organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­anilinium picrate

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: cch510@126.com

(Received 30 October 2010; accepted 13 November 2010; online 20 November 2010)

In the title compound, C6H9N2+·C6H2N3O7, the three nitro groups of the anion are twisted from the central benzene ring at dihedral angles of 5.4 (1), 27.1 (1) and 32.9 (1)°. In the crystal, inter­molecular N—H⋯O, N—H⋯(O,O) and N—H⋯N hydrogen bonds link the cations and anions into layers parallel to the bc plane.

Related literature

For the crystal structures of picric acid complexes, see: Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.]); Li (2009[Li, Y. (2009). Acta Cryst. E65, o2566.]); Saminathan et al. (2007[Saminathan, K. & Sivakumar, K. (2007). Acta Cryst. E63, o236-o238.]); Sivaramkumar et al. (2010[Sivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1820.]). For their conformational features and charge-transfer processes, see: Nagata et al. (1995[Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051-1058.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H2N3O7

  • Mr = 337.26

  • Monoclinic, P 21 /c

  • a = 13.2938 (11) Å

  • b = 6.9959 (6) Å

  • c = 15.2967 (13) Å

  • β = 92.629 (1)°

  • V = 1421.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.987

  • 16897 measured reflections

  • 3514 independent reflections

  • 2394 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 0.93

  • 3514 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.922 (18) 2.048 (19) 2.9607 (18) 170.0 (14)
N2—H2A⋯O1 0.946 (16) 1.852 (17) 2.7731 (16) 163.9 (14)
N2—H2A⋯O7 0.946 (16) 2.514 (15) 2.8558 (17) 101.4 (11)
N1—H1B⋯O7i 0.813 (18) 2.424 (19) 3.2264 (17) 169.6 (16)
N2—H2A⋯O1ii 0.946 (16) 2.581 (16) 2.9872 (18) 106.2 (11)
N2—H2B⋯O2ii 0.858 (17) 2.448 (16) 3.122 (2) 135.9 (14)
N2—H2B⋯O6iii 0.858 (17) 2.556 (16) 2.9956 (17) 112.9 (12)
N2—H2C⋯N1iv 0.858 (18) 2.063 (18) 2.904 (2) 166.1 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Picric acid is widely used in munitions and explosives. In microscopy, it also serves as a reagent for staining samples, e.g., Gram staining. The crystal structures of a large number of picrate salts and picric acid complexes have been studied (Harrison et al., 2007; Li, 2009; Saminathan et al., 2007; Sivaramkumar et al., 2010) to understand the conformational features and charge transfer processes (Nagata et al., 1995; Smith et al., 2004). We herein report the crystal structure of the title compound (I) (Fig. 1).

In (I), three nitro groups of the anion are twisted from the central benzene ring at 5.4 (1), 27.1 (1) and 32.9 (1)°, respectively. In the crystal structure, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link cations and anions into layers parallel to bc plane.

Related literature top

For the crystal structures of picric acid complexes, see: Harrison et al. (2007); Li (2009); Saminathan et al. (2007); Sivaramkumar et al. (2010). For their conformational features and charge-transfer processes, see: Nagata et al. (1995); Smith et al. (2004).

Experimental top

Benzene-1,2-diamine (0.32 g, 3.0 mmol) and picric acid (0.69 g, 3.0 mmol) were mixed in 15 ml e thanol. The mixture was kept at room temperature for two weeks, after which time needle like yellow crystals (0.16 x 0.12 x 0.10 mm) suitable for single-crystal X-ray diffraction were obtained.

Refinement top

The O– and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.95 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Picric acid is widely used in munitions and explosives. In microscopy, it also serves as a reagent for staining samples, e.g., Gram staining. The crystal structures of a large number of picrate salts and picric acid complexes have been studied (Harrison et al., 2007; Li, 2009; Saminathan et al., 2007; Sivaramkumar et al., 2010) to understand the conformational features and charge transfer processes (Nagata et al., 1995; Smith et al., 2004). We herein report the crystal structure of the title compound (I) (Fig. 1).

In (I), three nitro groups of the anion are twisted from the central benzene ring at 5.4 (1), 27.1 (1) and 32.9 (1)°, respectively. In the crystal structure, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link cations and anions into layers parallel to bc plane.

For the crystal structures of picric acid complexes, see: Harrison et al. (2007); Li (2009); Saminathan et al. (2007); Sivaramkumar et al. (2010). For their conformational features and charge-transfer processes, see: Nagata et al. (1995); Smith et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Aminoanilinium 2,4,6-trinitrophenolate top
Crystal data top
C6H9N2+·C6H2N3O7F(000) = 696
Mr = 337.26Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3836 reflections
a = 13.2938 (11) Åθ = 2.7–24.9°
b = 6.9959 (6) ŵ = 0.13 mm1
c = 15.2967 (13) ÅT = 298 K
β = 92.629 (1)°Block, yellow
V = 1421.1 (2) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3514 independent reflections
Radiation source: fine-focus sealed tube2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
phi and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1717
Tmin = 0.979, Tmax = 0.987k = 99
16897 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
3514 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H9N2+·C6H2N3O7V = 1421.1 (2) Å3
Mr = 337.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2938 (11) ŵ = 0.13 mm1
b = 6.9959 (6) ÅT = 298 K
c = 15.2967 (13) Å0.16 × 0.12 × 0.10 mm
β = 92.629 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2394 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.063
16897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.22 e Å3
3514 reflectionsΔρmin = 0.29 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38865 (11)0.36646 (19)0.40921 (9)0.0336 (3)
C20.34942 (10)0.3253 (2)0.48958 (9)0.0325 (3)
C30.24721 (11)0.3359 (2)0.50234 (12)0.0467 (4)
H30.22250.30840.55680.056*
C40.18224 (13)0.3879 (2)0.43324 (16)0.0612 (5)
H40.11330.39380.44070.073*
C50.22011 (15)0.4306 (2)0.35353 (15)0.0617 (5)
H50.17640.46550.30710.074*
C60.32123 (14)0.4227 (2)0.34162 (11)0.0484 (4)
H60.34550.45530.28750.058*
C70.68910 (10)0.11086 (18)0.55689 (8)0.0280 (3)
C80.77757 (10)0.1384 (2)0.50680 (9)0.0315 (3)
C90.87421 (11)0.1403 (2)0.54126 (9)0.0361 (3)
H90.92770.16720.50610.043*
C100.89116 (10)0.1016 (2)0.62926 (9)0.0370 (4)
C110.81281 (10)0.0667 (2)0.68247 (9)0.0346 (3)
H110.82530.03650.74120.042*
C120.71596 (10)0.07703 (19)0.64812 (8)0.0291 (3)
N10.49196 (10)0.3622 (2)0.39598 (9)0.0406 (3)
H1A0.5270 (13)0.274 (2)0.4304 (11)0.049*
H1B0.5052 (13)0.351 (2)0.3449 (12)0.049*
N20.41690 (10)0.2695 (2)0.56298 (8)0.0367 (3)
H2A0.4726 (13)0.195 (2)0.5473 (10)0.044*
H2B0.3848 (12)0.218 (2)0.6043 (11)0.044*
H2C0.4430 (12)0.373 (3)0.5843 (11)0.044*
N30.76527 (10)0.1700 (2)0.41270 (8)0.0436 (3)
N40.99307 (10)0.0980 (2)0.66670 (10)0.0588 (4)
N50.63727 (9)0.04886 (18)0.70943 (8)0.0365 (3)
O10.60100 (7)0.11173 (15)0.52432 (6)0.0377 (3)
O20.69569 (9)0.0908 (2)0.37119 (7)0.0630 (4)
O30.82684 (10)0.2717 (2)0.37879 (8)0.0740 (4)
O41.06230 (9)0.1404 (2)0.61973 (10)0.0814 (5)
O51.00595 (10)0.0516 (3)0.74296 (10)0.1001 (6)
O60.65667 (9)0.04467 (18)0.77549 (7)0.0549 (3)
O70.55494 (8)0.1226 (2)0.69490 (7)0.0632 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (8)0.0312 (8)0.0327 (7)0.0020 (6)0.0049 (6)0.0030 (6)
C20.0295 (7)0.0315 (7)0.0361 (8)0.0009 (6)0.0016 (6)0.0024 (6)
C30.0334 (8)0.0406 (9)0.0666 (11)0.0004 (7)0.0061 (8)0.0058 (8)
C40.0295 (9)0.0461 (10)0.1064 (17)0.0022 (7)0.0120 (10)0.0108 (11)
C50.0573 (12)0.0437 (10)0.0804 (14)0.0053 (8)0.0370 (11)0.0043 (9)
C60.0590 (11)0.0405 (9)0.0436 (9)0.0007 (8)0.0204 (8)0.0008 (7)
C70.0277 (7)0.0304 (7)0.0260 (7)0.0019 (5)0.0014 (5)0.0020 (5)
C80.0340 (7)0.0363 (8)0.0244 (7)0.0001 (6)0.0034 (6)0.0000 (6)
C90.0303 (8)0.0436 (9)0.0352 (8)0.0035 (6)0.0088 (6)0.0026 (6)
C100.0254 (7)0.0499 (9)0.0355 (8)0.0007 (6)0.0014 (6)0.0066 (7)
C110.0335 (8)0.0458 (9)0.0243 (7)0.0019 (6)0.0010 (6)0.0029 (6)
C120.0262 (7)0.0372 (8)0.0242 (7)0.0009 (6)0.0043 (5)0.0023 (5)
N10.0413 (8)0.0535 (8)0.0273 (6)0.0016 (6)0.0048 (6)0.0025 (6)
N20.0340 (7)0.0485 (8)0.0280 (6)0.0019 (6)0.0048 (5)0.0027 (6)
N30.0453 (8)0.0586 (8)0.0276 (6)0.0047 (7)0.0078 (6)0.0068 (6)
N40.0280 (7)0.0973 (12)0.0506 (9)0.0024 (7)0.0036 (7)0.0095 (8)
N50.0316 (7)0.0518 (8)0.0263 (6)0.0020 (6)0.0043 (5)0.0022 (5)
O10.0271 (5)0.0558 (7)0.0299 (5)0.0053 (4)0.0026 (4)0.0021 (5)
O20.0590 (8)0.1025 (11)0.0270 (6)0.0075 (7)0.0025 (6)0.0022 (6)
O30.0754 (9)0.1017 (11)0.0460 (7)0.0163 (8)0.0145 (7)0.0306 (7)
O40.0284 (7)0.1396 (14)0.0766 (10)0.0101 (7)0.0079 (6)0.0095 (9)
O50.0424 (8)0.199 (2)0.0570 (9)0.0039 (10)0.0191 (6)0.0133 (11)
O60.0575 (8)0.0729 (8)0.0355 (6)0.0063 (6)0.0145 (5)0.0171 (6)
O70.0332 (6)0.1180 (11)0.0390 (7)0.0164 (7)0.0102 (5)0.0097 (7)
Geometric parameters (Å, º) top
C1—C21.387 (2)C9—H90.9300
C1—C61.393 (2)C10—C111.373 (2)
C1—N11.3977 (19)C10—N41.447 (2)
C2—C31.383 (2)C11—C121.3699 (19)
C2—N21.4579 (19)C11—H110.9300
C3—C41.383 (3)C12—N51.4501 (17)
C3—H30.9300N1—H1A0.922 (18)
C4—C51.373 (3)N1—H1B0.813 (18)
C4—H40.9300N2—H2A0.946 (16)
C5—C61.366 (3)N2—H2B0.858 (17)
C5—H50.9300N2—H2C0.858 (18)
C6—H60.9300N3—O31.2182 (17)
C7—O11.2517 (15)N3—O21.2295 (17)
C7—C121.4441 (18)N4—O51.215 (2)
C7—C81.4457 (19)N4—O41.2296 (19)
C8—C91.366 (2)N5—O71.2211 (16)
C8—N31.4580 (18)N5—O61.2214 (15)
C9—C101.381 (2)
C2—C1—C6117.44 (14)C11—C10—C9121.21 (13)
C2—C1—N1122.40 (13)C11—C10—N4118.98 (13)
C6—C1—N1120.08 (15)C9—C10—N4119.81 (13)
C3—C2—C1121.70 (14)C12—C11—C10119.25 (13)
C3—C2—N2118.64 (14)C12—C11—H11120.4
C1—C2—N2119.66 (12)C10—C11—H11120.4
C4—C3—C2119.30 (17)C11—C12—C7124.44 (12)
C4—C3—H3120.4C11—C12—N5115.98 (12)
C2—C3—H3120.4C7—C12—N5119.57 (12)
C5—C4—C3119.63 (17)C1—N1—H1A113.9 (10)
C5—C4—H4120.2C1—N1—H1B113.6 (12)
C3—C4—H4120.2H1A—N1—H1B111.0 (16)
C6—C5—C4120.84 (17)C2—N2—H2A114.5 (10)
C6—C5—H5119.6C2—N2—H2B111.7 (11)
C4—C5—H5119.6H2A—N2—H2B112.2 (15)
C5—C6—C1121.06 (17)C2—N2—H2C107.0 (11)
C5—C6—H6119.5H2A—N2—H2C104.6 (15)
C1—C6—H6119.5H2B—N2—H2C106.2 (16)
O1—C7—C12124.81 (12)O3—N3—O2123.18 (13)
O1—C7—C8123.88 (12)O3—N3—C8117.51 (14)
C12—C7—C8111.28 (12)O2—N3—C8119.29 (13)
C9—C8—C7124.77 (13)O5—N4—O4123.30 (15)
C9—C8—N3116.13 (13)O5—N4—C10118.21 (15)
C7—C8—N3119.10 (12)O4—N4—C10118.49 (15)
C8—C9—C10118.86 (13)O7—N5—O6122.04 (12)
C8—C9—H9120.6O7—N5—C12119.47 (12)
C10—C9—H9120.6O6—N5—C12118.46 (12)
C6—C1—C2—C31.1 (2)N4—C10—C11—C12177.54 (14)
N1—C1—C2—C3177.94 (14)C10—C11—C12—C74.1 (2)
C6—C1—C2—N2178.80 (13)C10—C11—C12—N5176.71 (13)
N1—C1—C2—N22.0 (2)O1—C7—C12—C11176.54 (14)
C1—C2—C3—C40.3 (2)C8—C7—C12—C111.78 (19)
N2—C2—C3—C4179.72 (14)O1—C7—C12—N52.6 (2)
C2—C3—C4—C50.9 (2)C8—C7—C12—N5179.07 (12)
C3—C4—C5—C60.1 (3)C9—C8—N3—O330.9 (2)
C4—C5—C6—C11.6 (3)C7—C8—N3—O3148.08 (14)
C2—C1—C6—C52.1 (2)C9—C8—N3—O2147.45 (14)
N1—C1—C6—C5178.99 (14)C7—C8—N3—O233.5 (2)
O1—C7—C8—C9179.16 (14)C11—C10—N4—O54.8 (3)
C12—C7—C8—C92.51 (19)C9—C10—N4—O5175.38 (17)
O1—C7—C8—N30.2 (2)C11—C10—N4—O4175.78 (16)
C12—C7—C8—N3178.56 (12)C9—C10—N4—O44.0 (2)
C7—C8—C9—C104.3 (2)C11—C12—N5—O7152.66 (14)
N3—C8—C9—C10176.74 (13)C7—C12—N5—O728.1 (2)
C8—C9—C10—C111.8 (2)C11—C12—N5—O625.50 (19)
C8—C9—C10—N4178.44 (14)C7—C12—N5—O6153.72 (13)
C9—C10—C11—C122.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.922 (18)2.048 (19)2.9607 (18)170.0 (14)
N2—H2A···O10.946 (16)1.852 (17)2.7731 (16)163.9 (14)
N2—H2A···O70.946 (16)2.514 (15)2.8558 (17)101.4 (11)
N1—H1B···O7i0.813 (18)2.424 (19)3.2264 (17)169.6 (16)
N2—H2A···O1ii0.946 (16)2.581 (16)2.9872 (18)106.2 (11)
N2—H2B···O2ii0.858 (17)2.448 (16)3.122 (2)135.9 (14)
N2—H2B···O6iii0.858 (17)2.556 (16)2.9956 (17)112.9 (12)
N2—H2C···N1iv0.858 (18)2.063 (18)2.904 (2)166.1 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H2N3O7
Mr337.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.2938 (11), 6.9959 (6), 15.2967 (13)
β (°) 92.629 (1)
V3)1421.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
16897, 3514, 2394
Rint0.063
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 0.93
No. of reflections3514
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.922 (18)2.048 (19)2.9607 (18)170.0 (14)
N2—H2A···O10.946 (16)1.852 (17)2.7731 (16)163.9 (14)
N2—H2A···O70.946 (16)2.514 (15)2.8558 (17)101.4 (11)
N1—H1B···O7i0.813 (18)2.424 (19)3.2264 (17)169.6 (16)
N2—H2A···O1ii0.946 (16)2.581 (16)2.9872 (18)106.2 (11)
N2—H2B···O2ii0.858 (17)2.448 (16)3.122 (2)135.9 (14)
N2—H2B···O6iii0.858 (17)2.556 (16)2.9956 (17)112.9 (12)
N2—H2C···N1iv0.858 (18)2.063 (18)2.904 (2)166.1 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Xiangfan University.

References

First citationBruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. (2009). Acta Cryst. E65, o2566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaminathan, K. & Sivakumar, K. (2007). Acta Cryst. E63, o236–o238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds