organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6-Chloro-2-(furan-2-yl­methyl­­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 9 November 2010; accepted 11 November 2010; online 17 November 2010)

In the title compound, C17H12ClNO2, the carbazole unit is nearly planar [maximum deviation = 0.052 (1) Å]. The pyrrole ring makes dihedral angles of 1.92 (8) and 4.71 (11)° with the benzene and furan rings, respectively. Inter­molecular N—H⋯O hydrogen bonds form R22(10) rings in the crystal structure.

Related literature

For the pharmaceutical inter­est of heteroaryl annulated derivatives of carbazoles, see: Knölker & Reddy (2002[Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4428.], 2008[Knölker, H. J. & Reddy, K. R. (2008). The Alkaloids, edited by G. A. Cordell, Vol. 65, pp. 1-430. Amsterdam: Academic Press.]). For the preparation of various hetero-annulated carbazoles, see: Sridharan et al. (2008[Sridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572-577.]); Danish & Rajendra Prasad (2004[Danish, I. A. & Rajendra Prasad, K. J. (2004). Indian J. Chem. Sect. B, 43, 618-623.], 2005[Danish, I. A. & Rajendra Prasad, K. J. (2005). Collect. Czech. Chem. Commun. 70, 223-236.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12ClNO2

  • Mr = 297.73

  • Monoclinic, P 21 /c

  • a = 15.0985 (2) Å

  • b = 6.1553 (1) Å

  • c = 15.3887 (2) Å

  • β = 104.319 (1)°

  • V = 1385.73 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.47 mm−1

  • T = 295 K

  • 0.48 × 0.34 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.389, Tmax = 1.000

  • 8660 measured reflections

  • 2834 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.10

  • 2834 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.88 (2) 1.94 (2) 2.7935 (17) 164 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Aryl and heteroarylcarbazoles are important classes of biologically active compounds that include notable alkaloids of pharmaceutical interest (Knölker & Reddy (2002, 2008)) and heteroaryl annulated derivatives of carbazole. From our laboratory, we have reported the synthesis of 2-benzylidene-2,3,4,9-tetrahydrocarbazoles from the precursors of the 2,3,4,9-tetrahydro-1H-carbazol-1-one type and these synthons were utilized to prepare many heteroannulated carbazoles (Sridharan et al., (2008); Danish & Rajendra Prasad (2004, 2005)).

In the title molecule (Fig. 1), C17H12ClNO2, the carbazole unit is nearly planar [maximum deviation = 0.052 (1) Å for C1]. The pyrrole ring makes dihedral angles of 1.92 (8)° and 4.71 (11)° with the benzene and the furan rings, respectively. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2).

Related literature top

For the pharmaceutical interest of heteroaryl annulated derivatives of carbazoles, see: Knölker & Reddy (2002, 2008). For the preparation of various hetero-annulated carbazoles, see: Sridharan et al. (2008); Danish & Rajendra Prasad (2004, 2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 6-chloro-2,3,4,9-tetrahydro-1H-carbazol-1-one (1.095 g, 0.005 mol) and furan-2-carbaldehyde (0.41 ml, 0.005 mol) was treated with 25 ml of a 5% ethanolic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from methanol to yield 90% (1.336 g) of the title compound. The pure compound was recrystallized from EtOAc.

Refinement top

The H atom bonded to N9 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Aryl and heteroarylcarbazoles are important classes of biologically active compounds that include notable alkaloids of pharmaceutical interest (Knölker & Reddy (2002, 2008)) and heteroaryl annulated derivatives of carbazole. From our laboratory, we have reported the synthesis of 2-benzylidene-2,3,4,9-tetrahydrocarbazoles from the precursors of the 2,3,4,9-tetrahydro-1H-carbazol-1-one type and these synthons were utilized to prepare many heteroannulated carbazoles (Sridharan et al., (2008); Danish & Rajendra Prasad (2004, 2005)).

In the title molecule (Fig. 1), C17H12ClNO2, the carbazole unit is nearly planar [maximum deviation = 0.052 (1) Å for C1]. The pyrrole ring makes dihedral angles of 1.92 (8)° and 4.71 (11)° with the benzene and the furan rings, respectively. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2).

For the pharmaceutical interest of heteroaryl annulated derivatives of carbazoles, see: Knölker & Reddy (2002, 2008). For the preparation of various hetero-annulated carbazoles, see: Sridharan et al. (2008); Danish & Rajendra Prasad (2004, 2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(E)-6-Chloro-2-(furan-2-ylmethylidene)-2,3,4,9-tetrahydro- 1H-carbazol-1-one top
Crystal data top
C17H12ClNO2F(000) = 616
Mr = 297.73Dx = 1.427 Mg m3
Monoclinic, P21/cMelting point: 501 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 15.0985 (2) ÅCell parameters from 6923 reflections
b = 6.1553 (1) Åθ = 4.7–75.4°
c = 15.3887 (2) ŵ = 2.47 mm1
β = 104.319 (1)°T = 295 K
V = 1385.73 (3) Å3Prism, pale-yellow
Z = 40.48 × 0.34 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2834 independent reflections
Radiation source: Enhance (Cu) X-ray Source2676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 75.6°, θmin = 5.9°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 57
Tmin = 0.389, Tmax = 1.000l = 1918
8660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H12ClNO2V = 1385.73 (3) Å3
Mr = 297.73Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.0985 (2) ŵ = 2.47 mm1
b = 6.1553 (1) ÅT = 295 K
c = 15.3887 (2) Å0.48 × 0.34 × 0.12 mm
β = 104.319 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2676 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 1.000Rint = 0.026
8660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.28 e Å3
2834 reflectionsΔρmin = 0.28 e Å3
194 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl60.40900 (3)0.76934 (9)0.02641 (5)0.0804 (2)
O10.10076 (8)0.13185 (18)0.07979 (8)0.0510 (3)
O110.38257 (9)0.4505 (3)0.24198 (10)0.0751 (5)
N90.09205 (9)0.2203 (2)0.03653 (8)0.0441 (4)
C10.07175 (10)0.2982 (2)0.10858 (9)0.0376 (4)
C20.13341 (10)0.4564 (2)0.16694 (8)0.0383 (4)
C30.09534 (11)0.6580 (2)0.20028 (10)0.0457 (4)
C40.00564 (12)0.7036 (3)0.17066 (13)0.0560 (5)
C4A0.06155 (10)0.5338 (2)0.11436 (8)0.0373 (4)
C4B0.15750 (10)0.5216 (2)0.07663 (9)0.0394 (4)
C50.23081 (11)0.6625 (3)0.07672 (10)0.0476 (5)
C60.31602 (11)0.5984 (3)0.02964 (12)0.0535 (5)
C70.33227 (11)0.3997 (3)0.01636 (12)0.0559 (5)
C80.26184 (12)0.2604 (3)0.01737 (11)0.0524 (5)
C8A0.17369 (10)0.3230 (3)0.02874 (9)0.0420 (4)
C9A0.02410 (10)0.3493 (2)0.08760 (8)0.0374 (4)
C100.22300 (11)0.4106 (3)0.18622 (10)0.0463 (4)
C120.44470 (14)0.5930 (5)0.28938 (17)0.0812 (8)
C130.40378 (15)0.7606 (4)0.31507 (16)0.0731 (7)
C140.30864 (14)0.7275 (3)0.28188 (14)0.0621 (6)
C150.29763 (11)0.5361 (3)0.23740 (10)0.0496 (5)
H3A0.126890.781950.183100.0548*
H3B0.111730.652440.265290.0548*
H4A0.014360.839060.137420.0672*
H4B0.028550.724420.223660.0672*
H50.221780.793800.107520.0571*
H70.391590.362290.046500.0671*
H80.272260.128490.047690.0629*
H90.0853 (14)0.102 (4)0.0073 (14)0.060 (5)*
H100.238670.280200.163360.0556*
H120.507730.574470.301940.0974*
H130.431900.878460.348650.0877*
H140.262370.820100.289280.0746*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl60.0463 (3)0.0751 (4)0.1142 (5)0.0130 (2)0.0090 (3)0.0023 (3)
O10.0491 (6)0.0413 (6)0.0619 (6)0.0001 (4)0.0123 (5)0.0157 (5)
O110.0436 (7)0.0848 (10)0.0917 (10)0.0015 (6)0.0071 (6)0.0262 (8)
N90.0461 (7)0.0415 (6)0.0439 (6)0.0039 (5)0.0094 (5)0.0113 (5)
C10.0457 (8)0.0334 (6)0.0347 (6)0.0031 (5)0.0121 (5)0.0023 (5)
C20.0441 (7)0.0355 (7)0.0357 (6)0.0033 (5)0.0106 (5)0.0015 (5)
C30.0483 (8)0.0383 (7)0.0485 (8)0.0044 (6)0.0084 (6)0.0116 (6)
C40.0495 (9)0.0438 (8)0.0696 (10)0.0021 (7)0.0049 (8)0.0228 (7)
C4A0.0427 (7)0.0362 (7)0.0326 (6)0.0011 (5)0.0088 (5)0.0002 (5)
C4B0.0432 (7)0.0401 (7)0.0348 (6)0.0018 (5)0.0094 (5)0.0009 (5)
C50.0476 (8)0.0445 (8)0.0502 (8)0.0019 (6)0.0113 (6)0.0001 (6)
C60.0438 (8)0.0574 (9)0.0578 (9)0.0045 (7)0.0097 (7)0.0074 (7)
C70.0424 (8)0.0650 (10)0.0563 (9)0.0074 (7)0.0044 (7)0.0001 (8)
C80.0491 (9)0.0553 (9)0.0501 (8)0.0104 (7)0.0070 (7)0.0082 (7)
C8A0.0445 (8)0.0439 (7)0.0372 (6)0.0037 (6)0.0093 (5)0.0017 (5)
C9A0.0449 (7)0.0358 (7)0.0316 (6)0.0045 (5)0.0094 (5)0.0030 (5)
C100.0467 (8)0.0452 (8)0.0473 (7)0.0023 (6)0.0120 (6)0.0080 (6)
C120.0431 (9)0.1089 (19)0.0868 (14)0.0143 (11)0.0071 (9)0.0239 (14)
C130.0570 (11)0.0854 (14)0.0749 (12)0.0234 (10)0.0127 (9)0.0238 (11)
C140.0527 (10)0.0670 (11)0.0673 (10)0.0102 (8)0.0160 (8)0.0205 (9)
C150.0418 (8)0.0585 (9)0.0484 (8)0.0023 (7)0.0112 (6)0.0053 (7)
Geometric parameters (Å, º) top
Cl6—C61.7452 (18)C6—C71.404 (3)
O1—C11.2380 (17)C7—C81.369 (3)
O11—C121.358 (3)C8—C8A1.399 (2)
O11—C151.372 (2)C10—C151.431 (2)
N9—C8A1.364 (2)C12—C131.313 (4)
N9—C9A1.3791 (19)C13—C141.415 (3)
N9—H90.88 (2)C14—C151.352 (3)
C1—C9A1.438 (2)C3—H3A0.9700
C1—C21.4859 (19)C3—H3B0.9700
C2—C31.5098 (19)C4—H4A0.9700
C2—C101.341 (2)C4—H4B0.9700
C3—C41.506 (3)C5—H50.9300
C4—C4A1.481 (2)C7—H70.9300
C4A—C4B1.423 (2)C8—H80.9300
C4A—C9A1.3763 (18)C10—H100.9300
C4B—C8A1.417 (2)C12—H120.9300
C4B—C51.407 (2)C13—H130.9300
C5—C61.369 (2)C14—H140.9300
Cl6···C12i3.613 (3)C3···H142.7400
O1···N92.8733 (19)C5···H14v3.0700
O1···N9ii2.7935 (17)C9A···H4Bv2.9200
O1···H3Aiii2.6500C14···H3A2.8100
O1···H92.76 (2)C14···H3B2.9600
O1···H102.3400C15···H3B3.0300
O1···H4Aiii2.8000C15···H3A2.9300
O1···H9ii1.94 (2)H3A···O1vi2.6500
N9···O12.8733 (19)H3A···C142.8100
N9···O1ii2.7935 (17)H3A···C152.9300
N9···H4Aiii2.9000H3A···H142.2900
C1···C4Aiv3.5499 (18)H3B···C142.9600
C1···C4Biv3.585 (2)H3B···C153.0300
C2···C8Aiv3.4910 (19)H3B···H142.4400
C3···C143.183 (3)H4A···O1vi2.8000
C4A···C1iv3.5499 (18)H4A···N9vi2.9000
C4B···C1iv3.585 (2)H4A···H9vi2.5900
C7···C15iv3.589 (2)H4B···C1i2.8500
C8···C10iv3.457 (2)H4B···C2i2.9500
C8···C15iv3.524 (2)H4B···C9Ai2.9200
C8A···C2iv3.4910 (19)H9···O12.76 (2)
C9A···C9Aiv3.4944 (18)H9···H4Aiii2.5900
C10···C8iv3.457 (2)H9···O1ii1.94 (2)
C12···Cl6v3.613 (3)H9···C1ii3.08 (2)
C14···C33.183 (3)H10···O12.3400
C15···C8iv3.524 (2)H14···C32.7400
C15···C7iv3.589 (2)H14···H3A2.2900
C1···H4Bv2.8500H14···H3B2.4400
C1···H9ii3.08 (2)H14···C5i3.0700
C2···H4Bv2.9500
C12—O11—C15107.00 (18)O11—C12—C13110.8 (2)
C8A—N9—C9A108.18 (12)C12—C13—C14106.8 (2)
C9A—N9—H9127.4 (14)C13—C14—C15107.15 (18)
C8A—N9—H9123.9 (14)C10—C15—C14136.93 (18)
O1—C1—C9A121.75 (13)O11—C15—C10114.82 (16)
O1—C1—C2122.28 (14)O11—C15—C14108.20 (16)
C2—C1—C9A115.97 (11)C2—C3—H3A107.00
C3—C2—C10123.06 (13)C2—C3—H3B107.00
C1—C2—C3120.65 (13)C4—C3—H3A107.00
C1—C2—C10116.28 (13)C4—C3—H3B107.00
C2—C3—C4119.50 (13)H3A—C3—H3B107.00
C3—C4—C4A115.69 (14)C3—C4—H4A108.00
C4B—C4A—C9A106.65 (11)C3—C4—H4B108.00
C4—C4A—C4B130.64 (13)C4A—C4—H4A108.00
C4—C4A—C9A122.71 (14)C4A—C4—H4B108.00
C5—C4B—C8A119.86 (14)H4A—C4—H4B107.00
C4A—C4B—C5133.55 (13)C4B—C5—H5121.00
C4A—C4B—C8A106.56 (12)C6—C5—H5121.00
C4B—C5—C6117.29 (16)C6—C7—H7120.00
C5—C6—C7122.82 (16)C8—C7—H7120.00
Cl6—C6—C5119.03 (14)C7—C8—H8121.00
Cl6—C6—C7118.15 (13)C8A—C8—H8121.00
C6—C7—C8120.79 (16)C2—C10—H10116.00
C7—C8—C8A117.78 (16)C15—C10—H10116.00
N9—C8A—C8130.00 (16)O11—C12—H12125.00
C4B—C8A—C8121.44 (15)C13—C12—H12125.00
N9—C8A—C4B108.55 (13)C12—C13—H13127.00
C1—C9A—C4A125.36 (12)C14—C13—H13127.00
N9—C9A—C1124.59 (12)C13—C14—H14126.00
N9—C9A—C4A110.05 (13)C15—C14—H14126.00
C2—C10—C15128.47 (16)
C15—O11—C12—C130.5 (3)C9A—C4A—C4B—C8A0.88 (15)
C12—O11—C15—C10177.58 (17)C4—C4A—C9A—N9179.63 (13)
C12—O11—C15—C140.2 (2)C4—C4A—C9A—C11.0 (2)
C9A—N9—C8A—C4B0.48 (16)C4B—C4A—C9A—N91.21 (15)
C9A—N9—C8A—C8178.81 (16)C4B—C4A—C9A—C1178.14 (12)
C8A—N9—C9A—C1178.29 (13)C4A—C4B—C5—C6177.85 (15)
C8A—N9—C9A—C4A1.07 (15)C8A—C4B—C5—C60.2 (2)
O1—C1—C2—C3179.69 (13)C4A—C4B—C8A—N90.25 (16)
O1—C1—C2—C100.7 (2)C4A—C4B—C8A—C8179.62 (14)
C9A—C1—C2—C30.52 (18)C5—C4B—C8A—N9177.96 (13)
C9A—C1—C2—C10179.50 (13)C5—C4B—C8A—C81.4 (2)
O1—C1—C9A—N91.5 (2)C4B—C5—C6—Cl6179.12 (12)
O1—C1—C9A—C4A177.73 (13)C4B—C5—C6—C71.1 (3)
C2—C1—C9A—N9178.27 (12)Cl6—C6—C7—C8179.00 (14)
C2—C1—C9A—C4A2.48 (19)C5—C6—C7—C81.2 (3)
C1—C2—C3—C42.7 (2)C6—C7—C8—C8A0.1 (3)
C10—C2—C3—C4176.20 (15)C7—C8—C8A—N9177.91 (16)
C1—C2—C10—C15177.45 (15)C7—C8—C8A—C4B1.3 (2)
C3—C2—C10—C151.5 (2)C2—C10—C15—O11177.11 (16)
C2—C3—C4—C4A4.0 (2)C2—C10—C15—C140.1 (3)
C3—C4—C4A—C4B178.72 (14)O11—C12—C13—C140.5 (3)
C3—C4—C4A—C9A2.3 (2)C12—C13—C14—C150.4 (3)
C4—C4A—C4B—C52.1 (3)C13—C14—C15—O110.1 (2)
C4—C4A—C4B—C8A179.97 (15)C13—C14—C15—C10177.2 (2)
C9A—C4A—C4B—C5176.98 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y1/2, z+1/2; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1ii0.88 (2)1.94 (2)2.7935 (17)164 (2)
Symmetry code: (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H12ClNO2
Mr297.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.0985 (2), 6.1553 (1), 15.3887 (2)
β (°) 104.319 (1)
V3)1385.73 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.47
Crystal size (mm)0.48 × 0.34 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.389, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8660, 2834, 2676
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.10
No. of reflections2834
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.88 (2)1.94 (2)2.7935 (17)164 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDanish, I. A. & Rajendra Prasad, K. J. (2004). Indian J. Chem. Sect. B, 43, 618–623.  Google Scholar
First citationDanish, I. A. & Rajendra Prasad, K. J. (2005). Collect. Czech. Chem. Commun. 70, 223–236.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4428.  Web of Science PubMed Google Scholar
First citationKnölker, H. J. & Reddy, K. R. (2008). The Alkaloids, edited by G. A. Cordell, Vol. 65, pp. 1–430. Amsterdam: Academic Press.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds