inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K₂LaCl₅

Christian M. Schurz,^a Thomas Schleid^a and Gerd Meyer^{b*}

^aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ^bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany Correspondence e-mail: gerd.meyer@uni-koeln.de

Received 28 October 2010; accepted 4 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (La–Cl) = 0.003 Å; R factor = 0.059; wR factor = 0.142; data-to-parameter ratio = 37.5.

The ternary title compound, dipotassium lanthanum pentachloride, K₂LaCl₅, is isotypic with Y₂HfS₅ and various ternary rare-earth metal(III) halides with the general formula A_2MX_5 ($A = NH_4$, In¹, Na–Cs; M = La–Dy; X = Cl–I). The La³⁺ cations and three of the four symmetry-independent chloride anions are located on a crystallographic mirror plane. The La³⁺ cations are surrounded by seven chloride anions, each in the shape of a monocapped trigonal prism, whereas the coordination spheres of the K⁺ cations exhibit one more cap. Three of the four independent chloride anions reside in a fivefold cationic coordination, leading to distorted square pyramids. The fourth chloride anion has only four cationic neighbours, forming no specific polyhedron.

Related literature

For the U₃*Ch*₅-type structure (*Ch* = S and Se) and its relationship to Y₂HfS₅, see: Moseley *et al.* (1972); Potel *et al.* (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb₅Sb₃, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH₄, In^I, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer *et al.* (1985); Wickleder & Meyer (1995).

Experimental

Crystal data

 $\begin{array}{l} K_{2}LaCl_{5}\\ M_{r}=394.36\\ Orthorhombic, Pnma\\ a=12.7402 \ (8) \ \text{\AA}\\ b=8.8635 \ (6) \ \text{\AA}\\ c=8.0174 \ (5) \ \text{\AA} \end{array}$

 $V = 905.35 (10) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 7.02 \text{ mm}^{-1}$ T = 293 K $0.33 \times 0.28 \times 0.24 \text{ mm}$

Data collection

Stoe IPDS-I diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) $T_{min} = 0.106, T_{max} = 0.185$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.142$ S = 0.901650 reflections 1650 independent reflections 872 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.139$

12421 measured reflections

44 parameters $\Delta \rho_{\text{max}} = 1.58 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.64 \text{ e } \text{\AA}^{-3}$

Table 1Selected bond lengths (Å).

K-Cl1 ⁱ	3.160 (3)	La-Cl3 ^v	2.812 (3)
K-Cl2	3.177 (3)	La-Cl1 ⁱ	2.833 (3)
K-Cl1 ⁱⁱ	3.206 (3)	La-Cl2 ^{vi}	2.845 (3)
K-Cl2 ⁱⁱⁱ	3.234 (3)	La-Cl4	2.858 (2)
K-Cl3 ^{iv}	3.272 (4)	La-Cl4 ^{vii}	2.858 (2)
K-Cl4	3.304 (3)	La-Cl4 ^{viii}	2.895 (2)
K-Cl4 ⁱⁱⁱ	3.327 (3)	La-Cl4 ^{ix}	2.895 (2)
K-Cl3	3.351 (4)		

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (v) x, y, z - 1; (vi) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (vii) $x, -y + \frac{1}{2}, z$; (viii) $-x + 1, y - \frac{1}{2}, -z$; (ix) -x + 1, -y + 1, -z.

Data collection: *DIF4* (Stoe & Cie, 1992); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

Financial support by the state of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Furthermore our thanks go to Dr Falk Lissner for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5401).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brunton, G. D. & Steinfink, H. (1971). *Inorg. Chem.* **10**, 2301–2303.

- Jeitschko, W. & Donohue, P. C. (1975). Acta Cryst. B31, 1890–1895.
- Meyer, G. & Hüttl, E. (1983). Z. Anorg. Allg. Chem. 497, 191-198.
- Meyer, G., Soose, J., Moritz, A., Vitt, V. & Holljes, Th. (1985). Z. Anorg. Allg. Chem. 521, 161–172.
- Moseley, P. T., Brown, D. & Whittaker, B. (1972). Acta Cryst. B28, 1816–1821.Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Acad. Sci. Paris, 275, 1419–1421.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 740-742.

supporting information

Acta Cryst. (2010). E66, i78 [https://doi.org/10.1107/S1600536810045198]

K_2LaCl_5

Christian M. Schurz, Thomas Schleid and Gerd Meyer

S1. Comment

The ternary rare-earth metal(III) halide K₂LaCl₅ (Fig. 1) belongs to the A_2MX_5 series ($A = NH_4$, In, Na – Cs; M = La - Dy; X = Cl - I) (Meyer & Hüttl, 1983; Meyer *et al.*, 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U₃*Ch*₅ (*Ch* = S and Se) or the low-temperature phase of Yb₅Sb₃, respectively, as anti-isotypical arrangement. While the K⁺ cations have eight contacts to Cl⁻ anions (Fig. 2), the La³⁺ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms $[LaCl_7]^{4-}$ or $[KCl_8]^{7-}$ originate. For the lanthanum bearing ones they are linked *via* common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)⁻, (Cl2)⁻ and (Cl3)⁻, La³⁺ occupies the 4*c* position and shows the site symmetry *m*, while the (Cl4)⁻ anion and the K⁺ cation are located at the 8*d* position with the site symmetry 1.

S2. Experimental

Colourless, transparent, brick-shaped single crystals of K_2LaCl_5 were obtained as by-product from the reaction of potassium azide (KN₃), lanthanum (La), the corresponding sesquioxide (La₂O₃) and trichloride (LaCl₃) in the presence of KCl as flux with the purpose to synthesize $K_2La_4ONCl_9$. The mixture was transferred into a torch-sealed, evacuated, fused silica vessel, heated at 1123 K for seven days, followed by cooling to room temperature within 24 h.

Crystal structure of K₂LaCl₅ as viewed along [010].

Figure 2

Coordination sphere of the K⁺ cations with the shape of a bicapped trigonal prism. [Symmetry codes: (i) $-x^{+1/2}$, -y + 1, $z^{-1/2}$; (ii) $x^{+1/2}$, y, $-z^{+3/2}$; (iii) $-x^{+3/2}$, -y + 1, $z^{-1/2}$.]

Figure 3

View at the chain formed by edge-sharing monocapped trigonal prisms $[LaCl_7]^{4-}$ with its contacts to the K⁺ cations. Displacement ellipsoids are drawn at 90% probability level.

dipotassium lanthanum pentachloride

Crystal data

K₂LaCl₅ $M_r = 394.36$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 12.7402 (8) Å b = 8.8635 (6) Å c = 8.0174 (5) Å V = 905.35 (10) Å³ Z = 4

Data collection

Stoe IPDS-I diffractometer Radiation source: fine-focus sealed tube Graphite monochromator imaging plate detector system scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) $T_{min} = 0.106, T_{max} = 0.185$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.142$ S = 0.901650 reflections 44 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 720 $D_x = 2.893 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ $\theta = 3.4-33.0^{\circ}$ $\mu = 7.02 \text{ mm}^{-1}$ T = 293 KBricks, colourless $0.33 \times 0.28 \times 0.24 \text{ mm}$

12421 measured reflections 1650 independent reflections 872 reflections with $I > 2\sigma(I)$ $R_{int} = 0.139$ $\theta_{max} = 33.0^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -19 \rightarrow 19$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0799P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 1.58 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -2.64 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), $F_c^*=kF_c[1+0.001xF_c^2\lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0094 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
K	0.67125 (15)	0.4946 (3)	0.5481 (3)	0.0379 (5)	
La	0.50680 (5)	0.2500	0.07776 (8)	0.0248 (2)	
C11	-0.0065 (2)	0.7500	0.9311 (4)	0.0310 (6)	
Cl2	0.7911 (2)	0.2500	0.3299 (4)	0.0333 (7)	
C13	0.6828 (2)	0.2500	0.8662 (4)	0.0374 (8)	
Cl4	0.57990 (17)	0.5441 (3)	0.1663 (3)	0.0342 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K	0.0381 (10)	0.0363 (14)	0.0393 (11)	0.0014 (8)	-0.0014 (7)	-0.0070 (9)
La	0.0286 (3)	0.0234 (4)	0.0222 (3)	0.000	0.0022 (3)	0.000
C11	0.0347 (13)	0.0354 (17)	0.0228 (11)	0.000	0.0016 (12)	0.000
C12	0.0282 (13)	0.039 (2)	0.0322 (15)	0.000	0.0006 (11)	0.000
C13	0.0368 (15)	0.045 (2)	0.0308 (15)	0.000	0.0088 (12)	0.000
Cl4	0.0460 (12)	0.0267 (13)	0.0301 (10)	-0.0030 (9)	-0.0102 (8)	0.0025 (8)

Geometric parameters (Å, °)

K—Cll ⁱ	3.160 (3)	La—Cl4 ^x	2.895 (2)	
K—Cl2	3.177 (3)	La—K ^{vi}	4.389 (2)	
K—Cl1 ⁱⁱ	3.206 (3)	La—K ^{xi}	4.389 (2)	
K—Cl2 ⁱⁱⁱ	3.234 (3)	Cl1—La ^{xii}	2.833 (3)	
K-Cl3 ^{iv}	3.272 (4)	Cl1—K ^{xii}	3.160 (3)	
K—Cl4	3.304 (3)	Cl1—K ^{xiii}	3.160 (3)	
K—Cl4 ⁱⁱⁱ	3.327 (3)	Cl1—K ^{xiv}	3.206 (3)	
K—Cl3	3.351 (4)	Cl1—K ^{xv}	3.206 (3)	
K—K ^v	4.336 (5)	Cl2—La ^{xvi}	2.845 (3)	
K—La ^{vi}	4.389 (2)	Cl2—K ^v	3.177 (3)	
K—K ^{vi}	4.432 (4)	Cl2—K ^{xvii}	3.234 (3)	
K—K ⁱⁱⁱ	4.4838 (18)	Cl2—K ^{iv}	3.234 (3)	
La—Cl3 ^{vii}	2.812 (3)	Cl3—La ^{xviii}	2.812 (3)	
La—Cl1 ⁱ	2.833 (3)	Cl3—K ⁱⁱⁱ	3.272 (4)	
La—Cl2 ^{viii}	2.845 (3)	Cl3—K ^{xix}	3.272 (3)	
La—Cl4	2.858 (2)	Cl3—K ^v	3.351 (4)	
La—Cl4 ^v	2.858 (2)	Cl4—La ^x	2.895 (2)	

supporting information

La—Cl4 ^{ix}	2.895 (2)	Cl4—K ^{iv}	3.327 (3)
Cl1 ⁱ —K—Cl2	71.80 (8)	Cl3 ^{vii} —La—Cl4	83.68 (6)
Cl1 ⁱ —K—Cl1 ⁱⁱ	91.76 (5)	Cl1 ⁱ —La—Cl4	75.64 (5)
Cl2—K—Cl1 ⁱⁱ	148.21 (10)	Cl2 ^{viii} —La—Cl4	104.48 (5)
Cl1 ⁱ —K—Cl2 ⁱⁱⁱ	141.81 (10)	Cl3 ^{vii} —La—Cl4 ^v	83.68 (6)
Cl2—K—Cl2 ⁱⁱⁱ	142.29 (7)	Cl1 ⁱ —La—Cl4 ^v	75.64 (5)
Cl1 ⁱⁱ —K—Cl2 ⁱⁱⁱ	64.80 (8)	Cl2 ^{viii} —La—Cl4 ^v	104.48 (5)
Cl1 ⁱ —K—Cl3 ^{iv}	136.03 (10)	Cl4—La—Cl4 ^v	131.62 (9)
Cl2—K—Cl3 ^{iv}	87.34 (7)	Cl3 ^{vii} —La—Cl4 ^{ix}	84.06 (7)
Cl1 ⁱⁱ —K—Cl3 ^{iv}	86.34 (8)	Cl1 ⁱ —La—Cl4 ^{ix}	132.50 (6)
Cl2 ⁱⁱⁱ —K—Cl3 ^{iv}	75.11 (8)	Cl2 ^{viii} —La—Cl4 ^{ix}	78.89 (7)
Cl1 ⁱ —K—Cl4	65.30 (7)	Cl4—La—Cl4 ^{ix}	150.15 (6)
Cl2—K—Cl4	75.52 (8)	Cl4v—La—Cl4 ^{ix}	73.58 (7)
Cl1 ⁱⁱ —K—Cl4	72.88 (8)	Cl3 ^{vii} —La—Cl4 ^x	84.06 (7)
Cl2 ⁱⁱⁱ —K—Cl4	127.34 (10)	Cl1 ⁱ —La—Cl4 ^x	132.50 (6)
Cl3 ^{iv} —K—Cl4	72.27 (8)	Cl2 ^{viii} —La—Cl4 ^x	78.89 (7)
Cl1 ⁱ —K—Cl4 ⁱⁱⁱ	130.30 (10)	Cl4—La—Cl4 ^x	73.58 (7)
Cl2—K—Cl4 ⁱⁱⁱ	68.18 (8)	Cl4 ^v —La—Cl4 ^x	150.15 (6)
Cl1 ⁱⁱ —K—Cl4 ⁱⁱⁱ	136.98 (9)	Cl4 ^{ix} —La—Cl4 ^x	78.15 (9)
Cl2 ⁱⁱⁱ —K—Cl4 ⁱⁱⁱ	74.46 (8)	Cl3 ^{vii} —La—K ^{vi}	145.53 (4)
Cl3 ^{iv} —K—Cl4 ⁱⁱⁱ	69.93 (8)	Cl1 ⁱ —La—K ^{vi}	46.84 (5)
Cl4—K—Cl4 ⁱⁱⁱ	127.83 (9)	Cl2 ^{viii} —La—K ^{vi}	47.41 (5)
Cl1 ⁱ —K—Cl3	79.12 (8)	Cl4—La—K ^{vi}	61.85 (6)
Cl2—K—Cl3	87.50 (8)	Cl4 ^v —La—K ^{vi}	117.97 (6)
Cl1 ⁱⁱ —K—Cl3	116.64 (9)	Cl4 ^{ix} —La—K ^{vi}	126.15 (5)
Cl2 ⁱⁱⁱ —K—Cl3	85.10 (7)	Cl4 ^x —La—K ^{vi}	86.55 (6)
Cl3 ^{iv} —K—Cl3	139.63 (8)	Cl3 ^{vii} —La—K ^{xi}	145.53 (4)
Cl4—K—Cl3	143.76 (10)	Cl1 ⁱ —La—K ^{xi}	46.84 (5)
Cl4 ⁱⁱⁱ —K—Cl3	71.00 (8)	Cl2 ^{viii} —La—K ^{xi}	47.41 (5)
Cl1 ⁱ —K—K ^v	46.68 (5)	Cl4—La—K ^{xi}	117.97 (6)
Cl2—K—K ^v	46.96 (6)	Cl4v—La—K ^{xi}	61.85 (6)
Cl1 ⁱⁱ —K—K ^v	134.91 (5)	Cl4 ^{ix} —La—K ^{xi}	86.55 (6)
Cl2 ⁱⁱⁱ —K—K ^v	134.42 (6)	Cl4 ^x —La—K ^{xi}	126.15 (6)
$C13^{iv}$ —K—K ^v	133.77 (6)	K ^{vi} —La—K ^{xi}	62.09 (7)
Cl4—K—K ^v	97.63 (6)	La ^{xii} —Cl1—K ^{xii}	107.21 (8)
$Cl4^{iii}$ —K—K ^v	84.07 (6)	La ^{xii} —Cl1—K ^{xiii}	107.21 (8)
Cl3—K—K ^v	49.68 (5)	K ^{xii} —Cl1—K ^{xiii}	86.64 (11)
Cl1 ⁱ —K—La ^{vi}	102.32 (7)	La ^{xii} —Cl1—K ^{xiv}	93.04 (7)
Cl2—K—La ^{vi}	167.59 (9)	K ^{xii} —Cl1—K ^{xiv}	159.73 (10)
Cl1 ⁱⁱ —K—La ^{vi}	40.13 (5)	K ^{xiii} —Cl1—K ^{xiv}	88.24 (5)
Cl2 ⁱⁱⁱ —K—La ^{vi}	40.37 (6)	La ^{xii} —Cl1—K ^{xv}	93.04 (7)
Cl3 ^{iv} —K—La ^{vi}	103.97 (7)	K ^{xii} —Cl1—K ^{xv}	88.24 (5)
Cl4—K—La ^{vi}	112.49 (7)	K ^{xiii} —Cl1—K ^{xv}	159.73 (10)
Cl4 ⁱⁱⁱ —K—La ^{vi}	110.55 (6)	K ^{xiv} —Cl1—K ^{xv}	89.82 (11)
Cl3—K—La ^{vi}	80.57 (6)	La ^{xvi} —Cl2—K ^v	108.72 (9)
K ^v —K—La ^{vi}	121.04 (3)	La ^{xvi} —Cl2—K	108.72 (9)
Cll ⁱ —K—K ^{vi}	46.30 (6)	K ^v —Cl2—K	86.07 (11)

supporting information

Cl2—K—K ^{vi}	113.09 (10)	La ^{xvi} —Cl2—K ^{xvii}	92.22 (8)
Cl1 ⁱⁱ —K—K ^{vi}	45.45 (6)	Kv—Cl2—K ^{xvii}	88.75 (3)
$Cl2^{iii}$ — K — K^{vi}	104.62 (9)	K—Cl2—K ^{xvii}	159.00 (11)
Cl3 ^{iv} —K—K ^{vi}	117.84 (10)	La ^{xvi} —Cl2—K ^{iv}	92.22 (8)
Cl4—K—K ^{vi}	59.28 (6)	K ^v —Cl2—K ^{iv}	159.00 (11)
$Cl4^{iii}$ — K — K^{vi}	171.90 (11)	K—Cl2—K ^{iv}	88.75 (3)
Cl3—K—K ^{vi}	100.93 (9)	K ^{xvii} —Cl2—K ^{iv}	88.84 (11)
K ^v —K—K ^{vi}	91.23 (7)	La ^{xviii} —Cl3—K ⁱⁱⁱ	100.62 (8)
La ^{vi} —K—K ^{vi}	66.36 (5)	La ^{xviii} —Cl3—K ^{xix}	100.62 (8)
Cl1 ⁱ —K—K ⁱⁱⁱ	125.25 (10)	K ⁱⁱⁱ —Cl3—K ^{xix}	87.54 (11)
Cl2—K—K ⁱⁱⁱ	106.95 (10)	La ^{xviii} —Cl3—K	115.09 (9)
$C11^{ii}$ —K—K ⁱⁱⁱ	104.75 (8)	K ⁱⁱⁱ —Cl3—K	85.21 (4)
Cl2 ⁱⁱⁱ —K—K ⁱⁱⁱ	45.10 (6)	K ^{xix} —Cl3—K	144.27 (10)
Cl3 ^{iv} —K—K ⁱⁱⁱ	97.44 (9)	La ^{xviii} —Cl3—K ^v	115.10 (9)
Cl4—K—K ⁱⁱⁱ	169.44 (11)	K^{iii} —Cl3— K^{v}	144.27 (10)
Cl4 ⁱⁱⁱ —K—K ⁱⁱⁱ	47.24 (6)	K ^{xix} —Cl3—K ^v	85.21 (4)
Cl3—K—K ⁱⁱⁱ	46.65 (6)	K—Cl3—K ^v	80.64 (10)
K ^v —K—K ⁱⁱⁱ	91.22 (6)	La—Cl4—La ^x	106.42 (7)
La ^{vi} —K—K ⁱⁱⁱ	67.00 (4)	La—Cl4—K	102.93 (8)
K ^{vi} —K—K ⁱⁱⁱ	126.56 (8)	La ^x —Cl4—K	147.62 (10)
Cl3 ^{vii} —La—Cl1 ⁱ	127.18 (9)	La—Cl4—K ^{iv}	98.37 (8)
Cl3 ^{vii} —La—Cl2 ^{viii}	157.97 (10)	La ^x —Cl4—K ^{iv}	103.65 (8)
Cl1 ⁱ —La—Cl2 ^{viii}	74.85 (9)	K—Cl4—K ^{iv}	85.10 (6)

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) x+1/2, y, -z+3/2; (iii) -x+3/2, -y+1, z+1/2; (iv) -x+3/2, -y+1, z-1/2; (v) x, -y+1/2, z; (vi) -x+1, -y+1, -z+1; (vii) x, y, z-1; (viii) x-1/2, y, -z+1/2; (ix) -x+1, y-1/2, -z; (x) -x+1, y-1/2, -z+1; (xii) -x+1/2, -y+1, z+1/2; (xiii) -x+1/2, -y+1/2, z+1/2; (xiv) x-1/2, -y+3/2, -z+3/2; (xv) x-1/2, y, -z+3/2; (xvi) x+1/2, y, -z+1/2; (xvii) -x+3/2, y-1/2, z-1/2; (xviii) x, y, z+1; (xix) -x+3/2, y-1/2, z+1/2; (xviii) x, y, z+1; (xix) -x+3/2, y-1/2, z+1/2.