C1—C6—C7177.63 (17)C11—C10—C15—C141.8 (3)
O1—C1—C6—C72.8 (3)C9—C10—C11—C12177.18 (16)
O1—C1—C2—C3178.83 (16)C10—C11—C12—C130.7 (3)
C2—C1—C6—C51.5 (3)C10—C11—C12—O4179.58 (17)
O1—C1—C6—C5178.03 (16)O4—C12—C13—O54.9 (3)
C6—C1—C2—C30.7 (3)O4—C12—C13—C14177.38 (16)
C1—C2—C3—O2178.85 (16)C11—C12—C13—C143.6 (3)
C1—C2—C3—C40.6 (3)C11—C12—C13—O5174.14 (16)
O2—C3—C4—C5178.45 (16)O5—C13—C14—O66.0 (2)
C2—C3—C4—C51.0 (3)C12—C13—C14—C153.9 (3)
C3—C4—C5—C60.2 (3)O5—C13—C14—C15173.89 (16)
C4—C5—C6—C7178.16 (16)C12—C13—C14—O6176.28 (16)
C4—C5—C6—C11.1 (3)O6—C14—C15—C10178.98 (17)
C5—C6—C7—O30.8 (2)C13—C14—C15—C101.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.362.710 (3)102
C8—H8···O10.932.132.798 (2)127
C9—H9···O30.932.482.797 (2)100
C11—H11···O3i0.932.43.306 (2)164
C17—H17B···O4ii0.962.523.455 (2)165
C19—H19C···O40.962.453.013 (2)117
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H22O6
Mr358.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.3041 (2), 8.0288 (3), 29.217 (1)
V3)1713.38 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.28 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.960, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
30899, 2488, 2343
Rint0.049
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.113, 1.21
No. of reflections2488
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005), WingGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.132.798 (2)127
C11—H11···O3i0.932.43.306 (2)164
C17—H17B···O4ii0.962.523.455 (2)165
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemla, D. S. & Zyss, J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. Boston: Academic Press.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationKitaoka, Y., Sasaki, T., Nakai, S., Yokotani, A., Goto, Y. & Nakayama, M. (1990). Appl. Phys. Lett. 56, 659.  CrossRef Web of Science Google Scholar
First citationKraus, G. & Roy, S. (2008). J. Nat. Prod. 71, 1961–1962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochem. 66, 2145–2176.  CrossRef CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPietta, P., Gardana, C. & Pietta, A. (2003). Flavonoids in Health and Disease edited by C. A. Rice-Evans & L. Packer, 2nd ed. New York: Marcel Dekker, Inc.  Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4228–o4230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o890–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Muller, T. J. & Bezuidenhoudt, B. C. B. (2010). Acta Cryst. E66, o1798–o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 62, 135–140.  Web of Science CrossRef Google Scholar
First citationZhang, G., Kinoshita, T., Sasaki, K., Goto, Y. & Nakayama, M. (1990). J. Cryst. Growth 100, 411–416.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds