organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Hy­dr­oxy­phen­yl)-3-(3,4,5-tri­meth­oxy­phen­yl)thio­urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 21 November 2010; accepted 22 November 2010; online 27 November 2010)

In the title compound, C16H18N2O4S, the dihedral angle between the hy­droxy­phenyl ring and the plane of the thio­urea moiety is 54.53 (8)°. The H atoms of the NH groups of thio­urea are positioned anti to each other. In the crystal, inter­molecular N—H⋯S, N—H⋯O, and O—H⋯S hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to tyrosinase, see: Ha et al. (2007[Ha, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. S. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711-1715.]); Kubo et al. (2000[Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749-1755.]). For the development of tyrosinase inhibitors, see: Kojima et al. (1995[Kojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076-1080.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Casanola-Martin et al. (2006[Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324-330.]); Son et al. (2000[Son, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071-2074.]); Iida et al. (1995[Iida, K., Hase, K., Shimomura, K., Sudo, S. & Kadota, S. (1995). Planta Med. 61, 425-428.]). For thio­urea derivatives, see: Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]); Klabunde et al. (1998[Klabunde, T., Eicken, C. & Sacchettini, J. C. (1998). Nat. Struct. Biol. 5, 1084-1090.]); Criton (2006[Criton, M. (2006). FR Patent, 2880022, June 26.]); Daniel (2006[Daniel, J. (2006). US Patent, 2006135618, June 22.]); Yi et al. (2009[Yi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273-1277.]); Liu et al. (2009[Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773-1778.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O4S

  • Mr = 334.38

  • Monoclinic, P 21 /c

  • a = 10.5705 (5) Å

  • b = 12.8195 (7) Å

  • c = 12.4157 (7) Å

  • β = 99.434 (3)°

  • V = 1659.68 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.15 × 0.08 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 12193 measured reflections

  • 3166 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 0.94

  • 3166 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯S9i 0.81 (3) 2.61 (3) 3.383 (3) 160 (2)
N10—H10⋯O22ii 0.81 (2) 2.22 (3) 2.975 (3) 156 (2)
O17—H17⋯S9iii 0.97 (3) 2.25 (4) 3.211 (2) 173 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin production is primary responsible for the skin color, and melanin plays a key role in protecting human skin from the harmful UV-induced skin damages. Tyrosinase is the key enzyme (Ha et al., 2007; Kubo et al., 2000)) that converts tyrosine to melanin and its inhibitors are the target molecules to develop and research anti-pigmentation agents for the application to skin care. Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as ascorbic acid (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), arbutin (Casanola-Martin et al., 2006) and tropolone (Son et al., 2000; Iida et al., 1995). Some thiourea derivatives, such as phenylthiourea (Thanigaimalai et al., 2010; Klabunde et al., 1998; Criton, 2006), alkylthiourea (Daniel, 2006), thiosemicarbazone (Yi et al., 2009) and thiosemicarbazide (Liu et al., 2009) have been also reported. During our works on developing potent whitening agents preventing the inadequacies of current whitening agents (poor skin penetration and toxicity) and minimizing the inhibitory effects of melanin creation, we have synthesized the title compound from the reaction of 3,4,5-trimethoxyphenyl isothiocyanate and 4-aminophenol under ambient condition.

The 3,4,5-trimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.050 Å from the corresponding least-squares plane defined by the ten constituent atoms. The dihedral angle between the phenyl ring and the plane of thiourea moiety is 54.53 (8) °. In the crystal, intermolecular N—H···S, N—H···O, and O—H···S hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of thiourea are positioned anti to each other.

Related literature top

For general background to tyrosinase, see: Ha et al. (2007); Kubo et al. (2000). For the development of tyrosinase inhibitors, see: Kojima et al. (1995); Cabanes et al. (1994); Casanola-Martin et al. (2006); Son et al. (2000); Iida et al. (1995). For thiourea derivatives, see: Thanigaimalai et al. (2010); Klabunde et al. (1998); Criton (2006); Daniel (2006); Yi et al. (2009); Liu et al. (2009).

Experimental top

The 3,4,5-trimethoxyphenyl thiocyanate and 4-aminophenol were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound, (I), was prepared from the reaction of 3,4,5-trimethoxyphenyl isothiocyanate (0.20 g, 0.89 mmol) with 4-aminophenol (0.10 g, 1.10 mmol) in acetonitrile (6 ml). The reaction was completed within 30 min at room temperature. The reaction mixture was filtered rapidly and washed with n-hexane. Removal of the solvent gave a white solid (66% m.p. 499 K). Single crystals were obtained by slow evaporation of the ethanol at room temperature.

Refinement top

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Structure description top

Melanin production is primary responsible for the skin color, and melanin plays a key role in protecting human skin from the harmful UV-induced skin damages. Tyrosinase is the key enzyme (Ha et al., 2007; Kubo et al., 2000)) that converts tyrosine to melanin and its inhibitors are the target molecules to develop and research anti-pigmentation agents for the application to skin care. Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as ascorbic acid (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), arbutin (Casanola-Martin et al., 2006) and tropolone (Son et al., 2000; Iida et al., 1995). Some thiourea derivatives, such as phenylthiourea (Thanigaimalai et al., 2010; Klabunde et al., 1998; Criton, 2006), alkylthiourea (Daniel, 2006), thiosemicarbazone (Yi et al., 2009) and thiosemicarbazide (Liu et al., 2009) have been also reported. During our works on developing potent whitening agents preventing the inadequacies of current whitening agents (poor skin penetration and toxicity) and minimizing the inhibitory effects of melanin creation, we have synthesized the title compound from the reaction of 3,4,5-trimethoxyphenyl isothiocyanate and 4-aminophenol under ambient condition.

The 3,4,5-trimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.050 Å from the corresponding least-squares plane defined by the ten constituent atoms. The dihedral angle between the phenyl ring and the plane of thiourea moiety is 54.53 (8) °. In the crystal, intermolecular N—H···S, N—H···O, and O—H···S hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of thiourea are positioned anti to each other.

For general background to tyrosinase, see: Ha et al. (2007); Kubo et al. (2000). For the development of tyrosinase inhibitors, see: Kojima et al. (1995); Cabanes et al. (1994); Casanola-Martin et al. (2006); Son et al. (2000); Iida et al. (1995). For thiourea derivatives, see: Thanigaimalai et al. (2010); Klabunde et al. (1998); Criton (2006); Daniel (2006); Yi et al. (2009); Liu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H···S, N—H···O, and O—H···S hydrogen bonds (dashed lines).
1-(4-Hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)thiourea top
Crystal data top
C16H18N2O4SF(000) = 704
Mr = 334.38Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2485 reflections
a = 10.5705 (5) Åθ = 2.5–24.0°
b = 12.8195 (7) ŵ = 0.22 mm1
c = 12.4157 (7) ÅT = 296 K
β = 99.434 (3)°Plate, colourless
V = 1659.68 (15) Å30.15 × 0.08 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.050
φ and ω scansθmax = 26°, θmin = 2.0°
12193 measured reflectionsh = 138
3166 independent reflectionsk = 158
1723 reflections with I > 2σ(I)l = 1215
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.50 e Å3
3166 reflectionsΔρmin = 0.27 e Å3
219 parameters
Crystal data top
C16H18N2O4SV = 1659.68 (15) Å3
Mr = 334.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5705 (5) ŵ = 0.22 mm1
b = 12.8195 (7) ÅT = 296 K
c = 12.4157 (7) Å0.15 × 0.08 × 0.03 mm
β = 99.434 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1723 reflections with I > 2σ(I)
12193 measured reflectionsRint = 0.050
3166 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.50 e Å3
3166 reflectionsΔρmin = 0.27 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2918 (2)0.0884 (2)0.50738 (19)0.0393 (6)
C20.3504 (2)0.1779 (2)0.4769 (2)0.0418 (6)
H20.30750.22140.42290.05*
C30.4737 (2)0.2018 (2)0.5278 (2)0.0433 (7)
C40.5374 (2)0.1378 (2)0.6101 (2)0.0460 (7)
C50.4764 (2)0.04838 (19)0.63858 (19)0.0373 (6)
C60.3541 (2)0.0237 (2)0.5875 (2)0.0397 (6)
H60.3140.03640.60710.048*
N70.1622 (2)0.06459 (18)0.4621 (2)0.0459 (6)
H70.119 (2)0.045 (2)0.507 (2)0.055 (9)*
C80.1061 (2)0.06515 (19)0.3571 (2)0.0410 (6)
S90.05561 (6)0.05352 (6)0.32614 (6)0.0539 (3)
N100.1831 (2)0.0730 (2)0.28268 (18)0.0489 (7)
H100.259 (2)0.0614 (19)0.302 (2)0.051 (8)*
C110.1464 (2)0.0882 (2)0.1678 (2)0.0420 (7)
C120.1835 (2)0.0159 (2)0.0971 (2)0.0486 (7)
H120.22690.04410.12410.058*
C130.1559 (2)0.0330 (2)0.0148 (2)0.0492 (7)
H130.18210.0150.06290.059*
C140.0900 (3)0.1207 (2)0.0543 (2)0.0505 (7)
C150.0518 (3)0.1923 (2)0.0164 (2)0.0548 (8)
H150.0060.25120.01070.066*
C160.0815 (2)0.1766 (2)0.1278 (2)0.0501 (7)
H160.05770.22590.17570.06*
O170.0601 (2)0.14204 (17)0.16395 (17)0.0751 (7)
H170.067 (3)0.083 (3)0.211 (3)0.113*
O180.53853 (18)0.28931 (15)0.50440 (16)0.0652 (6)
C190.4781 (3)0.3585 (2)0.4229 (3)0.0756 (10)
H19A0.53480.41550.41510.113*
H19B0.40060.38490.44370.113*
H19C0.4580.3220.35470.113*
O200.6530 (2)0.1626 (2)0.67179 (19)0.0943 (8)
C210.7566 (3)0.1977 (3)0.6305 (4)0.1032 (14)
H21A0.82550.21170.68920.155*
H21B0.73430.26060.58980.155*
H21C0.7830.14570.58320.155*
O220.54582 (15)0.01140 (14)0.71848 (14)0.0501 (5)
C230.4836 (3)0.0992 (2)0.7567 (2)0.0669 (9)
H23A0.54240.13480.81170.1*
H23B0.4560.14580.69690.1*
H23C0.41060.07610.78710.1*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (13)0.0531 (16)0.0315 (16)0.0018 (13)0.0026 (12)0.0023 (13)
C20.0410 (15)0.0485 (16)0.0356 (16)0.0011 (14)0.0058 (13)0.0035 (12)
C30.0436 (15)0.0451 (16)0.0428 (17)0.0060 (14)0.0114 (14)0.0013 (14)
C40.0330 (14)0.0615 (18)0.0408 (17)0.0099 (14)0.0024 (13)0.0017 (14)
C50.0342 (13)0.0489 (16)0.0289 (15)0.0021 (13)0.0054 (12)0.0002 (12)
C60.0350 (14)0.0475 (15)0.0368 (16)0.0040 (13)0.0061 (12)0.0015 (12)
N70.0326 (12)0.0695 (17)0.0347 (15)0.0071 (12)0.0027 (12)0.0069 (12)
C80.0348 (13)0.0508 (16)0.0358 (17)0.0001 (13)0.0008 (13)0.0021 (13)
S90.0326 (4)0.0859 (6)0.0421 (5)0.0061 (4)0.0031 (3)0.0022 (4)
N100.0282 (12)0.0802 (18)0.0378 (16)0.0027 (13)0.0036 (11)0.0030 (12)
C110.0302 (13)0.0629 (18)0.0328 (17)0.0070 (13)0.0050 (12)0.0018 (14)
C120.0377 (15)0.0613 (18)0.0468 (19)0.0016 (14)0.0074 (14)0.0023 (15)
C130.0494 (16)0.0583 (18)0.0414 (19)0.0069 (15)0.0120 (14)0.0037 (14)
C140.0537 (17)0.0601 (19)0.0368 (18)0.0173 (16)0.0043 (15)0.0055 (15)
C150.0609 (18)0.0531 (18)0.050 (2)0.0024 (15)0.0070 (16)0.0067 (15)
C160.0483 (16)0.0567 (18)0.045 (2)0.0036 (15)0.0070 (14)0.0031 (14)
O170.1081 (19)0.0753 (15)0.0396 (14)0.0098 (14)0.0056 (13)0.0103 (11)
O180.0618 (13)0.0624 (13)0.0684 (14)0.0216 (11)0.0022 (11)0.0138 (11)
C190.087 (2)0.0554 (19)0.086 (3)0.0068 (18)0.020 (2)0.0201 (19)
O200.0543 (14)0.133 (2)0.0873 (18)0.0382 (14)0.0146 (13)0.0378 (15)
C210.049 (2)0.092 (3)0.163 (4)0.006 (2)0.001 (2)0.020 (3)
O220.0386 (10)0.0654 (12)0.0443 (12)0.0019 (9)0.0011 (9)0.0128 (10)
C230.0617 (19)0.078 (2)0.060 (2)0.0053 (18)0.0080 (17)0.0287 (17)
Geometric parameters (Å, º) top
C1—C61.377 (3)C12—H120.93
C1—C21.386 (3)C13—C141.371 (4)
C1—N71.426 (3)C13—H130.93
C2—C31.387 (3)C14—O171.374 (3)
C2—H20.93C14—C151.376 (4)
C3—O181.371 (3)C15—C161.381 (4)
C3—C41.394 (3)C15—H150.93
C4—O201.370 (3)C16—H160.93
C4—C51.389 (3)O17—H170.97 (3)
C5—O221.368 (3)O18—C191.416 (3)
C5—C61.380 (3)C19—H19A0.96
C6—H60.93C19—H19B0.96
N7—C81.341 (3)C19—H19C0.96
N7—H70.81 (3)O20—C211.360 (4)
C8—N101.331 (3)C21—H21A0.96
C8—S91.696 (2)C21—H21B0.96
N10—C111.429 (3)C21—H21C0.96
N10—H100.81 (2)O22—C231.423 (3)
C11—C161.375 (3)C23—H23A0.96
C11—C121.377 (3)C23—H23B0.96
C12—C131.389 (3)C23—H23C0.96
C6—C1—C2120.9 (2)C14—C13—H13120.1
C6—C1—N7118.1 (2)C12—C13—H13120.1
C2—C1—N7120.9 (2)C13—C14—O17122.6 (3)
C1—C2—C3119.1 (2)C13—C14—C15120.3 (3)
C1—C2—H2120.4O17—C14—C15117.1 (3)
C3—C2—H2120.4C14—C15—C16120.0 (3)
O18—C3—C2123.3 (2)C14—C15—H15120
O18—C3—C4116.0 (2)C16—C15—H15120
C2—C3—C4120.6 (2)C11—C16—C15120.0 (3)
O20—C4—C5117.2 (2)C11—C16—H16120
O20—C4—C3123.5 (2)C15—C16—H16120
C5—C4—C3118.9 (2)C14—O17—H17115 (2)
O22—C5—C6123.7 (2)C3—O18—C19118.8 (2)
O22—C5—C4115.5 (2)O18—C19—H19A109.5
C6—C5—C4120.7 (2)O18—C19—H19B109.5
C1—C6—C5119.7 (2)H19A—C19—H19B109.5
C1—C6—H6120.2O18—C19—H19C109.5
C5—C6—H6120.2H19A—C19—H19C109.5
C8—N7—C1128.7 (2)H19B—C19—H19C109.5
C8—N7—H7117.2 (19)C21—O20—C4124.5 (3)
C1—N7—H7113.9 (18)O20—C21—H21A109.5
N10—C8—N7116.9 (2)O20—C21—H21B109.5
N10—C8—S9123.9 (2)H21A—C21—H21B109.5
N7—C8—S9119.23 (19)O20—C21—H21C109.5
C8—N10—C11127.3 (2)H21A—C21—H21C109.5
C8—N10—H10117.7 (18)H21B—C21—H21C109.5
C11—N10—H10114.6 (18)C5—O22—C23117.54 (19)
C16—C11—C12120.1 (2)O22—C23—H23A109.5
C16—C11—N10120.7 (2)O22—C23—H23B109.5
C12—C11—N10119.1 (2)H23A—C23—H23B109.5
C11—C12—C13119.8 (3)O22—C23—H23C109.5
C11—C12—H12120.1H23A—C23—H23C109.5
C13—C12—H12120.1H23B—C23—H23C109.5
C14—C13—C12119.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S9i0.81 (3)2.61 (3)3.383 (3)160 (2)
N10—H10···O22ii0.81 (2)2.22 (3)2.975 (3)156 (2)
O17—H17···S9iii0.97 (3)2.25 (4)3.211 (2)173 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC16H18N2O4S
Mr334.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.5705 (5), 12.8195 (7), 12.4157 (7)
β (°) 99.434 (3)
V3)1659.68 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.15 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12193, 3166, 1723
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 0.94
No. of reflections3166
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S9i0.81 (3)2.61 (3)3.383 (3)160 (2)
N10—H10···O22ii0.81 (2)2.22 (3)2.975 (3)156 (2)
O17—H17···S9iii0.97 (3)2.25 (4)3.211 (2)173 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y, z.
 

Acknowledgements

This work is the result of a study performed under the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Technology(MEST) and the National Research Foundation of Korea (NRF).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationCasanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCriton, M. (2006). FR Patent, 2880022, June 26.  Google Scholar
First citationDaniel, J. (2006). US Patent, 2006135618, June 22.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. S. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711–1715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIida, K., Hase, K., Shimomura, K., Sudo, S. & Kadota, S. (1995). Planta Med. 61, 425–428.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKlabunde, T., Eicken, C. & Sacchettini, J. C. (1998). Nat. Struct. Biol. 5, 1084–1090.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076–1080.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773–1778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071–2074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds