supplementary materials


zs2071 scheme

Acta Cryst. (2010). E66, m1480    [ doi:10.1107/S1600536810042807 ]

catena-Poly[[[(triphenylphosphane)copper(I)]-di-[mu]-iodido-[(triphenylphosphane)copper(I)]-[mu]-[3,6-bis(4-pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate]

J. Zhang

Abstract top

The title compound, {[Cu2I2(C12H8N6)(C18H15P)2]·2CH3CN}n, contains centrosymmetric dinuclear Cu2I2(PPh3)2 units bridged by 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine ligands lying also across crystallographic inversion centers, giving a chain structure in the ab plane. The distorted tetrahedral CuI atoms in the dinuclear unit are coordinated by two bridging iodide anions, one pyridine N atom from the substituted tetrazine ligand and one terminal triphenylphosphine P-atom donor. The Cu...Cu distance is 2.8293 (12) Å, implying a weak Cu...Cu interaction.

Comment top

Metal-organic frameworks have attracted great attention in recent years not only because of their intriguing structures (Eddaoudi et al., 2001) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Long bridging ligands can be employed for the construction of interesting metal-organic frameworks (Withersby et al., 2000). The extended bridging ligand 2,6-bis(4-pyridyl)-1,2,4,5-tetrazine was used to synthesize the title compound {[Cu2I2(C12H8N6)((C6H5)3P)2 .2(CH3CN)}n (3,6-di2(PPh3)2 (I) by using a diffusion reaction and the crystal structure is presented here.

The centrosymmetric dinuclear Cu2I2(PPh3)2 complex units in (I) are linked by the extended 3,6-di-4-pyridyl-1,2,4,5-tetrazine ligands, also lying across crystallographic inversion centers, giving a one-dimensional chain structure (Fig. 1). Each tetrahedral CuI centre in the dinuclear unit is coordinated by two bridging I anions [Cu—I, 2.6412 (9), 2.6603 (9) Å], one pyridine-N from the bridging substituted tetrazine ligand [Cu—N, 2.066 (3)Å] and one terminal triphenylphosphine P-donor [Cu—P, 2.2388 (11) Å]. The Cu···Cui distance is 2.8293 (12) Å, implying a weak Cu···Cu interaction [symmetry code: (i) -x, -y, -z].

Related literature top

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001). For potential applications of these compounds, see: Banerjee et al. (2008); Zhang et al. (2007). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000).

Experimental top

CuI (0.1 mmol) and triphenylphosphine (0.2 mmol) were added to a mixture of 3 ml of dimethylformamide and 2 ml of H3CN with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with a solution of 0.1 mmol 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine in 3 ml of CH2Cl2. Blue block crystals were obtained after two weeks.

Refinement top

H atoms were positioned geometrically with C—H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and refined using a riding model, with Uiso(H) = 1.2Ueq(C)phenyl, pyridyl or 1.5Ueq(C)methyl.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXSL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted. Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y - 1, -z.
catena-Poly[[[(triphenylphosphane)copper(I)]-di-µ-iodido- [(triphenylphosphane)copper(I)]-µ-[3,6-bis(4-pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate] top
Crystal data top
[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3NF(000) = 1212
Mr = 1223.80Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10225 reflections
a = 12.344 (3) Åθ = 2.8–29.1°
b = 11.675 (2) ŵ = 2.10 mm1
c = 18.521 (4) ÅT = 293 K
β = 101.41 (3)°Block, blue
V = 2616.4 (10) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Rigaku Saturn724
diffractometer
5042 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2s˘I)
graphiteRint = 0.030
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1511
Tmin = 0.779, Tmax = 1.000k = 1414
12271 measured reflectionsl = 1822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5456P]
where P = (Fo2 + 2Fc2)/3
5042 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3NV = 2616.4 (10) Å3
Mr = 1223.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.344 (3) ŵ = 2.10 mm1
b = 11.675 (2) ÅT = 293 K
c = 18.521 (4) Å0.25 × 0.20 × 0.15 mm
β = 101.41 (3)°
Data collection top
Rigaku Saturn724
diffractometer
4233 reflections with I > 2s˘I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
Rint = 0.030
Tmin = 0.779, Tmax = 1.000θmax = 26.0°
12271 measured reflectionsStandard reflections: 0
5042 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.49 e Å3
S = 1.09Δρmin = 0.47 e Å3
5042 reflectionsAbsolute structure: ?
299 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.01591 (2)0.05190 (2)0.113971 (13)0.04604 (10)
Cu10.11635 (4)0.00036 (4)0.02284 (2)0.04082 (13)
P10.23134 (8)0.14551 (8)0.06241 (5)0.0398 (2)
N10.1998 (2)0.1497 (2)0.01109 (16)0.0407 (7)
N20.4794 (3)0.4221 (3)0.05567 (17)0.0466 (8)
N30.4453 (3)0.4974 (3)0.05724 (16)0.0468 (8)
N40.1913 (5)0.7319 (6)0.2563 (3)0.121 (2)
C60.4276 (3)0.4218 (3)0.0010 (2)0.0393 (9)
C130.3435 (3)0.1093 (3)0.13879 (19)0.0433 (9)
C20.3008 (3)0.3135 (3)0.0653 (2)0.0518 (10)
H20.31870.36230.10550.062*
C230.0102 (5)0.3983 (5)0.0741 (4)0.101 (2)
H230.06140.41530.04980.121*
C220.0648 (6)0.4706 (5)0.1276 (4)0.106 (2)
H220.03000.53670.13940.128*
C210.1706 (5)0.4459 (4)0.1637 (4)0.0941 (19)
H210.20700.49450.20040.113*
C30.3460 (3)0.3303 (3)0.00372 (19)0.0383 (8)
C10.2290 (3)0.2235 (3)0.0664 (2)0.0517 (10)
H10.19900.21370.10830.062*
C80.3772 (4)0.1219 (4)0.0334 (2)0.0648 (12)
H80.39750.05420.00780.078*
C70.3016 (3)0.1947 (3)0.01016 (19)0.0463 (9)
C40.3140 (3)0.2564 (3)0.0553 (2)0.0483 (10)
H40.34090.26600.09840.058*
C190.1689 (3)0.2757 (3)0.0911 (2)0.0481 (10)
C160.5102 (4)0.0355 (4)0.2532 (2)0.0654 (13)
H160.56620.00990.29100.079*
C50.2420 (3)0.1687 (3)0.0490 (2)0.0472 (10)
H50.22140.11970.08900.057*
C170.5309 (4)0.1236 (4)0.2086 (2)0.0631 (12)
H170.59980.15870.21660.076*
C180.4468 (3)0.1597 (4)0.1513 (2)0.0554 (11)
H180.46060.21900.12080.066*
C140.3247 (4)0.0209 (3)0.1853 (2)0.0522 (10)
H140.25570.01410.17790.063*
C240.0620 (4)0.2999 (4)0.0565 (3)0.0708 (13)
H240.02450.25000.02100.085*
C110.3177 (5)0.3187 (5)0.1108 (3)0.0841 (16)
H110.29730.38570.13710.101*
C150.4076 (4)0.0155 (4)0.2426 (2)0.0646 (13)
H150.39400.07400.27370.078*
C100.3914 (5)0.2462 (6)0.1326 (3)0.0908 (19)
H100.42060.26320.17400.109*
C120.2727 (4)0.2936 (4)0.0497 (2)0.0648 (12)
H120.22260.34400.03530.078*
C200.2222 (4)0.3491 (4)0.1454 (3)0.0706 (13)
H200.29390.33260.16970.085*
C90.4224 (4)0.1483 (5)0.0934 (3)0.0834 (16)
H90.47410.09940.10750.100*
C260.0159 (6)0.7161 (6)0.2552 (3)0.125 (3)
H26A0.05650.73850.20760.187*
H26B0.03620.76460.29220.187*
H26C0.03290.63800.26470.187*
C250.1023 (7)0.7271 (6)0.2569 (3)0.0907 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04230 (17)0.05492 (18)0.04190 (15)0.00885 (12)0.01074 (11)0.00954 (12)
Cu10.0381 (3)0.0371 (3)0.0471 (3)0.0054 (2)0.0081 (2)0.0014 (2)
P10.0371 (5)0.0416 (5)0.0413 (5)0.0004 (4)0.0089 (4)0.0018 (4)
N10.0381 (18)0.0412 (17)0.0443 (17)0.0114 (14)0.0116 (14)0.0046 (15)
N20.048 (2)0.0468 (18)0.0485 (18)0.0197 (16)0.0180 (15)0.0066 (15)
N30.050 (2)0.0467 (18)0.0454 (18)0.0190 (16)0.0146 (15)0.0055 (16)
N40.108 (5)0.154 (5)0.095 (4)0.031 (5)0.005 (4)0.022 (3)
C60.037 (2)0.0367 (19)0.044 (2)0.0082 (16)0.0076 (17)0.0012 (17)
C130.037 (2)0.052 (2)0.0395 (19)0.0020 (18)0.0045 (17)0.0006 (18)
C20.062 (3)0.049 (2)0.049 (2)0.027 (2)0.019 (2)0.0137 (19)
C230.076 (4)0.080 (4)0.138 (5)0.033 (3)0.001 (4)0.028 (4)
C220.103 (5)0.062 (3)0.158 (6)0.020 (3)0.033 (5)0.038 (4)
C210.082 (4)0.072 (4)0.129 (5)0.004 (3)0.023 (4)0.046 (3)
C30.033 (2)0.037 (2)0.045 (2)0.0086 (16)0.0087 (16)0.0022 (17)
C10.056 (3)0.056 (2)0.049 (2)0.025 (2)0.0236 (19)0.012 (2)
C80.066 (3)0.070 (3)0.062 (3)0.005 (3)0.022 (2)0.003 (2)
C70.045 (2)0.053 (2)0.041 (2)0.0093 (19)0.0079 (18)0.0023 (19)
C40.051 (2)0.053 (2)0.044 (2)0.019 (2)0.0167 (18)0.0094 (19)
C190.047 (2)0.044 (2)0.055 (2)0.0004 (19)0.0153 (19)0.002 (2)
C160.060 (3)0.085 (3)0.046 (2)0.014 (3)0.004 (2)0.010 (2)
C50.046 (2)0.052 (2)0.045 (2)0.0205 (19)0.0113 (18)0.0115 (19)
C170.044 (3)0.082 (3)0.060 (3)0.006 (2)0.002 (2)0.006 (3)
C180.046 (3)0.068 (3)0.052 (2)0.002 (2)0.008 (2)0.002 (2)
C140.052 (3)0.060 (3)0.045 (2)0.001 (2)0.009 (2)0.002 (2)
C240.060 (3)0.063 (3)0.084 (3)0.012 (2)0.002 (3)0.014 (3)
C110.095 (4)0.095 (4)0.062 (3)0.029 (3)0.014 (3)0.023 (3)
C150.078 (4)0.066 (3)0.046 (2)0.009 (3)0.003 (2)0.009 (2)
C100.102 (5)0.129 (5)0.048 (3)0.047 (4)0.032 (3)0.002 (3)
C120.068 (3)0.066 (3)0.061 (3)0.011 (2)0.011 (2)0.014 (2)
C200.055 (3)0.063 (3)0.094 (3)0.007 (2)0.015 (3)0.028 (3)
C90.086 (4)0.102 (4)0.074 (3)0.020 (3)0.044 (3)0.021 (3)
C260.147 (7)0.118 (5)0.129 (6)0.040 (5)0.076 (5)0.056 (4)
C250.118 (6)0.096 (4)0.060 (3)0.033 (5)0.022 (4)0.022 (3)
Geometric parameters (Å, °) top
Cu1—N12.066 (3)C8—C71.392 (6)
Cu1—P12.2388 (11)C8—H80.9300
Cu1—I1i2.6603 (9)C7—C121.376 (6)
Cu1—Cu1i2.8293 (12)C4—C51.376 (5)
P1—C131.823 (4)C4—H40.9300
P1—C191.830 (4)C19—C241.378 (5)
P1—C71.831 (4)C19—C201.384 (6)
N1—C11.333 (4)C16—C171.374 (6)
N1—C51.338 (4)C16—C151.378 (6)
N2—N3ii1.327 (4)C16—H160.9300
N2—C61.333 (5)C5—H50.9300
N3—N2ii1.327 (4)C17—C181.395 (5)
N3—C61.349 (4)C17—H170.9300
N4—C251.102 (8)C18—H180.9300
C6—C31.476 (5)C14—C151.386 (6)
C13—C181.382 (5)C14—H140.9300
C13—C141.393 (5)C24—H240.9300
C2—C11.378 (5)C11—C101.361 (8)
C2—C31.378 (5)C11—C121.387 (6)
C2—H20.9300C11—H110.9300
C23—C221.372 (8)C15—H150.9300
C23—C241.385 (6)C10—C91.368 (7)
C23—H230.9300C10—H100.9300
C22—C211.376 (8)C12—H120.9300
C22—H220.9300C20—H200.9300
C21—C201.373 (6)C9—H90.9300
C21—H210.9300C26—C251.460 (9)
C3—C41.387 (5)C26—H26A0.9600
C1—H10.9300C26—H26B0.9600
C8—C91.374 (6)C26—H26C0.9600
Cu1—I1—Cu1i64.51 (3)C8—C7—P1118.6 (3)
N1—Cu1—P1112.29 (9)C5—C4—C3119.0 (4)
N1—Cu1—I1104.81 (9)C5—C4—H4120.5
P1—Cu1—I1113.43 (3)C3—C4—H4120.5
N1—Cu1—I1i103.87 (8)C24—C19—C20119.0 (4)
P1—Cu1—I1i106.64 (4)C24—C19—P1117.0 (3)
I1—Cu1—I1i115.49 (3)C20—C19—P1123.9 (3)
N1—Cu1—Cu1i117.65 (9)C17—C16—C15120.8 (4)
P1—Cu1—Cu1i129.83 (4)C17—C16—H16119.6
I1—Cu1—Cu1i58.07 (3)C15—C16—H16119.6
I1i—Cu1—Cu1i57.42 (3)N1—C5—C4123.9 (3)
C13—P1—C19105.43 (17)N1—C5—H5118.1
C13—P1—C7104.18 (18)C4—C5—H5118.1
C19—P1—C7103.94 (19)C16—C17—C18119.0 (4)
C13—P1—Cu1114.42 (13)C16—C17—H17120.5
C19—P1—Cu1116.59 (13)C18—C17—H17120.5
C7—P1—Cu1111.05 (12)C13—C18—C17121.4 (4)
C1—N1—C5116.3 (3)C13—C18—H18119.3
C1—N1—Cu1122.1 (2)C17—C18—H18119.3
C5—N1—Cu1120.8 (2)C15—C14—C13120.8 (4)
N3ii—N2—C6117.8 (3)C15—C14—H14119.6
N2ii—N3—C6117.0 (3)C13—C14—H14119.6
N2—C6—N3125.2 (3)C19—C24—C23120.3 (5)
N2—C6—C3117.7 (3)C19—C24—H24119.8
N3—C6—C3117.0 (3)C23—C24—H24119.8
C18—C13—C14118.3 (3)C10—C11—C12120.7 (5)
C18—C13—P1124.4 (3)C10—C11—H11119.7
C14—C13—P1117.3 (3)C12—C11—H11119.7
C1—C2—C3119.3 (3)C16—C15—C14119.7 (4)
C1—C2—H2120.4C16—C15—H15120.1
C3—C2—H2120.4C14—C15—H15120.1
C22—C23—C24119.8 (5)C11—C10—C9119.7 (5)
C22—C23—H23120.1C11—C10—H10120.1
C24—C23—H23120.1C9—C10—H10120.1
C23—C22—C21120.4 (5)C7—C12—C11120.5 (5)
C23—C22—H22119.8C7—C12—H12119.7
C21—C22—H22119.8C11—C12—H12119.7
C20—C21—C22119.7 (5)C21—C20—C19120.8 (5)
C20—C21—H21120.2C21—C20—H20119.6
C22—C21—H21120.2C19—C20—H20119.6
C2—C3—C4117.6 (3)C10—C9—C8120.1 (5)
C2—C3—C6121.5 (3)C10—C9—H9120.0
C4—C3—C6120.9 (3)C8—C9—H9120.0
N1—C1—C2123.9 (4)C25—C26—H26A109.5
N1—C1—H1118.1C25—C26—H26B109.5
C2—C1—H1118.1H26A—C26—H26B109.5
C9—C8—C7121.1 (5)C25—C26—H26C109.5
C9—C8—H8119.4H26A—C26—H26C109.5
C7—C8—H8119.4H26B—C26—H26C109.5
C12—C7—C8117.9 (4)N4—C25—C26177.2 (8)
C12—C7—P1122.9 (3)
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y−1, −z.
Acknowledgements top

This work was supported by the Foundation of Jiangsu University (08JDG036).

references
References top

Banerjee, Ra., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943.

Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.

Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (2000). J. Am. Chem. Soc. 122, 4044–4046.

Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.