organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(4-Chloro­phen­yl)sulfin­yl]-2,4,6,7-tetra­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 October 2010; accepted 19 October 2010; online 6 November 2010)

In the title compound, C18H17ClO2S, the 4-chloro­phenyl ring is oriented approximately perpendicular to the mean plane of the benzofuran ring [dihedral angle = 87.49 (5)°]. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯π inter­actions, forming left- and right-handed pseudo-helices along the a axis.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-(4–chloro­phenyl­sulfin­yl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o2702.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17ClO2S

  • Mr = 332.83

  • Orthorhombic, P n a 21

  • a = 12.2329 (4) Å

  • b = 20.1499 (7) Å

  • c = 6.4840 (2) Å

  • V = 1598.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.33 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.651, Tmax = 0.746

  • 8651 measured reflections

  • 3392 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.05

  • 3392 reflections

  • 203 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1382 Friedel pairs

  • Flack parameter: −0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13–C18 4-chloro­phenyl ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1i 0.96 2.76 3.613 (3) 148
C12—H12BCg2ii 0.96 2.83 3.653 (3) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A series of benzofuran ring system have received much attention in view of their interesting pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 87.49 (5)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···π interactions; the first one between a methyl H atom and the 4-chlorophenyl ring (C11—H11A···Cg1i; Table 1, Cg1 is the centroid of the C13···C18 4–chlorophenyl ring), and the second one between a methyl H atom and the benzene ring (C12—H12B···Cg2ii; Table 1, Cg2 is the centroid of the C2···C7 benzene ring). The title compound crystallizes in the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms. The space group is caused by a right-hand pseudo-helix along the a axis (Fig. 2).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4–chlorophenylsulfinyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c).

Experimental top

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,4,6,7-tetramethyl-1-benzofuran (348 mg, 1.0 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 442–443 K; Rf = 0.67 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

A series of benzofuran ring system have received much attention in view of their interesting pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 87.49 (5)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···π interactions; the first one between a methyl H atom and the 4-chlorophenyl ring (C11—H11A···Cg1i; Table 1, Cg1 is the centroid of the C13···C18 4–chlorophenyl ring), and the second one between a methyl H atom and the benzene ring (C12—H12B···Cg2ii; Table 1, Cg2 is the centroid of the C2···C7 benzene ring). The title compound crystallizes in the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms. The space group is caused by a right-hand pseudo-helix along the a axis (Fig. 2).

For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4–chlorophenylsulfinyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denote the centroids of the C13···C18 4-chlorophenyl ring and the C2···C7 benzene ring, respectively. [Symmetry codes: (i) x-1/2, -y+3/2, z; (ii) x, y, z-1; (iii) x-1/2, -y+3/2, z; (iv) x, y, z+1].
3-[(4-Chlorophenyl)sulfinyl]-2,4,6,7-tetramethyl-1-benzofuran top
Crystal data top
C18H17ClO2SDx = 1.383 Mg m3
Mr = 332.83Melting point: 442 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2945 reflections
a = 12.2329 (4) Åθ = 2.6–26.8°
b = 20.1499 (7) ŵ = 0.37 mm1
c = 6.4840 (2) ÅT = 173 K
V = 1598.25 (9) Å3Block, colourless
Z = 40.33 × 0.16 × 0.10 mm
F(000) = 696
Data collection top
Bruker SMART APEXII CCD
diffractometer
3392 independent reflections
Radiation source: rotating anode2809 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.0°
φ and ω scansh = 1511
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2620
Tmin = 0.651, Tmax = 0.746l = 88
8651 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1096P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3392 reflectionsΔρmax = 0.20 e Å3
203 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1382 Friedel pairs
0 constraintsAbsolute structure parameter: 0.03 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H17ClO2SV = 1598.25 (9) Å3
Mr = 332.83Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.2329 (4) ŵ = 0.37 mm1
b = 20.1499 (7) ÅT = 173 K
c = 6.4840 (2) Å0.33 × 0.16 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2809 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.746Rint = 0.034
8651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.25 e Å3
3392 reflectionsAbsolute structure: Flack (1983), 1382 Friedel pairs
203 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.48480 (5)0.93993 (4)1.24227 (15)0.0644 (2)
S0.37852 (4)0.74513 (3)0.51507 (13)0.03587 (15)
O10.64405 (11)0.64000 (7)0.4393 (2)0.0317 (4)
O20.27233 (11)0.71240 (9)0.5638 (3)0.0462 (5)
C10.48689 (15)0.68792 (10)0.5388 (4)0.0304 (5)
C20.51433 (16)0.63782 (11)0.6943 (4)0.0308 (5)
C30.47011 (16)0.61312 (12)0.8785 (4)0.0350 (5)
C40.52973 (19)0.56352 (12)0.9760 (4)0.0394 (6)
H40.50300.54691.10000.047*
C50.62780 (17)0.53683 (12)0.8996 (4)0.0368 (6)
C60.67069 (16)0.55999 (10)0.7143 (4)0.0331 (5)
C70.61165 (16)0.61008 (11)0.6216 (4)0.0301 (5)
C80.56685 (15)0.68753 (11)0.3949 (4)0.0312 (5)
C90.36522 (17)0.63876 (14)0.9713 (4)0.0443 (7)
H9A0.37720.68231.02720.066*
H9B0.34180.60941.07910.066*
H9C0.30990.64090.86650.066*
C100.6861 (2)0.48422 (12)1.0225 (5)0.0506 (7)
H10A0.76220.49531.03290.076*
H10B0.67830.44210.95480.076*
H10C0.65490.48171.15810.076*
C110.77427 (18)0.53408 (12)0.6181 (4)0.0423 (6)
H11A0.83620.55150.69120.063*
H11B0.77770.54770.47640.063*
H11C0.77500.48650.62550.063*
C120.58942 (18)0.72823 (11)0.2117 (4)0.0370 (5)
H12A0.65210.75570.23700.055*
H12B0.52730.75570.18240.055*
H12C0.60360.69980.09590.055*
C130.41185 (16)0.79762 (10)0.7289 (4)0.0322 (5)
C140.33260 (16)0.81193 (11)0.8759 (4)0.0353 (5)
H140.26420.79200.86720.042*
C150.35484 (16)0.85543 (11)1.0343 (5)0.0361 (5)
H150.30250.86441.13460.043*
C160.45579 (17)0.88545 (11)1.0414 (4)0.0381 (6)
C170.53552 (17)0.87296 (12)0.8939 (4)0.0405 (6)
H170.60290.89420.90080.049*
C180.51360 (16)0.82887 (11)0.7378 (4)0.0367 (6)
H180.56630.81990.63840.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0533 (4)0.0701 (5)0.0699 (5)0.0190 (3)0.0152 (4)0.0291 (4)
S0.0257 (2)0.0485 (3)0.0334 (3)0.0036 (2)0.0013 (3)0.0026 (3)
O10.0293 (6)0.0334 (8)0.0324 (9)0.0032 (6)0.0014 (7)0.0023 (7)
O20.0239 (7)0.0632 (11)0.0516 (12)0.0027 (7)0.0036 (8)0.0053 (9)
C10.0256 (9)0.0357 (12)0.0299 (12)0.0028 (8)0.0019 (11)0.0005 (11)
C20.0251 (9)0.0363 (13)0.0310 (13)0.0064 (8)0.0011 (10)0.0004 (10)
C30.0307 (10)0.0434 (14)0.0310 (13)0.0115 (10)0.0007 (11)0.0016 (11)
C40.0425 (12)0.0428 (14)0.0330 (15)0.0160 (10)0.0024 (11)0.0065 (11)
C50.0388 (11)0.0315 (13)0.0401 (14)0.0094 (9)0.0084 (12)0.0049 (12)
C60.0318 (10)0.0291 (12)0.0384 (14)0.0052 (9)0.0054 (11)0.0002 (11)
C70.0288 (10)0.0324 (12)0.0292 (13)0.0075 (9)0.0007 (10)0.0017 (10)
C80.0268 (10)0.0343 (12)0.0324 (12)0.0009 (9)0.0042 (11)0.0024 (10)
C90.0385 (11)0.0578 (16)0.0366 (17)0.0109 (11)0.0089 (12)0.0031 (12)
C100.0594 (14)0.0451 (15)0.0472 (15)0.0088 (12)0.0102 (16)0.0129 (14)
C110.0396 (12)0.0361 (13)0.0513 (17)0.0052 (10)0.0004 (13)0.0006 (12)
C120.0341 (11)0.0457 (14)0.0312 (13)0.0004 (10)0.0025 (12)0.0069 (12)
C130.0268 (9)0.0334 (12)0.0363 (13)0.0047 (9)0.0039 (11)0.0074 (12)
C140.0238 (9)0.0403 (13)0.0419 (14)0.0029 (9)0.0036 (12)0.0044 (12)
C150.0297 (10)0.0376 (12)0.0410 (15)0.0037 (9)0.0109 (13)0.0020 (13)
C160.0355 (10)0.0360 (13)0.0426 (15)0.0007 (9)0.0038 (12)0.0022 (12)
C170.0282 (10)0.0423 (14)0.0510 (16)0.0048 (10)0.0047 (12)0.0017 (13)
C180.0275 (10)0.0405 (13)0.0421 (14)0.0035 (9)0.0086 (12)0.0070 (13)
Geometric parameters (Å, º) top
Cl—C161.740 (3)C9—H9C0.9600
S—O21.4907 (15)C10—H10A0.9600
S—C11.763 (2)C10—H10B0.9600
S—C131.791 (3)C10—H10C0.9600
O1—C81.375 (2)C11—H11A0.9600
O1—C71.385 (3)C11—H11B0.9600
C1—C81.352 (3)C11—H11C0.9600
C1—C21.466 (3)C12—H12A0.9600
C2—C71.397 (3)C12—H12B0.9600
C2—C31.402 (3)C12—H12C0.9600
C3—C41.389 (3)C13—C141.390 (3)
C3—C91.508 (3)C13—C181.396 (3)
C4—C51.405 (3)C14—C151.377 (4)
C4—H40.9300C14—H140.9300
C5—C61.391 (4)C15—C161.376 (3)
C5—C101.506 (3)C15—H150.9300
C6—C71.379 (3)C16—C171.389 (3)
C6—C111.506 (3)C17—C181.373 (4)
C8—C121.470 (3)C17—H170.9300
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600
O2—S—C1110.33 (10)C5—C10—H10B109.5
O2—S—C13107.20 (11)H10A—C10—H10B109.5
C1—S—C1398.48 (10)C5—C10—H10C109.5
C8—O1—C7106.57 (16)H10A—C10—H10C109.5
C8—C1—C2107.76 (18)H10B—C10—H10C109.5
C8—C1—S119.19 (18)C6—C11—H11A109.5
C2—C1—S133.01 (17)C6—C11—H11B109.5
C7—C2—C3118.3 (2)H11A—C11—H11B109.5
C7—C2—C1103.78 (19)C6—C11—H11C109.5
C3—C2—C1137.9 (2)H11A—C11—H11C109.5
C4—C3—C2116.1 (2)H11B—C11—H11C109.5
C4—C3—C9120.8 (2)C8—C12—H12A109.5
C2—C3—C9123.1 (2)C8—C12—H12B109.5
C3—C4—C5124.3 (2)H12A—C12—H12B109.5
C3—C4—H4117.9C8—C12—H12C109.5
C5—C4—H4117.9H12A—C12—H12C109.5
C6—C5—C4119.9 (2)H12B—C12—H12C109.5
C6—C5—C10121.0 (2)C14—C13—C18120.0 (2)
C4—C5—C10119.1 (2)C14—C13—S119.65 (17)
C7—C6—C5115.1 (2)C18—C13—S120.10 (19)
C7—C6—C11120.9 (2)C15—C14—C13120.4 (2)
C5—C6—C11124.0 (2)C15—C14—H14119.8
C6—C7—O1122.7 (2)C13—C14—H14119.8
C6—C7—C2126.3 (2)C16—C15—C14118.8 (2)
O1—C7—C2110.98 (19)C16—C15—H15120.6
C1—C8—O1110.9 (2)C14—C15—H15120.6
C1—C8—C12133.7 (2)C15—C16—C17121.8 (2)
O1—C8—C12115.38 (18)C15—C16—Cl119.1 (2)
C3—C9—H9A109.5C17—C16—Cl119.11 (17)
C3—C9—H9B109.5C18—C17—C16119.2 (2)
H9A—C9—H9B109.5C18—C17—H17120.4
C3—C9—H9C109.5C16—C17—H17120.4
H9A—C9—H9C109.5C17—C18—C13119.8 (2)
H9B—C9—H9C109.5C17—C18—H18120.1
C5—C10—H10A109.5C13—C18—H18120.1
O2—S—C1—C8137.63 (18)C8—O1—C7—C20.1 (2)
C13—S—C1—C8110.40 (19)C3—C2—C7—C60.4 (3)
O2—S—C1—C244.6 (3)C1—C2—C7—C6179.7 (2)
C13—S—C1—C267.3 (2)C3—C2—C7—O1179.92 (18)
C8—C1—C2—C71.4 (2)C1—C2—C7—O10.7 (2)
S—C1—C2—C7179.29 (18)C2—C1—C8—O11.5 (2)
C8—C1—C2—C3179.5 (3)S—C1—C8—O1179.78 (14)
S—C1—C2—C31.6 (4)C2—C1—C8—C12175.5 (2)
C7—C2—C3—C41.6 (3)S—C1—C8—C122.8 (4)
C1—C2—C3—C4179.4 (2)C7—O1—C8—C11.1 (2)
C7—C2—C3—C9179.6 (2)C7—O1—C8—C12176.55 (19)
C1—C2—C3—C90.5 (4)O2—S—C13—C1413.4 (2)
C2—C3—C4—C51.3 (4)C1—S—C13—C14127.83 (19)
C9—C3—C4—C5179.8 (2)O2—S—C13—C18172.49 (18)
C3—C4—C5—C60.2 (4)C1—S—C13—C1858.0 (2)
C3—C4—C5—C10178.6 (2)C18—C13—C14—C151.9 (3)
C4—C5—C6—C71.4 (3)S—C13—C14—C15176.00 (19)
C10—C5—C6—C7177.4 (2)C13—C14—C15—C161.4 (4)
C4—C5—C6—C11179.2 (2)C14—C15—C16—C170.1 (4)
C10—C5—C6—C112.0 (3)C14—C15—C16—Cl179.48 (19)
C5—C6—C7—O1178.34 (19)C15—C16—C17—C180.8 (4)
C11—C6—C7—O11.1 (3)Cl—C16—C17—C18178.60 (19)
C5—C6—C7—C21.1 (3)C16—C17—C18—C130.3 (4)
C11—C6—C7—C2179.4 (2)C14—C13—C18—C171.0 (3)
C8—O1—C7—C6179.4 (2)S—C13—C18—C17175.08 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 4-chlorophenyl ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.962.763.613 (3)148
C12—H12B···Cg2ii0.962.833.653 (3)144
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC18H17ClO2S
Mr332.83
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)12.2329 (4), 20.1499 (7), 6.4840 (2)
V3)1598.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.33 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.651, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8651, 3392, 2809
Rint0.034
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.05
No. of reflections3392
No. of parameters203
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 1382 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 4-chlorophenyl ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.962.763.613 (3)148.2
C12—H12B···Cg2ii0.962.833.653 (3)143.9
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o2702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds