organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-methyl-2-(1,2,3,4-tetra­hydro­isoquinolin-1-yl)aniline

aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia BP 2390, 40001 Marrakech, Morocco, and bDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es

(Received 8 October 2010; accepted 10 November 2010; online 17 November 2010)

The racemic title compound, C16H17ClN2, shows a tetra­hydro­isoquinoline skeleton with a 4-chloro-N-methyl­aniline group linked to the C atom at position 1. The dihedral angle between the benzene rings is 85.82 (4)°. An intra­molecular N—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are linked through inter­molecular C—H⋯π inter­actions.

Related literature

For the use of diamine ligands in enanti­oselective hydrogenation of ketones, see: Xie et al. (2009[Xie, J., Kong, W., Wang, X., Bai, W., Wang, L. & Zhou, Q. (2009). Front. Chem. China, 4, 299-306.]); Morilla et al. (2007[Morilla, M. E., Rodriguez, P., Belderrain, T. R., Graiff, C., Tiripiccho, A., Nicasio, M. C. & Perez, P. (2007). Inorg. Chem. 46, 9405-9414.]); Aitali et al. (1995[Aitali, M., Allaoud, S., Karim, A., Roucoux, A. & Mortreux, A. (1995). Tetrahedron Asymmetry, 6, 369-370.], 2000a[Aitali, M., Allaoud, S., Meliet, C., Mortreux, A. & Karim, A. (2000a). Tetrahedron Asymmetry, 11, 1367-1374.]); Ohkuma et al. (1995[Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 2675-2676.]). For related structures, see: Aitali et al. (2000b[Aitali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000b). Acta Cryst. C56, 1088-1089.]); Nakahara et al. (1998[Nakahara, H., Takeuchi, M., Naito, R., Kurihara, H., Nagano, N., Isomura, Y. & Mase, T. (1998). Acta Cryst. C54, 651-653.]); Suna (2003[Suna, E. (2003). Synthesis, 2, 251-254.]); Vedejs et al. (1999[Vedejs, E., Kruger, A. W. & Suna, E. (1999). J. Org. Chem. 64, 7863-7870.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClN2

  • Mr = 272.77

  • Monoclinic, C 2/c

  • a = 22.055 (4) Å

  • b = 6.9269 (14) Å

  • c = 20.699 (4) Å

  • β = 119.46 (3)°

  • V = 2753.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.57 × 0.54 × 0.34 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.917

  • 10809 measured reflections

  • 3133 independent reflections

  • 2995 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 3133 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯N1 0.837 (17) 2.225 (17) 2.9074 (15) 138.8 (15)
C13—H13⋯Cg2i 0.95 2.55 3.4307 (12) 154
C15—H15⋯Cg1ii 0.95 2.40 3.3495 (15) 174
C16—H16BCg1iii 0.98 2.89 3.6381 (19) 134
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have been focusing our research on the use of diamines which can lead to the synthesis of chiral metal complexes with application, for example, as catalysts in asymmetric hydrogenation processes (Xie et al., 2009; Ohkuma et al., 1995); in the asymmetric transfer hydrogenation (Aitali et al., 2000a; Morilla et al., 2007; Aitali et al., 1995). As part of our study, we came across (-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinolin, an interesting chiral diamine capable of forming chelates with transition metal centres (Aitali et al., 2000b). Here we report the crystal structure of a racemic melange containing R and S diamine forms (S.G. C2/c) . The molecule shows a tetrahydro-isoquinoline skeleton with a [4-chloro-phenyl]-N-methyl- amine group linked to carbon 1. Bond lengths and angles are normal and correspond to those observed in related compounds (Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999)). The dihedral angle formed by the two flat six-membered rings is 85.82 (4)°. The molecule contains an intramolecular hydrogen bond between N2 of the amine side-chain and the quinoline N1 with a N–N distance of 2.907 (2) Å. In the crystal, molecules are linked through intermolecular C—H···π interactions (Table 1, Fig.2). These interactions build molecular rows in the direction parallel to the b axis (Fig.3).

Related literature top

For the use of diamine ligands in enantioselective hydrogenation of ketones, see: Xie et al. (2009); Morilla et al. (2007); Aitali et al. (2000a); Aitali et al. (1995); Ohkuma et al. (1995). For related structures, see: Aitali et al. (2000b); Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999).

Experimental top

(-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinoline tartrate was purchased from Aldrich chemical companies (98% purity) and used without further purification. NMR studies were performed on a Bruker Avance 300 spectrometer in CDCl3, chemicals shifts are given in p.p.m. relative to external TMS and coupling constant (J) in Hz. Preparation of ligands: In a typical experiment, a solution of (-)-1-[5-chloro-2-(methylamino)-phenyl] -1,2,3–4-tetrahydro-isoquinoline tartrate (2 g, 2.8 mmol) in 50 ml of H2O distilled, was add to Na2CO3 (1.18 g, 11.2 mmol) in 10 ml of distilled H2O. The mixture was stirred for appropriate time at room temperature, and extracted with diethyl ether (3*25 ml), the organic layer was dried over Na2SO4, and the solvent was evaporated to dryness leading to a yellow solid with 96% yielding. The solid was recrystallized from ethyl acetate solution. 1H NMR: 2.65(m, 2H), 2.70 (s, 3H), 2.92 (m, 2H), 4.02 (br, s, 1H, NH); 4.54 (s, 1H), 6.81–6.88 (m, 3H, Ar), 7.0- 7.43 (m, 4H, Ar), 13C NMR: 32.9, 35.78, 44.4, 53.5, 114.06, 122.4, 125.7, 126.2, 127.3, 128.03, 128.12, 128.23, 129.03, 139.48, 141.86, 143. 25.

Refinement top

H atoms were positioned geometrically; those attached to C were treated as riding, while the coordinates of those attached to N were refined. In all cases, Uiso(H) = 1.2 Ueq(Host).

Structure description top

We have been focusing our research on the use of diamines which can lead to the synthesis of chiral metal complexes with application, for example, as catalysts in asymmetric hydrogenation processes (Xie et al., 2009; Ohkuma et al., 1995); in the asymmetric transfer hydrogenation (Aitali et al., 2000a; Morilla et al., 2007; Aitali et al., 1995). As part of our study, we came across (-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinolin, an interesting chiral diamine capable of forming chelates with transition metal centres (Aitali et al., 2000b). Here we report the crystal structure of a racemic melange containing R and S diamine forms (S.G. C2/c) . The molecule shows a tetrahydro-isoquinoline skeleton with a [4-chloro-phenyl]-N-methyl- amine group linked to carbon 1. Bond lengths and angles are normal and correspond to those observed in related compounds (Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999)). The dihedral angle formed by the two flat six-membered rings is 85.82 (4)°. The molecule contains an intramolecular hydrogen bond between N2 of the amine side-chain and the quinoline N1 with a N–N distance of 2.907 (2) Å. In the crystal, molecules are linked through intermolecular C—H···π interactions (Table 1, Fig.2). These interactions build molecular rows in the direction parallel to the b axis (Fig.3).

For the use of diamine ligands in enantioselective hydrogenation of ketones, see: Xie et al. (2009); Morilla et al. (2007); Aitali et al. (2000a); Aitali et al. (1995); Ohkuma et al. (1995). For related structures, see: Aitali et al. (2000b); Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (-Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule of (I), with the atomic numbering and 50% probability displacement ellipsoids, showing intramolecular N—H···N hydrogen bond.
[Figure 2] Fig. 2. A view normal to (010) of the C–H···centroids interactions (dotted lines) in the crystal structure of the title compound; Cg1 and Cg2 denote the centroids of the C1-C4,C8,C9 and C10-C15 rings respectively. Symmetry: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, -y+1/2, -z; (iii) -x+1, y, -z+1/2.
[Figure 3] Fig. 3. Packing diagram of the title molecule showing molecular alignment along b axis.
4-Chloro-N-methyl-2-(1,2,3,4-tetrahydroisoquinolin-1-yl)aniline top
Crystal data top
C16H17ClN2F(000) = 1152
Mr = 272.77Dx = 1.316 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8084 reflections
a = 22.055 (4) Åθ = 2.2–27.5°
b = 6.9269 (14) ŵ = 0.27 mm1
c = 20.699 (4) ÅT = 100 K
β = 119.46 (3)°Block, orange
V = 2753.4 (12) Å30.57 × 0.54 × 0.34 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3133 independent reflections
Radiation source: sealed X-ray tube, Bruker SMART APEX2995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
1700 ω scan frames, 0.3 deg, 10 secθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2824
Tmin = 0.854, Tmax = 0.917k = 88
10809 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2 + 2.3515P]
where P = (Fo2 + 2Fc2)/3
3133 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17ClN2V = 2753.4 (12) Å3
Mr = 272.77Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.055 (4) ŵ = 0.27 mm1
b = 6.9269 (14) ÅT = 100 K
c = 20.699 (4) Å0.57 × 0.54 × 0.34 mm
β = 119.46 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2995 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.917Rint = 0.021
10809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
3133 reflectionsΔρmin = 0.23 e Å3
179 parameters
Special details top

Experimental. Bruker SMART APEX three-circle diffractometer with CCD area detector, sealed X-ray tube, graphite monochromator. A hemisphere of the reciprocal space up to theta(max) = 27.53 ° was measured by omega scan frames with delta(omega) = 0.30 ° and 10 sec per frame, 1700 frames were recorded using program SMART (Bruker). Frame data evaluation and integration were done with program SAINT+(Bruker); Lattice parameters by least-squares refinement of the geometric parameters of the strongest reflections with program SAINT + (Bruker). Correction for absorption and crystal decay (insignificant) were applied by semi-empirical method from equivalents using program SADABS (G.M. Sheldrick, version of 2001, University of Goettingen, Germany). Data reduction was done with program XPREP (BRUKER).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.108112 (14)0.57631 (5)0.118305 (16)0.02561 (11)
N10.37252 (6)0.11416 (15)0.18002 (6)0.0220 (2)
H1A0.4240 (9)0.385 (3)0.2397 (9)0.029*
N20.41317 (5)0.49781 (15)0.24404 (5)0.0187 (2)
H2A0.3514 (8)0.060 (2)0.2039 (9)0.024*
C10.43262 (6)0.30992 (18)0.02866 (6)0.0218 (2)
H10.46850.24390.02490.026*
C20.40605 (7)0.47964 (19)0.01047 (7)0.0239 (3)
H20.42380.52980.04060.029*
C30.35321 (7)0.57662 (18)0.00561 (7)0.0237 (3)
H30.33480.69340.03220.028*
C40.32747 (6)0.50152 (17)0.03840 (6)0.0202 (2)
H40.29120.56760.04150.024*
C50.32195 (6)0.24498 (16)0.12260 (6)0.0176 (2)
H50.28100.16550.08770.021*
C60.39284 (7)0.03821 (18)0.14479 (8)0.0257 (3)
H6A0.35080.09540.10270.031*
H6B0.41840.14180.18110.031*
C70.43893 (7)0.05077 (18)0.11740 (7)0.0237 (3)
H7A0.48510.08030.16040.028*
H7B0.44580.04350.08560.028*
C80.40763 (6)0.23365 (17)0.07376 (6)0.0185 (2)
C90.35403 (6)0.33045 (16)0.07817 (6)0.0167 (2)
C100.29589 (6)0.39723 (16)0.15549 (6)0.0164 (2)
C110.34221 (6)0.51954 (16)0.21409 (6)0.0163 (2)
C120.31372 (6)0.66378 (17)0.23897 (6)0.0190 (2)
H120.34400.74860.27750.023*
C130.24199 (6)0.68467 (17)0.20830 (6)0.0201 (2)
H130.22340.78400.22510.024*
C140.19822 (6)0.55940 (17)0.15324 (6)0.0188 (2)
C150.22449 (6)0.41698 (16)0.12642 (6)0.0178 (2)
H150.19350.33290.08810.021*
C160.46083 (6)0.59747 (19)0.31214 (7)0.0237 (3)
H16A0.45750.73700.30310.036*
H16B0.50860.55440.32860.036*
H16C0.44860.56830.35060.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01574 (16)0.03106 (18)0.03046 (17)0.00491 (11)0.01170 (12)0.00590 (11)
N10.0285 (5)0.0173 (5)0.0266 (5)0.0049 (4)0.0185 (5)0.0048 (4)
N20.0156 (5)0.0195 (5)0.0213 (5)0.0006 (4)0.0093 (4)0.0021 (4)
C10.0184 (5)0.0266 (6)0.0220 (5)0.0013 (5)0.0113 (5)0.0037 (5)
C20.0261 (6)0.0278 (6)0.0216 (5)0.0048 (5)0.0147 (5)0.0015 (5)
C30.0282 (6)0.0220 (6)0.0217 (6)0.0010 (5)0.0129 (5)0.0031 (4)
C40.0213 (6)0.0201 (6)0.0199 (5)0.0014 (4)0.0107 (4)0.0008 (4)
C50.0187 (5)0.0153 (5)0.0208 (5)0.0009 (4)0.0112 (4)0.0020 (4)
C60.0320 (7)0.0160 (5)0.0347 (6)0.0045 (5)0.0208 (6)0.0022 (5)
C70.0236 (6)0.0221 (6)0.0280 (6)0.0057 (5)0.0147 (5)0.0018 (5)
C80.0171 (5)0.0191 (5)0.0185 (5)0.0013 (4)0.0083 (4)0.0032 (4)
C90.0171 (5)0.0175 (5)0.0157 (5)0.0020 (4)0.0082 (4)0.0026 (4)
C100.0181 (5)0.0157 (5)0.0180 (5)0.0003 (4)0.0109 (4)0.0006 (4)
C110.0169 (5)0.0164 (5)0.0175 (5)0.0005 (4)0.0100 (4)0.0015 (4)
C120.0207 (6)0.0186 (5)0.0191 (5)0.0012 (4)0.0109 (4)0.0023 (4)
C130.0228 (6)0.0194 (5)0.0226 (5)0.0038 (4)0.0146 (5)0.0014 (4)
C140.0147 (5)0.0222 (6)0.0205 (5)0.0027 (4)0.0094 (4)0.0049 (4)
C150.0177 (5)0.0187 (5)0.0174 (5)0.0013 (4)0.0088 (4)0.0013 (4)
C160.0177 (5)0.0293 (6)0.0213 (5)0.0015 (5)0.0074 (5)0.0023 (5)
Geometric parameters (Å, º) top
Cl1—C141.7528 (13)C6—C71.5173 (18)
N1—C61.4724 (15)C6—H6A0.9900
N1—C51.4744 (15)C6—H6B0.9900
N1—H2A0.909 (16)C7—C81.5112 (16)
N2—C111.3791 (15)C7—H7A0.9900
N2—C161.4529 (16)C7—H7B0.9900
N2—H1A0.837 (17)C8—C91.4004 (16)
C1—C21.3837 (18)C10—C151.3887 (16)
C1—C81.4003 (16)C10—C111.4190 (16)
C1—H10.9500C11—C121.4059 (15)
C2—C31.3910 (18)C12—C131.3925 (17)
C2—H20.9500C12—H120.9500
C3—C41.3898 (17)C13—C141.3789 (17)
C3—H30.9500C13—H130.9500
C4—C91.3966 (16)C14—C151.3906 (16)
C4—H40.9500C15—H150.9500
C5—C101.5136 (15)C16—H16A0.9800
C5—C91.5287 (15)C16—H16B0.9800
C5—H51.0000C16—H16C0.9800
C6—N1—C5109.58 (9)C8—C7—H7B109.3
C6—N1—H2A109.7 (10)C6—C7—H7B109.3
C5—N1—H2A107.7 (10)H7A—C7—H7B107.9
C11—N2—C16120.25 (10)C1—C8—C9118.98 (11)
C11—N2—H1A112.1 (11)C1—C8—C7120.05 (10)
C16—N2—H1A116.1 (11)C9—C8—C7120.97 (10)
C2—C1—C8121.22 (11)C4—C9—C8119.39 (10)
C2—C1—H1119.4C4—C9—C5119.93 (10)
C8—C1—H1119.4C8—C9—C5120.60 (10)
C1—C2—C3119.79 (11)C15—C10—C11119.86 (10)
C1—C2—H2120.1C15—C10—C5118.31 (10)
C3—C2—H2120.1C11—C10—C5121.83 (10)
C2—C3—C4119.57 (11)N2—C11—C12121.72 (10)
C2—C3—H3120.2N2—C11—C10119.99 (10)
C4—C3—H3120.2C12—C11—C10118.28 (10)
C3—C4—C9121.04 (11)C13—C12—C11121.27 (11)
C3—C4—H4119.5C13—C12—H12119.4
C9—C4—H4119.5C11—C12—H12119.4
N1—C5—C10111.69 (9)C14—C13—C12119.21 (11)
N1—C5—C9109.42 (9)C14—C13—H13120.4
C10—C5—C9113.04 (9)C12—C13—H13120.4
N1—C5—H5107.5C13—C14—C15121.10 (11)
C10—C5—H5107.5C13—C14—Cl1119.33 (9)
C9—C5—H5107.5C15—C14—Cl1119.56 (9)
N1—C6—C7108.48 (10)C10—C15—C14120.22 (11)
N1—C6—H6A110.0C10—C15—H15119.9
C7—C6—H6A110.0C14—C15—H15119.9
N1—C6—H6B110.0N2—C16—H16A109.5
C7—C6—H6B110.0N2—C16—H16B109.5
H6A—C6—H6B108.4H16A—C16—H16B109.5
C8—C7—C6111.76 (10)N2—C16—H16C109.5
C8—C7—H7A109.3H16A—C16—H16C109.5
C6—C7—H7A109.3H16B—C16—H16C109.5
C8—C1—C2—C30.41 (18)C10—C5—C9—C8149.59 (10)
C1—C2—C3—C40.20 (18)N1—C5—C10—C15126.07 (11)
C2—C3—C4—C90.30 (18)C9—C5—C10—C15110.02 (11)
C6—N1—C5—C10176.42 (10)N1—C5—C10—C1154.53 (14)
C6—N1—C5—C957.66 (12)C9—C5—C10—C1169.39 (13)
C5—N1—C6—C771.95 (13)C16—N2—C11—C1212.46 (16)
N1—C6—C7—C848.54 (14)C16—N2—C11—C10168.94 (10)
C2—C1—C8—C90.93 (17)C15—C10—C11—N2178.75 (10)
C2—C1—C8—C7178.41 (11)C5—C10—C11—N21.85 (16)
C6—C7—C8—C1163.97 (11)C15—C10—C11—C122.59 (16)
C6—C7—C8—C916.70 (16)C5—C10—C11—C12176.81 (10)
C3—C4—C9—C80.22 (17)N2—C11—C12—C13179.92 (10)
C3—C4—C9—C5176.50 (10)C10—C11—C12—C131.29 (16)
C1—C8—C9—C40.82 (16)C11—C12—C13—C140.99 (17)
C7—C8—C9—C4178.51 (11)C12—C13—C14—C152.02 (17)
C1—C8—C9—C5175.88 (10)C12—C13—C14—Cl1176.31 (9)
C7—C8—C9—C54.79 (16)C11—C10—C15—C141.64 (16)
N1—C5—C9—C4158.88 (10)C5—C10—C15—C14177.78 (10)
C10—C5—C9—C433.73 (14)C13—C14—C15—C100.71 (17)
N1—C5—C9—C824.44 (14)Cl1—C14—C15—C10177.62 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1A···N10.837 (17)2.225 (17)2.9074 (15)138.8 (15)
C13—H13···Cg2i0.952.553.4307 (12)154
C15—H15···Cg1ii0.952.403.3495 (15)174
C16—H16B···Cg1iii0.982.893.6381 (19)134
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17ClN2
Mr272.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.055 (4), 6.9269 (14), 20.699 (4)
β (°) 119.46 (3)
V3)2753.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.57 × 0.54 × 0.34
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.854, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
10809, 3133, 2995
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections3133
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (-Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1A···N10.837 (17)2.225 (17)2.9074 (15)138.8 (15)
C13—H13···Cg2i0.952.553.4307 (12)153.9
C15—H15···Cg1ii0.952.403.3495 (15)174.3
C16—H16B···Cg1iii0.982.893.6381 (19)134.3
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2.
 

Acknowledgements

We thank the SCCYT (Universidad de Cádiz) for the data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía for financial support.

References

First citationAitali, M., Allaoud, S., Karim, A., Roucoux, A. & Mortreux, A. (1995). Tetrahedron Asymmetry, 6, 369–370.  CrossRef Google Scholar
First citationAitali, M., Allaoud, S., Meliet, C., Mortreux, A. & Karim, A. (2000a). Tetrahedron Asymmetry, 11, 1367–1374.  Web of Science CrossRef CAS Google Scholar
First citationAitali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000b). Acta Cryst. C56, 1088–1089.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMorilla, M. E., Rodriguez, P., Belderrain, T. R., Graiff, C., Tiripiccho, A., Nicasio, M. C. & Perez, P. (2007). Inorg. Chem. 46, 9405–9414.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakahara, H., Takeuchi, M., Naito, R., Kurihara, H., Nagano, N., Isomura, Y. & Mase, T. (1998). Acta Cryst. C54, 651–653.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 2675–2676.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuna, E. (2003). Synthesis, 2, 251–254.  Web of Science CSD CrossRef Google Scholar
First citationVedejs, E., Kruger, A. W. & Suna, E. (1999). J. Org. Chem. 64, 7863–7870.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, J., Kong, W., Wang, X., Bai, W., Wang, L. & Zhou, Q. (2009). Front. Chem. China, 4, 299–306.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds