organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(di­phenyl­phosphan­yl)cyclo­­penta­namine

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: EngelbrechtI@ufs.ac.za

(Received 21 October 2010; accepted 23 November 2010; online 27 November 2010)

The coordination around the N atom in the title compound, C29H29NP2, shows an almost planar geometry, defined by the attached P and C atoms, in order to accomodate the steric bulk of the phenyl rings. The distortion of the trigonal–pyramidal geometry of the N atom is illustrated by the bond angles ranging between 115.22 (12) and 121.76 (9)°. The P atoms present a pyramidal environment with bond angles ranging from 100.62 (9) to 104.71 (8)°. One of the C atoms in the cyclo­pentyl ring displays a 0.822 (4):0.178 (4) positional disorder. Within the crystal structure, intra­molecular C—H⋯P hydrogen bonds together with inter- and intra­molecular C—H⋯π inter­actions link the mol­ecules into a supra­molecular two-dimensional network.

Related literature

For similar structures, see: Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192-2198.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.]); Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]); Cloete et al. (2008[Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.], 2009[Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.], 2010[Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51-m52.]); Engelbrecht et al. (2010[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, o2881.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29NP2

  • Mr = 453.47

  • Triclinic, [P \overline 1]

  • a = 8.803 (5) Å

  • b = 11.166 (4) Å

  • c = 12.685 (5) Å

  • α = 97.144 (4)°

  • β = 101.261 (5)°

  • γ = 99.707 (5)°

  • V = 1189.3 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.2 mm−1

  • T = 100 K

  • 0.19 × 0.13 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.983

  • 12794 measured reflections

  • 5817 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.106

  • S = 1.06

  • 5817 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯P2 0.99 2.82 3.269 (2) 108
C5A—H5A1⋯P2 0.99 2.82 3.202 (3) 104
C12—H12⋯Cg1 0.95 2.72 3.667 (2) 174
C3A—H3A2⋯Cg1i 0.99 2.89 3.811 (2) 155
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Version 3.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Diphosphinoamine (PNP) ligands form part of ongoing research in ethylene tetramerization catalyst systems. In the title compound, C29H29NP2, all bond distances and angles fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008, 2009, 2010; Engelbrecht et al., 2010) The N(P2C) group is almost planar, with the central N displaced by -0.120 (2)Å from the plane defined by the remaining three atoms (P1, P2, C1). The distorted trigonal-pyramidal geometry around the N atom is further illustrated by the bond angles ranging between 115.22 (12)° and 121.76 (9)°. The diphenylphosphino groups are staggered relative to the PNP backbone and form with each other dihedral angles of 68.84 (4)° (C11 and C21, bonded to P1) and 68.43 (4)° (C31 and C41, bonded to P2). The geometry around the phosphorous atoms is that of a distorted triangular pyramid, with C—P—C angles in the range 100.62 (9)° - 101.65 (8)° and N—P—C angles with a 101.65 (8)° - 104.71 (8)° span. One carbon atom in the cyclopentyl ring is disordered over two positions in a 0.822 (4):0.178 (4) ratio (Fig 1). There are some C—H···P intramolecular H-bonds as well as a few C—H···π interactions which contribute to the supramolecular aggregation (Table 1, Figure 2).

Related literature top

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008, 2009, 2010); Engelbrecht et al. (2010).

Experimental top

Cyclopentylamine (0.010 mol, 1.00 ml) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 1.010 g, 22%)

Refinement top

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.48Å from N1 and the deepest hole is situated 0.39Å from H3B1.

Structure description top

Diphosphinoamine (PNP) ligands form part of ongoing research in ethylene tetramerization catalyst systems. In the title compound, C29H29NP2, all bond distances and angles fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008, 2009, 2010; Engelbrecht et al., 2010) The N(P2C) group is almost planar, with the central N displaced by -0.120 (2)Å from the plane defined by the remaining three atoms (P1, P2, C1). The distorted trigonal-pyramidal geometry around the N atom is further illustrated by the bond angles ranging between 115.22 (12)° and 121.76 (9)°. The diphenylphosphino groups are staggered relative to the PNP backbone and form with each other dihedral angles of 68.84 (4)° (C11 and C21, bonded to P1) and 68.43 (4)° (C31 and C41, bonded to P2). The geometry around the phosphorous atoms is that of a distorted triangular pyramid, with C—P—C angles in the range 100.62 (9)° - 101.65 (8)° and N—P—C angles with a 101.65 (8)° - 104.71 (8)° span. One carbon atom in the cyclopentyl ring is disordered over two positions in a 0.822 (4):0.178 (4) ratio (Fig 1). There are some C—H···P intramolecular H-bonds as well as a few C—H···π interactions which contribute to the supramolecular aggregation (Table 1, Figure 2).

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008, 2009, 2010); Engelbrecht et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines denote the minor disordered atoms. Only applicable hydrogen atoms with relevance to C—H···P intramolecular hydrogen bonds are indicated.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the two-dimensional network. C—H···π interactions are shown as dashed lines.
N,N-Bis(diphenylphosphanyl)cyclopentanamine top
Crystal data top
C29H29NP2Z = 2
Mr = 453.47F(000) = 480
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.803 (5) ÅCell parameters from 2872 reflections
b = 11.166 (4) Åθ = 2.7–28.0°
c = 12.685 (5) ŵ = 0.2 mm1
α = 97.144 (4)°T = 100 K
β = 101.261 (5)°Cuboid, white
γ = 99.707 (5)°0.19 × 0.13 × 0.08 mm
V = 1189.3 (10) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5817 independent reflections
Radiation source: fine-focus sealed tube4333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.963, Tmax = 0.983k = 1414
12794 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.5079P]
where P = (Fo2 + 2Fc2)/3
5817 reflections(Δ/σ)max = 0.015
293 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C29H29NP2γ = 99.707 (5)°
Mr = 453.47V = 1189.3 (10) Å3
Triclinic, P1Z = 2
a = 8.803 (5) ÅMo Kα radiation
b = 11.166 (4) ŵ = 0.2 mm1
c = 12.685 (5) ÅT = 100 K
α = 97.144 (4)°0.19 × 0.13 × 0.08 mm
β = 101.261 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4333 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.983Rint = 0.035
12794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
5817 reflectionsΔρmin = 0.33 e Å3
293 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1148 frames were collected with a frame width of 0.5° covering up to θ = 28.27° with 98.7% completeness accomplished. Spectroscopy data: 1H NMR (300 MHz, CD2Cl2): δ = 1.3 to 1.9 (m, 8H, 4 x CH2), 3.8 (m, 1H, CH), 7.3 to 7.4 (m, 20H, Ar); 31P NMR (121 MHz, CD2Cl2): δ = 50.6 (s).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.91678 (19)0.34252 (17)0.75151 (15)0.0160 (4)
H10.96980.2780.72110.019*
C20.9126 (2)0.44037 (18)0.67528 (16)0.0198 (4)
H2A0.91680.40430.60080.024*
H2B0.81540.47460.67160.024*
C3A1.0595 (2)0.5401 (2)0.72654 (18)0.0283 (5)0.822 (4)
H3A11.04670.62030.70420.034*0.822 (4)
H3A21.15490.51730.7060.034*0.822 (4)
C4A1.0695 (3)0.5448 (2)0.8501 (2)0.0252 (6)0.822 (4)
H4A11.17750.58230.89260.03*0.822 (4)
H4A20.99390.59220.87480.03*0.822 (4)
C5A1.0262 (2)0.41072 (18)0.86124 (16)0.0222 (4)0.822 (4)
H5A10.97070.40240.92150.027*0.822 (4)
H5A21.12260.37550.87710.027*0.822 (4)
C3B1.0595 (2)0.5401 (2)0.72654 (18)0.0283 (5)0.178 (4)
H3B11.12280.55560.67140.034*0.178 (4)
H3B21.02680.61770.75090.034*0.178 (4)
C4B1.1460 (13)0.5064 (11)0.8099 (10)0.0252 (6)0.178 (4)
H4B11.19980.57930.86550.03*0.178 (4)
H4B21.22740.46490.78610.03*0.178 (4)
C5B1.0262 (2)0.41072 (18)0.86124 (16)0.0222 (4)0.178 (4)
H5B11.08220.35490.90180.027*0.178 (4)
H5B20.96860.45450.90820.027*0.178 (4)
C110.7060 (2)0.13812 (17)0.55819 (15)0.0155 (4)
C120.6196 (2)0.20991 (19)0.49657 (16)0.0222 (4)
H120.54880.25140.52730.027*
C130.6355 (2)0.22151 (19)0.39194 (16)0.0222 (4)
H130.57760.27220.35210.027*
C140.7355 (2)0.15971 (18)0.34479 (16)0.0193 (4)
H140.74610.16760.27270.023*
C150.8197 (2)0.08648 (19)0.40339 (16)0.0228 (4)
H150.88770.04310.37130.027*
C160.8051 (2)0.07612 (18)0.50916 (16)0.0191 (4)
H160.86390.02580.54870.023*
C210.8152 (2)0.03788 (17)0.74897 (15)0.0164 (4)
C220.7770 (2)0.08818 (18)0.70735 (16)0.0199 (4)
H220.6880.11880.64870.024*
C230.8659 (2)0.16896 (18)0.74967 (16)0.0218 (4)
H230.83710.25430.72050.026*
C240.9970 (2)0.12568 (19)0.83469 (16)0.0227 (4)
H241.0580.18110.86420.027*
C251.0383 (2)0.00127 (19)0.87619 (17)0.0239 (4)
H251.12930.0290.93340.029*
C260.9474 (2)0.08001 (18)0.83467 (16)0.0206 (4)
H260.97570.1650.8650.025*
C310.4685 (2)0.35868 (17)0.71326 (15)0.0157 (4)
C320.4624 (2)0.45295 (19)0.65030 (16)0.0204 (4)
H320.54520.52360.66770.024*
C330.3364 (2)0.4442 (2)0.56256 (17)0.0253 (5)
H330.33440.50810.51970.03*
C340.2143 (2)0.3431 (2)0.53752 (16)0.0246 (5)
H340.12880.3370.47710.03*
C350.2165 (2)0.24971 (19)0.60091 (16)0.0227 (4)
H350.13170.18050.58430.027*
C360.3429 (2)0.25774 (18)0.68856 (16)0.0191 (4)
H360.34360.19410.73180.023*
C410.5704 (2)0.29021 (17)0.91837 (15)0.0163 (4)
C420.4502 (2)0.33272 (19)0.96094 (16)0.0207 (4)
H420.40640.39730.93260.025*
C430.3941 (2)0.2821 (2)1.04375 (17)0.0257 (5)
H430.3120.31161.07130.031*
C440.4581 (2)0.1883 (2)1.08629 (16)0.0246 (4)
H440.41950.15291.14270.03*
C450.5785 (2)0.14650 (19)1.04613 (16)0.0220 (4)
H450.62310.08281.07560.026*
C460.6347 (2)0.19717 (18)0.96279 (15)0.0184 (4)
H460.71750.1680.93610.022*
N10.75799 (16)0.27932 (14)0.76314 (12)0.0155 (3)
P10.67417 (5)0.13242 (5)0.69726 (4)0.01549 (12)
P20.64933 (5)0.37383 (5)0.81951 (4)0.01544 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (8)0.0182 (10)0.0159 (10)0.0018 (7)0.0040 (7)0.0010 (8)
C20.0180 (8)0.0241 (11)0.0195 (10)0.0056 (8)0.0058 (8)0.0071 (8)
C3A0.0296 (11)0.0227 (12)0.0311 (13)0.0010 (9)0.0105 (9)0.0010 (10)
C4A0.0254 (12)0.0214 (14)0.0251 (14)0.0007 (10)0.0044 (10)0.0016 (11)
C5A0.0175 (9)0.0259 (12)0.0199 (11)0.0022 (8)0.0009 (8)0.0006 (9)
C3B0.0296 (11)0.0227 (12)0.0311 (13)0.0010 (9)0.0105 (9)0.0010 (10)
C4B0.0254 (12)0.0214 (14)0.0251 (14)0.0007 (10)0.0044 (10)0.0016 (11)
C5B0.0175 (9)0.0259 (12)0.0199 (11)0.0022 (8)0.0009 (8)0.0006 (9)
C110.0151 (8)0.0143 (9)0.0138 (9)0.0017 (7)0.0014 (7)0.0009 (7)
C120.0241 (9)0.0267 (12)0.0176 (11)0.0114 (8)0.0041 (8)0.0019 (9)
C130.0274 (10)0.0220 (11)0.0167 (10)0.0080 (8)0.0000 (8)0.0045 (8)
C140.0207 (9)0.0220 (11)0.0127 (10)0.0017 (8)0.0026 (7)0.0034 (8)
C150.0233 (9)0.0285 (12)0.0206 (11)0.0085 (9)0.0095 (8)0.0067 (9)
C160.0193 (9)0.0230 (11)0.0166 (10)0.0066 (8)0.0042 (8)0.0058 (8)
C210.0194 (8)0.0189 (10)0.0141 (10)0.0055 (8)0.0078 (7)0.0055 (8)
C220.0227 (9)0.0192 (10)0.0173 (10)0.0018 (8)0.0060 (8)0.0022 (8)
C230.0304 (10)0.0160 (10)0.0224 (11)0.0056 (8)0.0124 (9)0.0036 (8)
C240.0295 (10)0.0242 (11)0.0202 (11)0.0129 (9)0.0101 (9)0.0082 (9)
C250.0279 (10)0.0267 (12)0.0170 (10)0.0101 (9)0.0011 (8)0.0024 (9)
C260.0274 (10)0.0179 (10)0.0169 (10)0.0068 (8)0.0043 (8)0.0017 (8)
C310.0157 (8)0.0190 (10)0.0141 (9)0.0065 (7)0.0051 (7)0.0016 (8)
C320.0181 (9)0.0226 (11)0.0224 (11)0.0051 (8)0.0074 (8)0.0049 (9)
C330.0265 (10)0.0344 (13)0.0210 (11)0.0153 (9)0.0079 (9)0.0103 (9)
C340.0226 (9)0.0375 (13)0.0143 (10)0.0151 (9)0.0010 (8)0.0008 (9)
C350.0185 (9)0.0248 (11)0.0214 (11)0.0041 (8)0.0009 (8)0.0039 (9)
C360.0199 (9)0.0191 (10)0.0188 (10)0.0049 (8)0.0053 (8)0.0017 (8)
C410.0150 (8)0.0184 (10)0.0131 (9)0.0008 (7)0.0018 (7)0.0005 (8)
C420.0193 (9)0.0260 (11)0.0183 (10)0.0073 (8)0.0053 (8)0.0041 (9)
C430.0213 (9)0.0368 (13)0.0204 (11)0.0066 (9)0.0085 (8)0.0026 (9)
C440.0259 (10)0.0309 (12)0.0150 (10)0.0019 (9)0.0065 (8)0.0032 (9)
C450.0274 (10)0.0204 (11)0.0155 (10)0.0024 (8)0.0008 (8)0.0024 (8)
C460.0189 (9)0.0198 (10)0.0146 (10)0.0027 (8)0.0024 (7)0.0007 (8)
N10.0127 (7)0.0162 (8)0.0166 (8)0.0007 (6)0.0042 (6)0.0002 (7)
P10.0157 (2)0.0163 (3)0.0142 (3)0.00285 (19)0.00334 (18)0.0017 (2)
P20.0146 (2)0.0171 (3)0.0149 (3)0.00371 (19)0.00380 (18)0.0017 (2)
Geometric parameters (Å, º) top
C1—N11.499 (2)C23—C241.388 (3)
C1—C21.547 (3)C23—H230.95
C1—C5A1.553 (3)C24—C251.383 (3)
C1—H11C24—H240.95
C2—C3A1.530 (3)C25—C261.393 (3)
C2—H2A0.99C25—H250.95
C2—H2B0.99C26—H260.95
C3A—C4A1.546 (3)C31—C361.396 (3)
C3A—H3A10.99C31—C321.400 (3)
C3A—H3A20.99C31—P21.842 (2)
C4A—C5A1.512 (3)C32—C331.390 (3)
C4A—H4A10.99C32—H320.95
C4A—H4A20.99C33—C341.378 (3)
C5A—H5A10.99C33—H330.95
C5A—H5A20.99C34—C351.394 (3)
C4B—H4B10.99C34—H340.95
C4B—H4B20.99C35—C361.393 (3)
C11—C161.392 (2)C35—H350.95
C11—C121.400 (3)C36—H360.95
C11—P11.847 (2)C41—C461.391 (3)
C12—C131.381 (3)C41—C421.403 (2)
C12—H120.95C41—P21.8274 (19)
C13—C141.384 (3)C42—C431.387 (3)
C13—H130.95C42—H420.95
C14—C151.382 (3)C43—C441.388 (3)
C14—H140.95C43—H430.95
C15—C161.389 (3)C44—C451.386 (3)
C15—H150.95C44—H440.95
C16—H160.95C45—C461.393 (3)
C21—C261.397 (3)C45—H450.95
C21—C221.400 (3)C46—H460.95
C21—P11.8388 (19)N1—P11.7157 (17)
C22—C231.381 (3)N1—P21.7205 (16)
C22—H220.95
N1—C1—C2114.93 (14)C22—C23—H23120
N1—C1—C5A113.39 (15)C24—C23—H23120
C2—C1—C5A105.15 (16)C25—C24—C23119.51 (18)
N1—C1—H1107.7C25—C24—H24120.2
C2—C1—H1107.7C23—C24—H24120.2
C5A—C1—H1107.7C24—C25—C26120.43 (19)
C3A—C2—C1104.78 (16)C24—C25—H25119.8
C3A—C2—H2A110.8C26—C25—H25119.8
C1—C2—H2A110.8C25—C26—C21120.72 (19)
C3A—C2—H2B110.8C25—C26—H26119.6
C1—C2—H2B110.8C21—C26—H26119.6
H2A—C2—H2B108.9C36—C31—C32118.66 (17)
C2—C3A—C4A103.07 (17)C36—C31—P2124.46 (14)
C2—C3A—H3A1111.1C32—C31—P2116.80 (14)
C4A—C3A—H3A1111.1C33—C32—C31120.67 (19)
C2—C3A—H3A2111.1C33—C32—H32119.7
C4A—C3A—H3A2111.1C31—C32—H32119.7
H3A1—C3A—H3A2109.1C34—C33—C32120.24 (19)
C5A—C4A—C3A103.38 (19)C34—C33—H33119.9
C5A—C4A—H4A1111.1C32—C33—H33119.9
C3A—C4A—H4A1111.1C33—C34—C35119.90 (18)
C5A—C4A—H4A2111.1C33—C34—H34120.1
C3A—C4A—H4A2111.1C35—C34—H34120
H4A1—C4A—H4A2109.1C36—C35—C34120.09 (19)
C4A—C5A—C1107.22 (17)C36—C35—H35120
C4A—C5A—H5A1110.3C34—C35—H35120
C1—C5A—H5A1110.3C35—C36—C31120.40 (18)
C4A—C5A—H5A2110.3C35—C36—H36119.8
C1—C5A—H5A2110.3C31—C36—H36119.8
H5A1—C5A—H5A2108.5C46—C41—C42118.29 (17)
H4B1—C4B—H4B2108.5C46—C41—P2123.86 (13)
C16—C11—C12117.63 (17)C42—C41—P2117.40 (14)
C16—C11—P1125.95 (14)C43—C42—C41121.13 (18)
C12—C11—P1116.41 (13)C43—C42—H42119.4
C13—C12—C11121.19 (17)C41—C42—H42119.4
C13—C12—H12119.4C42—C43—C44119.87 (18)
C11—C12—H12119.4C42—C43—H43120.1
C12—C13—C14120.32 (18)C44—C43—H43120.1
C12—C13—H13119.8C45—C44—C43119.67 (18)
C14—C13—H13119.8C45—C44—H44120.2
C15—C14—C13119.47 (18)C43—C44—H44120.2
C15—C14—H14120.3C44—C45—C46120.47 (18)
C13—C14—H14120.3C44—C45—H45119.8
C14—C15—C16120.17 (17)C46—C45—H45119.8
C14—C15—H15119.9C41—C46—C45120.55 (17)
C16—C15—H15119.9C41—C46—H46119.7
C15—C16—C11121.20 (17)C45—C46—H46119.7
C15—C16—H16119.4C1—N1—P1121.43 (12)
C11—C16—H16119.4C1—N1—P2115.22 (12)
C26—C21—C22117.78 (17)P1—N1—P2121.76 (9)
C26—C21—P1124.69 (15)N1—P1—C21104.70 (9)
C22—C21—P1117.13 (14)N1—P1—C11102.52 (8)
C23—C22—C21121.44 (19)C21—P1—C11101.65 (8)
C23—C22—H22119.3N1—P2—C41104.71 (8)
C21—C22—H22119.3N1—P2—C31104.59 (8)
C22—C23—C24120.10 (19)C41—P2—C31100.62 (9)
N1—C1—C2—C3A145.49 (16)C42—C43—C44—C450.5 (3)
C5A—C1—C2—C3A20.08 (18)C43—C44—C45—C460.6 (3)
C1—C2—C3A—C4A37.2 (2)C42—C41—C46—C451.1 (3)
C2—C3A—C4A—C5A40.1 (2)P2—C41—C46—C45173.20 (15)
C3A—C4A—C5A—C127.7 (2)C44—C45—C46—C410.2 (3)
N1—C1—C5A—C4A121.37 (17)C2—C1—N1—P1103.43 (17)
C2—C1—C5A—C4A4.99 (19)C5A—C1—N1—P1135.56 (14)
C16—C11—C12—C131.8 (3)C2—C1—N1—P262.41 (19)
P1—C11—C12—C13179.38 (16)C5A—C1—N1—P258.59 (18)
C11—C12—C13—C141.4 (3)C1—N1—P1—C2159.96 (15)
C12—C13—C14—C150.2 (3)P2—N1—P1—C21135.12 (10)
C13—C14—C15—C160.7 (3)C1—N1—P1—C1145.82 (15)
C14—C15—C16—C110.3 (3)P2—N1—P1—C11119.10 (10)
C12—C11—C16—C150.9 (3)C26—C21—P1—N18.13 (17)
P1—C11—C16—C15179.66 (15)C22—C21—P1—N1179.28 (13)
C26—C21—C22—C230.5 (3)C26—C21—P1—C11114.56 (16)
P1—C21—C22—C23172.64 (14)C22—C21—P1—C1172.86 (15)
C21—C22—C23—C240.6 (3)C16—C11—P1—N1112.33 (17)
C22—C23—C24—C250.3 (3)C12—C11—P1—N168.92 (16)
C23—C24—C25—C261.3 (3)C16—C11—P1—C214.20 (19)
C24—C25—C26—C211.4 (3)C12—C11—P1—C21177.05 (15)
C22—C21—C26—C250.5 (3)C1—N1—P2—C41135.34 (13)
P1—C21—C26—C25173.05 (14)P1—N1—P2—C4158.87 (12)
C36—C31—C32—C332.2 (3)C1—N1—P2—C31119.28 (13)
P2—C31—C32—C33174.66 (14)P1—N1—P2—C3146.52 (12)
C31—C32—C33—C341.0 (3)C46—C41—P2—N120.87 (18)
C32—C33—C34—C350.5 (3)C42—C41—P2—N1166.95 (15)
C33—C34—C35—C360.9 (3)C46—C41—P2—C31129.18 (17)
C34—C35—C36—C310.4 (3)C42—C41—P2—C3158.64 (17)
C32—C31—C36—C351.9 (3)C36—C31—P2—N176.55 (16)
P2—C31—C36—C35174.75 (14)C32—C31—P2—N1100.16 (15)
C46—C41—C42—C431.2 (3)C36—C31—P2—C4131.86 (17)
P2—C41—C42—C43173.85 (16)C32—C31—P2—C41151.43 (14)
C41—C42—C43—C440.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···P20.992.823.269 (2)108
C5A—H5A1···P20.992.823.202 (3)104
C12—H12···Cg10.952.723.667 (2)174
C3A—H3A2···Cg1i0.992.893.811 (2)155
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC29H29NP2
Mr453.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.803 (5), 11.166 (4), 12.685 (5)
α, β, γ (°)97.144 (4), 101.261 (5), 99.707 (5)
V3)1189.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.2
Crystal size (mm)0.19 × 0.13 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.963, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12794, 5817, 4333
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.06
No. of reflections5817
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···P20.992.823.269 (2)108.2
C5A—H5A1···P20.992.823.202 (3)103.8
C12—H12···Cg10.952.723.667 (2)174.4
C3A—H3A2···Cg1i0.992.893.811 (2)155.4
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), as well as the DST–NRF centre of excellence and the University of the Free State are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Version 3.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.  CSD CrossRef CAS Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds