organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Hydroxybenzoyl)phenol mono­hydrate

aKey Laboratory of Polymer Materials of Gansu Province Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 October 2010; accepted 14 October 2010; online 20 October 2010)

The aromatic rings of the title compound, C13H10O3·H2O, are aligned at dihedral angles of 20.6 (1) and 40.8 (1)° with respect to the triangular Car­yl–C(=O)–Car­yl fragment. The hy­droxy groups are each hydrogen-bond donors to separate water mol­ecules, the water mol­ecule itself being hydrogen-bonded to one hy­droxy group and one carbonyl group. The water mol­ecule exists in an unusual four-coordinate environment in the resulting layer structure.

Related literature

For the crystal structure of anhydrous 4,4′-dihy­droxy­benzophenone, see: Ferguson & Glidewell (1996[Ferguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 3057-3062.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3·H2O

  • Mr = 232.23

  • Monoclinic, P 21 /c

  • a = 4.9398 (1) Å

  • b = 9.8273 (2) Å

  • c = 23.1446 (4) Å

  • β = 94.520 (1)°

  • V = 1120.06 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 8356 measured reflections

  • 2572 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.05

  • 2572 reflections

  • 170 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1wi 0.85 (1) 1.95 (1) 2.774 (2) 164 (2)
O3—H3⋯O1wii 0.85 (1) 1.95 (1) 2.773 (2) 164 (2)
O1w—H11⋯O2 0.84 (1) 1.93 (1) 2.762 (2) 168 (2)
O1w—H12⋯O1iii 0.84 (1) 2.18 (2) 2.898 (2) 143 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4,4'-Dihydroxbenzophenone exists as a OH···Ohydroxy hydrogen-bonded chains that are linked by OH···Ocarbonyl hydrogen bonds into sheets. The first set of hydrogen bonds [2.785 (4), 2.791 (4) Å] is longer than the second set [2.624 (4), 2.627 (4) Å] (Ferguson & Glidewell, 1996). The monohydrated title compound C13H10O3.H2O (Scheme I, Fig. 1) also adopts a hydrogen-bonded sheet motif. The aromatic rings are aligned at 20.6 (1) and 40.8 (1) ° with respect to the triangular-shaped Caryl–C( O)–Caryl fragment. The hydroxy groups are each hydrogen-bond donors to separate water molecules which also act as hydrogen-bond donors to an hydroxy group and a carbonyl group (Table 1). There are no hydroxy···carbonyl interactions, unlike those found in the anhydrous compound. The water molecule exists in an unusual four-coordinate environment in the resulting two-dimensional layer structure (Fig. 2).

Related literature top

For the crystal structure of anhydrous 4,4'-dihydroxybenzophenone, see: Ferguson & Glidewell (1996).

Experimental top

Anhydrous 4,4'-dihydroxybenzophenone (0.25 mmol, 0.054 g) and boric acid (0.50 mmol, 0.031 g) were dissolved in a water-ethanol mixture (50 ml/100 ml v/v). Trimethylamine (33% aqueous solution) was added until the solution registered a neutral pH. The mixture was then set aside for a few days after which yellow crystal blocks of the title compound were isolated.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were included in the refinement with a distance restraint of O–H = 0.84±0.01 Å and with their isotropic displacement parameters refined.

Structure description top

4,4'-Dihydroxbenzophenone exists as a OH···Ohydroxy hydrogen-bonded chains that are linked by OH···Ocarbonyl hydrogen bonds into sheets. The first set of hydrogen bonds [2.785 (4), 2.791 (4) Å] is longer than the second set [2.624 (4), 2.627 (4) Å] (Ferguson & Glidewell, 1996). The monohydrated title compound C13H10O3.H2O (Scheme I, Fig. 1) also adopts a hydrogen-bonded sheet motif. The aromatic rings are aligned at 20.6 (1) and 40.8 (1) ° with respect to the triangular-shaped Caryl–C( O)–Caryl fragment. The hydroxy groups are each hydrogen-bond donors to separate water molecules which also act as hydrogen-bond donors to an hydroxy group and a carbonyl group (Table 1). There are no hydroxy···carbonyl interactions, unlike those found in the anhydrous compound. The water molecule exists in an unusual four-coordinate environment in the resulting two-dimensional layer structure (Fig. 2).

For the crystal structure of anhydrous 4,4'-dihydroxybenzophenone, see: Ferguson & Glidewell (1996).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H10O3.H2O at the 50% probability level.
[Figure 2] Fig. 2. The layer structure of the title compound with hydrogen-bonding interactions shown as dashed lines.
4-(4-Hydroxybenzoyl)phenol monohydrate top
Crystal data top
C13H10O3·H2OF(000) = 488
Mr = 232.23Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3494 reflections
a = 4.9398 (1) Åθ = 2.7–27.2°
b = 9.8273 (2) ŵ = 0.10 mm1
c = 23.1446 (4) ÅT = 293 K
β = 94.520 (1)°Block, yellow
V = 1120.06 (4) Å30.45 × 0.30 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 66
8356 measured reflectionsk = 1112
2572 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2426P]
where P = (Fo2 + 2Fc2)/3
2572 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.22 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H10O3·H2OV = 1120.06 (4) Å3
Mr = 232.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9398 (1) ŵ = 0.10 mm1
b = 9.8273 (2) ÅT = 293 K
c = 23.1446 (4) Å0.45 × 0.30 × 0.05 mm
β = 94.520 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2016 reflections with I > 2σ(I)
8356 measured reflectionsRint = 0.017
2572 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2572 reflectionsΔρmin = 0.17 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2714 (2)0.12226 (11)0.49586 (5)0.0570 (3)
O20.5003 (3)0.68859 (12)0.38317 (5)0.0671 (4)
O31.0143 (3)0.54977 (14)0.15066 (5)0.0634 (3)
O1W0.1638 (3)0.86726 (12)0.43550 (5)0.0554 (3)
C10.5324 (3)0.57501 (15)0.36223 (6)0.0465 (3)
C20.4542 (3)0.45204 (15)0.39381 (6)0.0442 (3)
C30.2632 (4)0.46347 (17)0.43426 (8)0.0676 (5)
H3A0.17720.54660.43870.081*
C40.1979 (4)0.35531 (17)0.46788 (8)0.0668 (5)
H40.06740.36530.49440.080*
C50.3249 (3)0.23209 (15)0.46244 (6)0.0454 (3)
C60.5141 (3)0.21717 (16)0.42219 (7)0.0536 (4)
H60.59930.13380.41800.064*
C70.5768 (3)0.32592 (16)0.38821 (6)0.0508 (4)
H70.70370.31480.36100.061*
C80.6547 (3)0.56332 (14)0.30623 (6)0.0426 (3)
C90.8488 (3)0.65824 (16)0.29241 (7)0.0509 (4)
H90.89940.72710.31860.061*
C100.9667 (3)0.65163 (17)0.24064 (7)0.0552 (4)
H101.10040.71390.23260.066*
C110.8866 (3)0.55235 (15)0.20044 (6)0.0459 (3)
C120.6853 (3)0.46052 (15)0.21229 (6)0.0457 (3)
H12A0.62530.39620.18470.055*
C130.5745 (3)0.46505 (14)0.26519 (6)0.0451 (3)
H130.44400.40130.27350.054*
H10.147 (4)0.141 (2)0.5179 (8)0.091 (7)*
H30.946 (5)0.4859 (19)0.1296 (9)0.103 (9)*
H110.260 (4)0.8047 (19)0.4233 (10)0.101 (8)*
H120.262 (5)0.921 (2)0.4565 (10)0.111 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0723 (7)0.0453 (6)0.0572 (7)0.0005 (5)0.0286 (6)0.0009 (5)
O20.1019 (10)0.0421 (6)0.0609 (7)0.0052 (6)0.0298 (7)0.0063 (5)
O30.0714 (8)0.0729 (8)0.0487 (6)0.0131 (6)0.0223 (6)0.0028 (6)
O1W0.0679 (7)0.0496 (7)0.0508 (6)0.0027 (6)0.0174 (6)0.0040 (5)
C10.0537 (8)0.0424 (8)0.0440 (7)0.0039 (6)0.0080 (6)0.0038 (6)
C20.0493 (8)0.0432 (8)0.0413 (7)0.0013 (6)0.0103 (6)0.0042 (6)
C30.0859 (12)0.0445 (9)0.0784 (12)0.0133 (8)0.0452 (10)0.0004 (8)
C40.0808 (12)0.0522 (9)0.0741 (11)0.0072 (8)0.0478 (10)0.0008 (8)
C50.0519 (8)0.0429 (8)0.0429 (7)0.0032 (6)0.0118 (6)0.0021 (6)
C60.0650 (9)0.0450 (8)0.0539 (9)0.0108 (7)0.0234 (7)0.0010 (7)
C70.0582 (9)0.0501 (8)0.0470 (8)0.0083 (7)0.0223 (7)0.0007 (6)
C80.0485 (7)0.0388 (7)0.0411 (7)0.0031 (6)0.0074 (6)0.0012 (6)
C90.0605 (9)0.0439 (8)0.0486 (8)0.0085 (7)0.0064 (7)0.0056 (6)
C100.0595 (9)0.0514 (9)0.0559 (9)0.0154 (7)0.0123 (7)0.0002 (7)
C110.0505 (8)0.0468 (8)0.0413 (7)0.0020 (6)0.0089 (6)0.0052 (6)
C120.0539 (8)0.0426 (8)0.0408 (7)0.0022 (6)0.0045 (6)0.0030 (6)
C130.0497 (8)0.0407 (7)0.0458 (7)0.0041 (6)0.0088 (6)0.0001 (6)
Geometric parameters (Å, º) top
O1—C51.3659 (17)C5—C61.3784 (19)
O1—H10.847 (10)C6—C71.377 (2)
O2—C11.2322 (18)C6—H60.9300
O3—C111.3566 (17)C7—H70.9300
O3—H30.847 (10)C8—C131.390 (2)
O1W—H110.841 (10)C8—C91.393 (2)
O1W—H120.844 (10)C9—C101.375 (2)
C1—C81.4771 (19)C9—H90.9300
C1—C21.479 (2)C10—C111.384 (2)
C2—C31.385 (2)C10—H100.9300
C2—C71.390 (2)C11—C121.386 (2)
C3—C41.371 (2)C12—C131.3810 (19)
C3—H3A0.9300C12—H12A0.9300
C4—C51.374 (2)C13—H130.9300
C4—H40.9300
C5—O1—H1110.4 (16)C6—C7—C2121.32 (13)
C11—O3—H3108.2 (17)C6—C7—H7119.3
H11—O1W—H12110 (2)C2—C7—H7119.3
O2—C1—C8119.34 (13)C13—C8—C9118.22 (13)
O2—C1—C2119.92 (13)C13—C8—C1122.62 (13)
C8—C1—C2120.73 (12)C9—C8—C1119.08 (13)
C3—C2—C7117.41 (14)C10—C9—C8121.01 (14)
C3—C2—C1119.09 (13)C10—C9—H9119.5
C7—C2—C1123.34 (12)C8—C9—H9119.5
C4—C3—C2121.61 (15)C9—C10—C11120.05 (14)
C4—C3—H3A119.2C9—C10—H10120.0
C2—C3—H3A119.2C11—C10—H10120.0
C3—C4—C5120.11 (14)O3—C11—C10117.16 (13)
C3—C4—H4119.9O3—C11—C12122.99 (14)
C5—C4—H4119.9C10—C11—C12119.84 (13)
O1—C5—C4122.29 (12)C13—C12—C11119.68 (13)
O1—C5—C6118.08 (13)C13—C12—H12A120.2
C4—C5—C6119.64 (14)C11—C12—H12A120.2
C7—C6—C5119.90 (14)C12—C13—C8121.10 (13)
C7—C6—H6120.1C12—C13—H13119.5
C5—C6—H6120.1C8—C13—H13119.5
O2—C1—C2—C322.9 (2)O2—C1—C8—C13144.18 (16)
C8—C1—C2—C3158.45 (16)C2—C1—C8—C1337.2 (2)
O2—C1—C2—C7152.26 (16)O2—C1—C8—C932.5 (2)
C8—C1—C2—C726.4 (2)C2—C1—C8—C9146.10 (15)
C7—C2—C3—C40.4 (3)C13—C8—C9—C102.8 (2)
C1—C2—C3—C4175.06 (18)C1—C8—C9—C10179.63 (15)
C2—C3—C4—C50.8 (3)C8—C9—C10—C112.2 (3)
C3—C4—C5—O1178.47 (18)C9—C10—C11—O3178.83 (15)
C3—C4—C5—C61.3 (3)C9—C10—C11—C120.6 (2)
O1—C5—C6—C7179.09 (15)O3—C11—C12—C13176.64 (14)
C4—C5—C6—C70.7 (3)C10—C11—C12—C132.8 (2)
C5—C6—C7—C20.5 (3)C11—C12—C13—C82.2 (2)
C3—C2—C7—C61.0 (3)C9—C8—C13—C120.6 (2)
C1—C2—C7—C6174.23 (15)C1—C8—C13—C12177.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1wi0.85 (1)1.95 (1)2.774 (2)164 (2)
O3—H3···O1wii0.85 (1)1.95 (1)2.773 (2)164 (2)
O1w—H11···O20.84 (1)1.93 (1)2.762 (2)168 (2)
O1w—H12···O1iii0.84 (1)2.18 (2)2.898 (2)143 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10O3·H2O
Mr232.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.9398 (1), 9.8273 (2), 23.1446 (4)
β (°) 94.520 (1)
V3)1120.06 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8356, 2572, 2016
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.05
No. of reflections2572
No. of parameters170
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1wi0.85 (1)1.95 (1)2.774 (2)164 (2)
O3—H3···O1wii0.85 (1)1.95 (1)2.773 (2)164 (2)
O1w—H11···O20.84 (1)1.93 (1)2.762 (2)168 (2)
O1w—H12···O1iii0.84 (1)2.18 (2)2.898 (2)143 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

We thank Northeast Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 3057–3062.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds