organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(E)-(2-hy­dr­oxy-1-naphth­yl)methyl­­idene]carbazate

aDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China
*Correspondence e-mail: shenglq@fync.edu.cn

(Received 17 October 2010; accepted 28 October 2010; online 6 November 2010)

The title compound, C13H12N2O3, has an E configuration with respect to the C=N bond: the conformation is stabilized by an intramolecular O—H⋯N hydrogen bond. In the crystal, an N—H⋯O interaction links the molecules into a C(4) chain along [100].

Related literature

For the naphthalene group as a fluoro­phore, see: Li et al. (2010[Li, L., Dang, Y.-Q. H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618-621.]); Iijima et al. (2010[Iijima, T., Momotake, A., Shinohare, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.]). For a related structure and bond length, see: Xu et al. (2009[Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.]). For the synthetic method, see: Zhang et al. (1999[Zhang, W.-X., Li, J., Si, S.-F. J.-J., Ma, C.-Q. & Jiang, D.-H. (1999). Chin. J. Inorg. Chem. 15, 571-576.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For applications of Schiff base–metal complexes, see: Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O3

  • Mr = 244.25

  • Orthorhombic, P 21 21 21

  • a = 5.1754 (3) Å

  • b = 9.2787 (5) Å

  • c = 23.6766 (12) Å

  • V = 1136.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.40 × 0.36 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.960, Tmax = 0.970

  • 6329 measured reflections

  • 1562 independent reflections

  • 1120 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.058

  • S = 1.09

  • 1562 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.6332 (18) 146
N2—H2⋯O2i 0.86 2.11 2.9626 (18) 170
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Iijima et al., 2010). Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). As part of an ongoing study of Schiff bases incorporating the naphthalene group (Xu et al., 2009), we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. The title molecule, adopts an E or trans configuration with respect to the C=N bond while the lengths and angles are within normal ranges. The C=N bond length is 1.288 (2) Å, a little longer than schiff base C=N bond length (1.280 (15) Å) (Xu et al., 2009).The crystal structure of (I) is stabilized by one intramolecular O—H···N interaction with H···N distances 1.91Å and O—H···N angles is 146.1° and one intermolecular N—H···O interaction with H···O distances 2.11Å and N—H···O angles is 169.8°, Table 1. The molecules are linked in C(4) chains along [100], (Bernstein et al., 1995), Fig. 2.

Related literature top

For the naphthalene group as a fluorophore, see: Li et al. (2010); Iijima et al. (2010). For a related structure and bond length, see: Xu et al. (2009). For the synthetic method, see: Zhang et al. (1999). For related literature, see: Bernstein et al. (1995); Cozzi (2004).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. The title compound was prepared according to the reported procedure (Zhang et al., 1999). A solution of methyl carbazate (0.09 g, 1 mmol) in 5 ml of ethanol was added slowly to a solution of 2-hydro-1-naphthaldehyde (0.172 g, 1 mmol) in 15 ml absolute ethanol, under heating and stirring. The mixture was refluxed for 3 h, then cooled to room temperature and left to stand in air for 5 days. Yellow block-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) for the CH, while Uiso(H) = 1.5Ueq(C) for the CH3 groups. The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and Uiso(H) = 1.2Ueq(N). The hydroxyl H atoms were located from difference maps and refined with the O—H distances restrained to 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Iijima et al., 2010). Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). As part of an ongoing study of Schiff bases incorporating the naphthalene group (Xu et al., 2009), we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. The title molecule, adopts an E or trans configuration with respect to the C=N bond while the lengths and angles are within normal ranges. The C=N bond length is 1.288 (2) Å, a little longer than schiff base C=N bond length (1.280 (15) Å) (Xu et al., 2009).The crystal structure of (I) is stabilized by one intramolecular O—H···N interaction with H···N distances 1.91Å and O—H···N angles is 146.1° and one intermolecular N—H···O interaction with H···O distances 2.11Å and N—H···O angles is 169.8°, Table 1. The molecules are linked in C(4) chains along [100], (Bernstein et al., 1995), Fig. 2.

For the naphthalene group as a fluorophore, see: Li et al. (2010); Iijima et al. (2010). For a related structure and bond length, see: Xu et al. (2009). For the synthetic method, see: Zhang et al. (1999). For related literature, see: Bernstein et al. (1995); Cozzi (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional structure of the title compound formed by intermolecular hydrogen bonds viewed along the c axis. The intra- and intermolecular hydrogen bonds are shown as pink dashed lines.
Methyl 3-[(E)-2-hydroxy-1-naphthyl)methylidene]carbazate top
Crystal data top
C13H12N2O3F(000) = 512
Mr = 244.25Dx = 1.427 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2986 reflections
a = 5.1754 (3) Åθ = 3.4–29.1°
b = 9.2787 (5) ŵ = 0.10 mm1
c = 23.6766 (12) ÅT = 291 K
V = 1136.97 (11) Å3Block, yellow
Z = 40.40 × 0.36 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1562 independent reflections
Radiation source: Enhance (Mo) X-ray Source1120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 27.9°, θmin = 3.4°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.960, Tmax = 0.970l = 3029
6329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
1562 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C13H12N2O3V = 1136.97 (11) Å3
Mr = 244.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1754 (3) ŵ = 0.10 mm1
b = 9.2787 (5) ÅT = 291 K
c = 23.6766 (12) Å0.40 × 0.36 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1562 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1120 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.970Rint = 0.031
6329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
1562 reflectionsΔρmin = 0.13 e Å3
165 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro,(Oxford Diffraction 2009). Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7358 (4)0.2360 (2)0.64442 (8)0.0492 (5)
H1A0.83420.28510.67110.059*
C20.7869 (4)0.2539 (2)0.58880 (8)0.0538 (5)
H2A0.91750.31630.57740.065*
C30.6428 (4)0.1785 (2)0.54858 (8)0.0529 (5)
H30.68000.19010.51040.064*
C40.4483 (4)0.0881 (2)0.56460 (7)0.0460 (5)
H40.35390.03970.53710.055*
C50.3871 (3)0.06633 (18)0.62220 (7)0.0363 (4)
C60.5348 (3)0.14347 (18)0.66256 (7)0.0402 (4)
C70.4774 (4)0.1259 (2)0.72052 (7)0.0478 (5)
H70.57100.17800.74710.057*
C80.2899 (4)0.0355 (2)0.73821 (7)0.0476 (5)
H80.25640.02560.77660.057*
C90.1459 (3)0.04352 (19)0.69896 (7)0.0406 (4)
C100.1867 (3)0.02866 (18)0.64118 (7)0.0354 (4)
C110.0239 (3)0.10114 (18)0.60072 (6)0.0396 (4)
H110.04710.08130.56260.047*
C120.4938 (4)0.33819 (19)0.57803 (6)0.0397 (4)
C130.7307 (4)0.4828 (2)0.64025 (8)0.0554 (5)
H13A0.89170.43950.62940.083*
H13B0.73720.50870.67950.083*
H13C0.70140.56770.61790.083*
N10.1522 (3)0.19204 (16)0.61512 (6)0.0410 (4)
N20.2962 (3)0.24594 (17)0.57083 (5)0.0455 (4)
H20.25780.21930.53710.055*
O10.0360 (3)0.13205 (14)0.72081 (5)0.0553 (4)
H10.11650.17050.69510.083*
O20.6293 (2)0.37715 (15)0.53872 (5)0.0548 (4)
O30.5234 (2)0.38178 (12)0.63113 (4)0.0462 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (11)0.0476 (11)0.0551 (11)0.0007 (12)0.0054 (9)0.0056 (10)
C20.0448 (11)0.0570 (12)0.0597 (12)0.0065 (12)0.0032 (11)0.0074 (11)
C30.0487 (12)0.0657 (14)0.0443 (10)0.0078 (12)0.0017 (10)0.0070 (10)
C40.0413 (11)0.0562 (12)0.0404 (9)0.0019 (11)0.0027 (9)0.0043 (9)
C50.0347 (9)0.0353 (9)0.0388 (9)0.0067 (9)0.0037 (8)0.0020 (8)
C60.0385 (10)0.0368 (10)0.0453 (9)0.0044 (11)0.0051 (9)0.0009 (9)
C70.0546 (11)0.0499 (11)0.0390 (9)0.0025 (13)0.0065 (10)0.0068 (9)
C80.0570 (12)0.0542 (12)0.0315 (9)0.0008 (12)0.0029 (9)0.0013 (9)
C90.0406 (10)0.0410 (10)0.0404 (10)0.0028 (10)0.0001 (9)0.0058 (9)
C100.0359 (10)0.0358 (9)0.0346 (9)0.0044 (10)0.0040 (8)0.0002 (8)
C110.0401 (10)0.0427 (10)0.0359 (9)0.0007 (12)0.0000 (8)0.0025 (8)
C120.0427 (10)0.0428 (10)0.0336 (9)0.0023 (11)0.0029 (9)0.0007 (8)
C130.0492 (12)0.0622 (12)0.0547 (11)0.0121 (13)0.0041 (10)0.0117 (10)
N10.0422 (9)0.0446 (9)0.0362 (7)0.0021 (9)0.0076 (7)0.0017 (7)
N20.0503 (9)0.0556 (9)0.0305 (7)0.0110 (10)0.0022 (7)0.0015 (7)
O10.0580 (8)0.0671 (9)0.0406 (6)0.0135 (9)0.0007 (7)0.0059 (7)
O20.0601 (8)0.0684 (9)0.0360 (6)0.0118 (9)0.0126 (6)0.0004 (7)
O30.0506 (7)0.0528 (7)0.0352 (6)0.0126 (8)0.0053 (6)0.0075 (6)
Geometric parameters (Å, º) top
C1—C21.353 (2)C9—O11.3523 (19)
C1—C61.416 (2)C9—C101.391 (2)
C1—H1A0.9300C10—C111.442 (2)
C2—C31.397 (3)C11—N11.288 (2)
C2—H2A0.9300C11—H110.9300
C3—C41.364 (2)C12—O21.2203 (19)
C3—H30.9300C12—O31.3294 (19)
C4—C51.414 (2)C12—N21.344 (2)
C4—H40.9300C13—O31.441 (2)
C5—C61.418 (2)C13—H13A0.9600
C5—C101.433 (2)C13—H13B0.9600
C6—C71.413 (2)C13—H13C0.9600
C7—C81.350 (2)N1—N21.3804 (18)
C7—H70.9300N2—H20.8600
C8—C91.399 (2)O1—H10.8200
C8—H80.9300
C2—C1—C6120.88 (18)O1—C9—C10122.83 (16)
C2—C1—H1A119.6O1—C9—C8115.79 (15)
C6—C1—H1A119.6C10—C9—C8121.38 (17)
C1—C2—C3119.82 (19)C9—C10—C5118.63 (16)
C1—C2—H2A120.1C9—C10—C11121.23 (16)
C3—C2—H2A120.1C5—C10—C11120.08 (14)
C4—C3—C2120.82 (17)N1—C11—C10122.89 (14)
C4—C3—H3119.6N1—C11—H11118.6
C2—C3—H3119.6C10—C11—H11118.6
C3—C4—C5121.39 (17)O2—C12—O3124.41 (18)
C3—C4—H4119.3O2—C12—N2121.93 (15)
C5—C4—H4119.3O3—C12—N2113.66 (15)
C4—C5—C6117.21 (16)O3—C13—H13A109.5
C4—C5—C10123.50 (16)O3—C13—H13B109.5
C6—C5—C10119.29 (15)H13A—C13—H13B109.5
C7—C6—C1121.25 (17)O3—C13—H13C109.5
C7—C6—C5118.88 (17)H13A—C13—H13C109.5
C1—C6—C5119.87 (15)H13B—C13—H13C109.5
C8—C7—C6121.60 (17)C11—N1—N2114.73 (13)
C8—C7—H7119.2C12—N2—N1123.02 (13)
C6—C7—H7119.2C12—N2—H2118.5
C7—C8—C9120.18 (16)N1—N2—H2118.5
C7—C8—H8119.9C9—O1—H1109.5
C9—C8—H8119.9C12—O3—C13115.17 (14)
C6—C1—C2—C31.1 (3)C5—C10—C9—O1179.05 (14)
C1—C2—C3—C40.9 (3)C5—C10—C9—C82.1 (2)
C5—C4—C3—C20.6 (3)C11—C10—C9—O14.0 (3)
C6—C5—C4—C30.6 (3)C11—C10—C9—C8174.82 (16)
C10—C5—C4—C3179.27 (16)C9—C10—C5—C4178.98 (18)
C2—C1—C6—C7178.94 (18)C9—C10—C5—C60.9 (2)
C2—C1—C6—C51.1 (3)C11—C10—C5—C44.0 (2)
C4—C5—C6—C7179.26 (17)C11—C10—C5—C6176.13 (15)
C10—C5—C6—C70.9 (2)C9—C10—C11—N16.0 (2)
C4—C5—C6—C10.8 (2)C5—C10—C11—N1177.12 (14)
C10—C5—C6—C1179.04 (15)N2—N1—C11—C10177.35 (15)
C1—C6—C7—C8178.46 (16)N1—N2—C12—O2175.09 (16)
C5—C6—C7—C81.5 (3)N1—N2—C12—O35.3 (2)
C9—C8—C7—C60.2 (3)C12—N2—N1—C11177.71 (15)
C7—C8—C9—O1179.49 (16)C13—O3—C12—O20.6 (3)
C7—C8—C9—C101.6 (3)C13—O3—C12—N2178.95 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.6332 (18)146
N2—H2···O2i0.862.112.9626 (18)170
Symmetry code: (i) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H12N2O3
Mr244.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)5.1754 (3), 9.2787 (5), 23.6766 (12)
V3)1136.97 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.36 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.960, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6329, 1562, 1120
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.058, 1.09
No. of reflections1562
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.6332 (18)146.1
N2—H2···O2i0.862.112.9626 (18)169.8
Symmetry code: (i) x+1/2, y1/2, z+1.
 

Acknowledgements

This work was supported by the Key Project of Science and Technology of Anhui (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIijima, T., Momotake, A., Shinohare, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, L., Dang, Y.-Q. H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618–621.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-X., Li, J., Si, S.-F. J.-J., Ma, C.-Q. & Jiang, D.-H. (1999). Chin. J. Inorg. Chem. 15, 571–576.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds