metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­azidotris[μ-2-(2-pyridyl)ethanolato]dicobalt(II) aceto­nitrile monosolvate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 9 November 2010; accepted 12 November 2010; online 20 November 2010)

In the title compound, [Co2(C7H8NO)3(N3)3]·CH3CN, the two CoII ions in the dinuclear complex have different coordination environments, both in a distorted octa­hedral geometry. One CoII atom is coordinated by three O atoms from the three 2-hy­droxy­ethyl­pyridine (HEP) bridging ligands, two N atoms from two HEP ligands and one azido ligand, while the other CoII atom is coordinated by the same three O atoms, one N atom from an HEP ligand and two azido ligands. Weak inter­molecular C—H⋯N hydrogen bonds link the dinuclear complexes into corrugated layers parallel to the bc plane. These layers are further packed with the formation of channels propagating in [010] and filled with the disordered [in a ratio 0.691 (13):0.309 (13)] acetonitrile solvate mol­ecules.

Related literature

For the crystal structures of cobalt complexes with related ligands, see: Lah et al. (2006[Lah, N., Leban, I. & Clerac, R. (2006). Eur. J. Inorg. Chem. pp. 4888-4894.]); Cheng & Wei (2002[Cheng, S. C. & Wei, H. H. (2002). Inorg. Chim. Acta, 340, 105-113.]). For general background to mol­ecules functioning as nanoscale magnets, see: Sanudo et al. (2003[Sanudo, E. C., Brechin, E. K., Boskovic, C., Wernsdorfer, W., Yoo, J., Yamaguchi, A., Concolino, T. R., Hendrickson, D. N. & Christou, G. (2003). Polyhedron, 22, 2267-2271.]); Sessoli et al. (1993[Sessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C7H8NO)3(N3)3]·C2H3N

  • Mr = 651.44

  • Triclinic, [P \overline 1]

  • a = 10.8612 (11) Å

  • b = 10.9177 (12) Å

  • c = 13.3809 (14) Å

  • α = 90.299 (1)°

  • β = 112.659 (2)°

  • γ = 97.311 (1)°

  • V = 1449.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 298 K

  • 0.28 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.731, Tmax = 0.880

  • 7657 measured reflections

  • 5044 independent reflections

  • 3337 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.00

  • 5044 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A1⋯N2Bi 0.97 2.42 3.382 (3) 169
C8A—H8A2⋯N1Aii 0.96 2.57 3.384 (4) 142
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many present and future specialized applications of magnets require monodisperse, nanoscale magnetic particles, and the discovery that individual molecules can function as nanoscale magnets was thus a significant development (Sanudo et al., 2003; Sessoli et al., 1993). We have synthesized the title compound, and characterized it by X-ray diffraction and elemental analysis which is reported in this paper.

In the title compound, (I) (Fig. 1), [Co2(C7H9NO)3(N3)3].CH3CN, two Co(II) ions in the dinuclear complex have different coordination environments both having distorted octahedral geometry. The bond lengths and angles in (I) are normal and correspond to those observed in related complexes (Lah et al., 2006; Cheng et al., 2002). Weak intermolecular C—H···N hydrogen bonds (Table 1) link the dinuclear complexes into corrugated layers parallel to bc plane. These layers are further packed with the formation of channels propagated in direction [010] and filled with the disordered [in a ratio 0.691 (13):0.309 (13)] acetonitrile solvate molecules.

Related literature top

For the crystal structures of cobalt complexes with related ligands, see: Lah et al. (2006); Cheng & Wei (2002). For general background to molecules functioning as nanoscale magnets, see: Sanudo et al. (2003); Sessoli et al. (1993).

Experimental top

A mixtutre of solutions of CoCl2.6H2O(1 mmol, 238 mg) in methanol (10 ml) and acetonitrile (10 ml) was added Pyridine-2-ethanol(2 mmol, 246 mg) in 5 ml methanol, NaN3(2 mmol, 130 mg) and terramethylammonium hydroide(0.4 mmol, 165 mg, 25% solution in water), then stirred for 6 h. The resulting red solution was filtrated and was allowed to stand at room temperature for about three week, whereupon brown block crystal suitable for X-ray diffraction analysis was obtained.

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.96 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Many present and future specialized applications of magnets require monodisperse, nanoscale magnetic particles, and the discovery that individual molecules can function as nanoscale magnets was thus a significant development (Sanudo et al., 2003; Sessoli et al., 1993). We have synthesized the title compound, and characterized it by X-ray diffraction and elemental analysis which is reported in this paper.

In the title compound, (I) (Fig. 1), [Co2(C7H9NO)3(N3)3].CH3CN, two Co(II) ions in the dinuclear complex have different coordination environments both having distorted octahedral geometry. The bond lengths and angles in (I) are normal and correspond to those observed in related complexes (Lah et al., 2006; Cheng et al., 2002). Weak intermolecular C—H···N hydrogen bonds (Table 1) link the dinuclear complexes into corrugated layers parallel to bc plane. These layers are further packed with the formation of channels propagated in direction [010] and filled with the disordered [in a ratio 0.691 (13):0.309 (13)] acetonitrile solvate molecules.

For the crystal structures of cobalt complexes with related ligands, see: Lah et al. (2006); Cheng & Wei (2002). For general background to molecules functioning as nanoscale magnets, see: Sanudo et al. (2003); Sessoli et al. (1993).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. The disordered solvent molecule and H atoms omitted for clarity.
Triazidotris[µ-2-(2-pyridyl)ethanolato]dicobalt(II) acetonitrile monosolvate top
Crystal data top
[Co2(C7H8NO)3(N3)3]·C2H3NZ = 2
Mr = 651.44F(000) = 668
Triclinic, P1Dx = 1.492 Mg m3
a = 10.8612 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9177 (12) ÅCell parameters from 2225 reflections
c = 13.3809 (14) Åθ = 2.6–25.2°
α = 90.299 (1)°µ = 1.19 mm1
β = 112.659 (2)°T = 298 K
γ = 97.311 (1)°Block, brown
V = 1449.8 (3) Å30.28 × 0.23 × 0.11 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
5044 independent reflections
Radiation source: fine-focus sealed tube3337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.731, Tmax = 0.880k = 1212
7657 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Co2(C7H8NO)3(N3)3]·C2H3Nγ = 97.311 (1)°
Mr = 651.44V = 1449.8 (3) Å3
Triclinic, P1Z = 2
a = 10.8612 (11) ÅMo Kα radiation
b = 10.9177 (12) ŵ = 1.19 mm1
c = 13.3809 (14) ÅT = 298 K
α = 90.299 (1)°0.28 × 0.23 × 0.11 mm
β = 112.659 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5044 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3337 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.880Rint = 0.025
7657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
5044 reflectionsΔρmin = 0.27 e Å3
399 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.79597 (5)0.73623 (4)0.18322 (4)0.03535 (16)
Co20.78387 (5)0.97181 (5)0.19775 (4)0.03735 (16)
N10.7998 (3)0.6546 (3)0.0525 (2)0.0396 (8)
N20.9332 (3)0.6468 (3)0.2842 (3)0.0401 (8)
N30.6333 (3)1.0413 (3)0.2150 (3)0.0428 (8)
N40.6574 (3)0.6080 (3)0.1861 (3)0.0461 (9)
N50.6549 (3)0.5761 (3)0.2696 (3)0.0536 (10)
N60.6448 (5)0.5410 (5)0.3463 (4)0.1064 (19)
N70.9149 (4)1.0879 (3)0.3095 (3)0.0505 (9)
N81.0220 (4)1.1180 (3)0.3044 (3)0.0544 (10)
N91.1266 (5)1.1512 (4)0.3049 (4)0.0926 (16)
N100.7804 (3)1.0773 (3)0.0821 (3)0.0482 (9)
N110.7882 (3)1.1876 (3)0.0911 (3)0.0435 (8)
N120.7913 (4)1.2946 (3)0.0908 (3)0.0645 (11)
N130.6698 (14)0.2524 (18)0.6694 (12)0.215 (8)0.691 (13)
N13'0.438 (6)0.163 (9)0.532 (5)0.22 (4)0.309 (13)
O10.9186 (2)0.8804 (2)0.1873 (2)0.0387 (6)
O20.7787 (2)0.8383 (2)0.29203 (19)0.0385 (6)
O30.6765 (2)0.8409 (2)0.09277 (19)0.0367 (6)
C10.9670 (4)0.8961 (4)0.1030 (3)0.0487 (11)
H1A1.03900.96530.12260.058*
H1B0.89490.91360.03670.058*
C21.0189 (4)0.7779 (4)0.0853 (4)0.0510 (11)
H2A1.07820.79570.04680.061*
H2B1.07070.74770.15500.061*
C30.9046 (4)0.6799 (4)0.0213 (3)0.0443 (10)
C40.9015 (4)0.6213 (4)0.0721 (4)0.0590 (13)
H40.97370.63940.09310.071*
C50.7932 (5)0.5369 (4)0.1338 (4)0.0652 (14)
H50.79260.49610.19520.078*
C60.6867 (4)0.5140 (4)0.1037 (3)0.0537 (12)
H60.61110.45890.14520.064*
C70.6926 (4)0.5737 (3)0.0106 (3)0.0459 (10)
H70.61950.55760.00960.055*
C80.8700 (4)0.8420 (4)0.4023 (3)0.0478 (11)
H8A0.83600.77790.43870.057*
H8B0.87290.92110.43730.057*
C91.0126 (4)0.8245 (4)0.4169 (3)0.0496 (11)
H9A1.04360.88300.37440.059*
H9B1.07190.84220.49250.059*
C101.0212 (4)0.6958 (4)0.3828 (3)0.0436 (10)
C111.1134 (4)0.6259 (4)0.4510 (4)0.0595 (12)
H111.17430.66050.51830.071*
C121.1163 (5)0.5073 (4)0.4211 (4)0.0647 (13)
H121.17950.46130.46680.078*
C131.0252 (5)0.4571 (4)0.3231 (4)0.0585 (12)
H131.02420.37580.30140.070*
C140.9345 (4)0.5285 (4)0.2565 (3)0.0483 (11)
H140.87180.49360.18990.058*
C150.5349 (3)0.8193 (4)0.0590 (3)0.0429 (10)
H15A0.50280.73450.02980.052*
H15B0.49510.87300.00120.052*
C160.4873 (4)0.8415 (4)0.1497 (3)0.0475 (10)
H16A0.39190.81080.12470.057*
H16B0.53460.79470.21080.057*
C170.5096 (4)0.9748 (4)0.1869 (3)0.0476 (10)
C180.4030 (5)1.0300 (5)0.1920 (4)0.0644 (13)
H180.31870.98330.17350.077*
C190.4218 (5)1.1530 (5)0.2244 (4)0.0764 (15)
H190.35051.19070.22620.092*
C200.5477 (5)1.2189 (5)0.2539 (4)0.0714 (14)
H200.56391.30180.27750.086*
C210.6496 (5)1.1608 (4)0.2481 (3)0.0531 (11)
H210.73461.20660.26810.064*
C220.577 (2)0.270 (3)0.600 (2)0.221 (13)0.691 (13)
C230.481 (3)0.328 (3)0.5030 (18)0.287 (14)0.691 (13)
H23A0.48620.41410.52040.430*0.691 (13)
H23B0.39110.28740.48530.430*0.691 (13)
H23C0.50600.31840.44210.430*0.691 (13)
C22'0.414 (11)0.059 (12)0.509 (7)0.27 (7)0.309 (13)
C23'0.394 (6)0.068 (7)0.459 (5)0.28 (5)0.309 (13)
H23D0.33690.12240.48450.419*0.309 (13)
H23E0.48000.09700.48000.419*0.309 (13)
H23F0.35320.06650.38190.419*0.309 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0370 (3)0.0337 (3)0.0329 (3)0.0039 (2)0.0113 (3)0.0013 (2)
Co20.0417 (3)0.0345 (3)0.0354 (3)0.0051 (2)0.0146 (3)0.0005 (2)
N10.0397 (19)0.0374 (19)0.0384 (19)0.0072 (15)0.0111 (17)0.0022 (15)
N20.046 (2)0.0364 (19)0.0380 (19)0.0086 (15)0.0156 (17)0.0027 (15)
N30.051 (2)0.041 (2)0.040 (2)0.0118 (16)0.0202 (18)0.0026 (16)
N40.051 (2)0.046 (2)0.039 (2)0.0019 (17)0.0179 (18)0.0028 (17)
N50.051 (2)0.053 (2)0.049 (2)0.0040 (18)0.014 (2)0.008 (2)
N60.101 (4)0.136 (4)0.057 (3)0.034 (3)0.019 (3)0.023 (3)
N70.054 (2)0.048 (2)0.046 (2)0.0016 (18)0.018 (2)0.0076 (17)
N80.058 (3)0.042 (2)0.056 (2)0.004 (2)0.015 (2)0.0057 (18)
N90.065 (3)0.089 (3)0.120 (4)0.013 (3)0.038 (3)0.019 (3)
N100.063 (2)0.040 (2)0.045 (2)0.0055 (17)0.0249 (19)0.0029 (17)
N110.039 (2)0.044 (2)0.044 (2)0.0024 (17)0.0138 (17)0.0017 (17)
N120.075 (3)0.044 (2)0.068 (3)0.002 (2)0.023 (2)0.006 (2)
N130.127 (11)0.38 (2)0.143 (12)0.007 (13)0.069 (10)0.085 (14)
N13'0.13 (4)0.43 (12)0.12 (3)0.03 (5)0.07 (3)0.03 (6)
O10.0394 (15)0.0389 (15)0.0370 (15)0.0034 (12)0.0148 (13)0.0042 (12)
O20.0452 (16)0.0384 (15)0.0325 (15)0.0070 (12)0.0154 (13)0.0014 (12)
O30.0375 (15)0.0366 (14)0.0355 (14)0.0041 (11)0.0139 (13)0.0006 (12)
C10.051 (3)0.049 (3)0.049 (3)0.004 (2)0.026 (2)0.003 (2)
C20.046 (2)0.056 (3)0.055 (3)0.003 (2)0.025 (2)0.007 (2)
C30.041 (2)0.047 (3)0.048 (3)0.0094 (19)0.019 (2)0.003 (2)
C40.057 (3)0.068 (3)0.057 (3)0.000 (2)0.031 (3)0.014 (3)
C50.070 (3)0.072 (3)0.053 (3)0.002 (3)0.025 (3)0.021 (3)
C60.053 (3)0.054 (3)0.047 (3)0.001 (2)0.013 (2)0.012 (2)
C70.042 (2)0.044 (2)0.043 (2)0.0028 (19)0.008 (2)0.004 (2)
C80.063 (3)0.047 (3)0.030 (2)0.008 (2)0.014 (2)0.0031 (19)
C90.055 (3)0.048 (3)0.035 (2)0.005 (2)0.007 (2)0.004 (2)
C100.042 (2)0.048 (3)0.038 (2)0.004 (2)0.013 (2)0.001 (2)
C110.059 (3)0.065 (3)0.045 (3)0.014 (2)0.009 (2)0.003 (2)
C120.065 (3)0.066 (3)0.055 (3)0.031 (3)0.008 (3)0.015 (3)
C130.069 (3)0.047 (3)0.063 (3)0.022 (2)0.025 (3)0.007 (2)
C140.054 (3)0.044 (3)0.047 (3)0.011 (2)0.018 (2)0.002 (2)
C150.035 (2)0.046 (2)0.042 (2)0.0081 (18)0.007 (2)0.0011 (19)
C160.039 (2)0.051 (3)0.051 (3)0.007 (2)0.016 (2)0.004 (2)
C170.049 (3)0.054 (3)0.044 (3)0.014 (2)0.020 (2)0.005 (2)
C180.055 (3)0.070 (3)0.074 (3)0.016 (2)0.029 (3)0.004 (3)
C190.068 (4)0.082 (4)0.087 (4)0.032 (3)0.033 (3)0.008 (3)
C200.086 (4)0.060 (3)0.074 (4)0.025 (3)0.033 (3)0.009 (3)
C210.065 (3)0.047 (3)0.052 (3)0.014 (2)0.025 (2)0.003 (2)
C220.126 (17)0.43 (4)0.123 (15)0.03 (2)0.067 (13)0.03 (2)
C230.20 (2)0.50 (5)0.19 (2)0.05 (3)0.11 (2)0.03 (3)
C22'0.18 (7)0.4 (2)0.16 (7)0.04 (11)0.03 (5)0.04 (10)
C23'0.21 (6)0.42 (13)0.16 (6)0.01 (8)0.03 (5)0.14 (7)
Geometric parameters (Å, º) top
Co1—O31.907 (3)C5—H50.9300
Co1—O21.909 (2)C6—C71.378 (5)
Co1—O11.914 (2)C6—H60.9300
Co1—N41.933 (3)C7—H70.9300
Co1—N21.958 (3)C8—C91.522 (5)
Co1—N11.977 (3)C8—H8A0.9700
Co1—Co22.6020 (7)C8—H8B0.9700
Co2—O31.916 (2)C9—C101.500 (5)
Co2—O11.920 (2)C9—H9A0.9700
Co2—N101.926 (3)C9—H9B0.9700
Co2—N71.936 (3)C10—C111.384 (6)
Co2—O21.942 (2)C11—C121.362 (6)
Co2—N31.977 (3)C11—H110.9300
N1—C71.349 (4)C12—C131.361 (6)
N1—C31.353 (4)C12—H120.9300
N2—C141.345 (5)C13—C141.378 (6)
N2—C101.353 (5)C13—H130.9300
N3—C211.343 (5)C14—H140.9300
N3—C171.354 (5)C15—C161.520 (5)
N4—N51.181 (5)C15—H15A0.9700
N5—N61.137 (5)C15—H15B0.9700
N7—N81.196 (5)C16—C171.495 (5)
N8—N91.145 (5)C16—H16A0.9700
N10—N111.199 (4)C16—H16B0.9700
N11—N121.163 (4)C17—C181.396 (5)
N13—C221.12 (2)C18—C191.374 (6)
N13'—C22'1.15 (12)C18—H180.9300
O1—C11.419 (4)C19—C201.369 (6)
O2—C81.423 (4)C19—H190.9300
O3—C151.413 (4)C20—C211.370 (6)
C1—C21.526 (5)C20—H200.9300
C1—H1A0.9700C21—H210.9300
C1—H1B0.9700C22—C231.51 (3)
C2—C31.501 (5)C23—H23A0.9600
C2—H2A0.9700C23—H23B0.9600
C2—H2B0.9700C23—H23C0.9600
C3—C41.388 (5)C22'—C23'1.49 (9)
C4—C51.371 (6)C23'—H23D0.9600
C4—H40.9300C23'—H23E0.9600
C5—C61.360 (6)C23'—H23F0.9600
O3—Co1—O280.44 (10)N1—C3—C4120.1 (4)
O3—Co1—O178.49 (10)N1—C3—C2118.8 (3)
O2—Co1—O179.33 (10)C4—C3—C2121.0 (4)
O3—Co1—N496.18 (13)C5—C4—C3120.9 (4)
O2—Co1—N492.87 (12)C5—C4—H4119.6
O1—Co1—N4171.13 (12)C3—C4—H4119.6
O3—Co1—N2173.19 (11)C6—C5—C4118.8 (4)
O2—Co1—N295.74 (12)C6—C5—H5120.6
O1—Co1—N295.31 (12)C4—C5—H5120.6
N4—Co1—N289.60 (14)C5—C6—C7119.0 (4)
O3—Co1—N189.39 (12)C5—C6—H6120.5
O2—Co1—N1169.41 (12)C7—C6—H6120.5
O1—Co1—N195.88 (12)N1—C7—C6122.9 (4)
N4—Co1—N191.11 (13)N1—C7—H7118.6
N2—Co1—N194.10 (13)C6—C7—H7118.6
O3—Co1—Co247.24 (7)O2—C8—C9113.9 (3)
O2—Co1—Co248.03 (7)O2—C8—H8A108.8
O1—Co1—Co247.35 (7)C9—C8—H8A108.8
N4—Co1—Co2123.97 (10)O2—C8—H8B108.8
N2—Co1—Co2126.20 (9)C9—C8—H8B108.8
N1—Co1—Co2122.12 (9)H8A—C8—H8B107.7
O3—Co2—O178.13 (10)C10—C9—C8112.4 (3)
O3—Co2—N1089.75 (12)C10—C9—H9A109.1
O1—Co2—N1095.34 (13)C8—C9—H9A109.1
O3—Co2—N7170.94 (13)C10—C9—H9B109.1
O1—Co2—N793.18 (13)C8—C9—H9B109.1
N10—Co2—N793.66 (15)H9A—C9—H9B107.9
O3—Co2—O279.39 (10)N2—C10—C11120.0 (4)
O1—Co2—O278.37 (10)N2—C10—C9118.5 (4)
N10—Co2—O2168.33 (12)C11—C10—C9121.5 (4)
N7—Co2—O296.48 (13)C12—C11—C10121.0 (4)
O3—Co2—N396.99 (12)C12—C11—H11119.5
O1—Co2—N3170.99 (12)C10—C11—H11119.5
N10—Co2—N392.19 (14)C13—C12—C11118.9 (4)
N7—Co2—N391.28 (14)C13—C12—H12120.6
O2—Co2—N393.36 (12)C11—C12—H12120.6
O3—Co2—Co146.96 (7)C12—C13—C14119.1 (4)
O1—Co2—Co147.16 (7)C12—C13—H13120.5
N10—Co2—Co1121.82 (10)C14—C13—H13120.5
N7—Co2—Co1124.69 (11)N2—C14—C13122.4 (4)
O2—Co2—Co146.96 (7)N2—C14—H14118.8
N3—Co2—Co1124.18 (10)C13—C14—H14118.8
C7—N1—C3118.3 (3)O3—C15—C16113.4 (3)
C7—N1—Co1119.3 (3)O3—C15—H15A108.9
C3—N1—Co1122.4 (2)C16—C15—H15A108.9
C14—N2—C10118.6 (4)O3—C15—H15B108.9
C14—N2—Co1118.1 (3)C16—C15—H15B108.9
C10—N2—Co1123.2 (3)H15A—C15—H15B107.7
C21—N3—C17118.0 (3)C17—C16—C15113.2 (3)
C21—N3—Co2119.7 (3)C17—C16—H16A108.9
C17—N3—Co2122.1 (3)C15—C16—H16A108.9
N5—N4—Co1120.4 (3)C17—C16—H16B108.9
N6—N5—N4175.6 (5)C15—C16—H16B108.9
N8—N7—Co2118.0 (3)H16A—C16—H16B107.7
N9—N8—N7176.0 (5)N3—C17—C18120.4 (4)
N11—N10—Co2122.8 (3)N3—C17—C16119.7 (3)
N12—N11—N10174.5 (4)C18—C17—C16119.9 (4)
C1—O1—Co1119.9 (2)C19—C18—C17120.4 (4)
C1—O1—Co2122.1 (2)C19—C18—H18119.8
Co1—O1—Co285.49 (10)C17—C18—H18119.8
C8—O2—Co1121.3 (2)C20—C19—C18118.6 (4)
C8—O2—Co2122.7 (2)C20—C19—H19120.7
Co1—O2—Co285.01 (10)C18—C19—H19120.7
C15—O3—Co1124.3 (2)C19—C20—C21119.0 (4)
C15—O3—Co2121.4 (2)C19—C20—H20120.5
Co1—O3—Co285.80 (10)C21—C20—H20120.5
O1—C1—C2108.9 (3)N3—C21—C20123.6 (4)
O1—C1—H1A109.9N3—C21—H21118.2
C2—C1—H1A109.9C20—C21—H21118.2
O1—C1—H1B109.9N13—C22—C23162 (3)
C2—C1—H1B109.9N13'—C22'—C23'167 (10)
H1A—C1—H1B108.3C22'—C23'—H23D109.5
C3—C2—C1111.0 (3)C22'—C23'—H23E109.5
C3—C2—H2A109.4H23D—C23'—H23E109.5
C1—C2—H2A109.4C22'—C23'—H23F109.4
C3—C2—H2B109.4H23D—C23'—H23F109.5
C1—C2—H2B109.4H23E—C23'—H23F109.5
H2A—C2—H2B108.0
O2—Co1—Co2—O3121.83 (14)N10—Co2—O1—C16.8 (3)
O1—Co1—Co2—O3118.84 (14)N7—Co2—O1—C1100.7 (3)
N4—Co1—Co2—O363.50 (16)O2—Co2—O1—C1163.3 (3)
N2—Co1—Co2—O3177.63 (15)N3—Co2—O1—C1139.7 (7)
N1—Co1—Co2—O353.28 (14)Co1—Co2—O1—C1122.7 (3)
O3—Co1—Co2—O1118.84 (14)O3—Co2—O1—Co140.86 (10)
O2—Co1—Co2—O1119.33 (14)N10—Co2—O1—Co1129.47 (12)
N4—Co1—Co2—O1177.66 (16)N7—Co2—O1—Co1136.55 (13)
N2—Co1—Co2—O158.79 (15)O2—Co2—O1—Co140.58 (9)
N1—Co1—Co2—O165.56 (15)N3—Co2—O1—Co117.0 (8)
O3—Co1—Co2—N1054.07 (15)O3—Co1—O2—C8164.8 (3)
O2—Co1—Co2—N10175.90 (16)O1—Co1—O2—C884.8 (3)
O1—Co1—Co2—N1064.77 (16)N4—Co1—O2—C899.4 (3)
N4—Co1—Co2—N10117.57 (17)N2—Co1—O2—C89.5 (3)
N2—Co1—Co2—N10123.56 (16)N1—Co1—O2—C8148.7 (6)
N1—Co1—Co2—N100.79 (16)Co2—Co1—O2—C8125.6 (3)
O3—Co1—Co2—N7175.47 (16)O3—Co1—O2—Co239.24 (9)
O2—Co1—Co2—N762.70 (16)O1—Co1—O2—Co240.73 (10)
O1—Co1—Co2—N756.63 (17)N4—Co1—O2—Co2135.03 (12)
N4—Co1—Co2—N7121.03 (18)N2—Co1—O2—Co2135.08 (11)
N2—Co1—Co2—N72.16 (17)N1—Co1—O2—Co223.1 (7)
N1—Co1—Co2—N7122.19 (17)O3—Co2—O2—C8163.5 (3)
O3—Co1—Co2—O2121.83 (14)O1—Co2—O2—C883.6 (3)
O1—Co1—Co2—O2119.33 (14)N10—Co2—O2—C8141.8 (6)
N4—Co1—Co2—O258.33 (16)N7—Co2—O2—C88.4 (3)
N2—Co1—Co2—O260.54 (15)N3—Co2—O2—C8100.0 (3)
N1—Co1—Co2—O2175.11 (14)Co1—Co2—O2—C8124.3 (3)
O3—Co1—Co2—N364.34 (15)O3—Co2—O2—Co139.18 (9)
O2—Co1—Co2—N357.50 (15)O1—Co2—O2—Co140.74 (9)
O1—Co1—Co2—N3176.82 (15)N10—Co2—O2—Co117.5 (7)
N4—Co1—Co2—N30.84 (17)N7—Co2—O2—Co1132.67 (12)
N2—Co1—Co2—N3118.03 (16)N3—Co2—O2—Co1135.66 (12)
N1—Co1—Co2—N3117.62 (16)O2—Co1—O3—C1585.8 (2)
O3—Co1—N1—C775.3 (3)O1—Co1—O3—C15166.7 (3)
O2—Co1—N1—C791.2 (7)N4—Co1—O3—C156.1 (3)
O1—Co1—N1—C7153.7 (3)N2—Co1—O3—C15142.0 (9)
N4—Co1—N1—C720.9 (3)N1—Co1—O3—C1597.2 (3)
N2—Co1—N1—C7110.5 (3)Co2—Co1—O3—C15125.6 (3)
Co2—Co1—N1—C7111.4 (3)O2—Co1—O3—Co239.83 (9)
O3—Co1—N1—C3102.3 (3)O1—Co1—O3—Co241.11 (9)
O2—Co1—N1—C386.4 (7)N4—Co1—O3—Co2131.71 (12)
O1—Co1—N1—C323.9 (3)N2—Co1—O3—Co216.4 (10)
N4—Co1—N1—C3161.5 (3)N1—Co1—O3—Co2137.24 (11)
N2—Co1—N1—C371.9 (3)O1—Co2—O3—C15169.1 (3)
Co2—Co1—N1—C366.2 (3)N10—Co2—O3—C1595.4 (3)
O3—Co1—N2—C14156.3 (9)N7—Co2—O3—C15152.4 (8)
O2—Co1—N2—C14148.3 (3)O2—Co2—O3—C1588.9 (3)
O1—Co1—N2—C14132.0 (3)N3—Co2—O3—C153.2 (3)
N4—Co1—N2—C1455.4 (3)Co1—Co2—O3—C15128.1 (3)
N1—Co1—N2—C1435.7 (3)O1—Co2—O3—Co141.02 (10)
Co2—Co1—N2—C14171.2 (2)N10—Co2—O3—Co1136.53 (12)
O3—Co1—N2—C1027.7 (11)N7—Co2—O3—Co124.4 (8)
O2—Co1—N2—C1027.7 (3)O2—Co2—O3—Co139.18 (9)
O1—Co1—N2—C1052.0 (3)N3—Co2—O3—Co1131.30 (11)
N4—Co1—N2—C10120.6 (3)Co1—O1—C1—C249.8 (4)
N1—Co1—N2—C10148.3 (3)Co2—O1—C1—C2154.5 (2)
Co2—Co1—N2—C1012.8 (3)O1—C1—C2—C378.0 (4)
O3—Co2—N3—C21154.7 (3)C7—N1—C3—C41.5 (6)
O1—Co2—N3—C21148.7 (7)Co1—N1—C3—C4179.1 (3)
N10—Co2—N3—C2164.7 (3)C7—N1—C3—C2174.6 (4)
N7—Co2—N3—C2129.0 (3)Co1—N1—C3—C23.0 (5)
O2—Co2—N3—C21125.6 (3)C1—C2—C3—N149.4 (5)
Co1—Co2—N3—C21163.7 (3)C1—C2—C3—C4126.7 (4)
O3—Co2—N3—C1720.4 (3)N1—C3—C4—C50.2 (7)
O1—Co2—N3—C1736.2 (10)C2—C3—C4—C5176.2 (4)
N10—Co2—N3—C17110.4 (3)C3—C4—C5—C61.8 (7)
N7—Co2—N3—C17155.9 (3)C4—C5—C6—C71.7 (7)
O2—Co2—N3—C1759.3 (3)C3—N1—C7—C61.6 (6)
Co1—Co2—N3—C1721.2 (4)Co1—N1—C7—C6179.3 (3)
O3—Co1—N4—N5125.1 (3)C5—C6—C7—N10.0 (7)
O2—Co1—N4—N544.4 (3)Co1—O2—C8—C932.7 (4)
O1—Co1—N4—N572.5 (10)Co2—O2—C8—C972.9 (4)
N2—Co1—N4—N551.4 (3)O2—C8—C9—C1068.6 (5)
N1—Co1—N4—N5145.4 (3)C14—N2—C10—C112.4 (6)
Co2—Co1—N4—N583.7 (4)Co1—N2—C10—C11178.4 (3)
Co1—N4—N5—N6172 (7)C14—N2—C10—C9175.4 (3)
O3—Co2—N7—N852.6 (10)Co1—N2—C10—C90.6 (5)
O1—Co2—N7—N836.3 (3)C8—C9—C10—N250.3 (5)
N10—Co2—N7—N859.3 (4)C8—C9—C10—C11127.5 (4)
O2—Co2—N7—N8114.9 (3)N2—C10—C11—C120.7 (6)
N3—Co2—N7—N8151.6 (3)C9—C10—C11—C12177.0 (4)
Co1—Co2—N7—N874.1 (4)C10—C11—C12—C131.0 (7)
Co2—N7—N8—N9179 (100)C11—C12—C13—C141.1 (7)
O3—Co2—N10—N11151.3 (3)C10—N2—C14—C132.4 (6)
O1—Co2—N10—N11130.7 (3)Co1—N2—C14—C13178.6 (3)
N7—Co2—N10—N1137.2 (3)C12—C13—C14—N20.6 (6)
O2—Co2—N10—N11172.6 (5)Co1—O3—C15—C1671.6 (4)
N3—Co2—N10—N1154.3 (3)Co2—O3—C15—C1636.6 (4)
Co1—Co2—N10—N11172.5 (3)O3—C15—C16—C1769.0 (4)
Co2—N10—N11—N12161 (4)C21—N3—C17—C180.3 (6)
O3—Co1—O1—C183.7 (3)Co2—N3—C17—C18174.8 (3)
O2—Co1—O1—C1166.0 (3)C21—N3—C17—C16180.0 (4)
N4—Co1—O1—C1137.4 (8)Co2—N3—C17—C164.9 (5)
N2—Co1—O1—C199.1 (3)C15—C16—C17—N351.8 (5)
N1—Co1—O1—C14.5 (3)C15—C16—C17—C18127.9 (4)
Co2—Co1—O1—C1124.7 (3)N3—C17—C18—C190.8 (7)
O3—Co1—O1—Co241.02 (9)C16—C17—C18—C19178.9 (4)
O2—Co1—O1—Co241.27 (10)C17—C18—C19—C201.6 (8)
N4—Co1—O1—Co212.7 (9)C18—C19—C20—C211.3 (8)
N2—Co1—O1—Co2136.12 (11)C17—N3—C21—C200.7 (6)
N1—Co1—O1—Co2129.19 (11)Co2—N3—C21—C20174.6 (4)
O3—Co2—O1—C181.9 (3)C19—C20—C21—N30.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A1···N2Bi0.972.423.382 (3)169
C8A—H8A2···N1Aii0.962.573.384 (4)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Co2(C7H8NO)3(N3)3]·C2H3N
Mr651.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.8612 (11), 10.9177 (12), 13.3809 (14)
α, β, γ (°)90.299 (1), 112.659 (2), 97.311 (1)
V3)1449.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.28 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.731, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
7657, 5044, 3337
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.00
No. of reflections5044
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A1···N2Bi0.972.423.382 (3)169
C8A—H8A2···N1Aii0.962.573.384 (4)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20671048 and 21041002)

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, S. C. & Wei, H. H. (2002). Inorg. Chim. Acta, 340, 105–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationLah, N., Leban, I. & Clerac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894.  Web of Science CSD CrossRef Google Scholar
First citationSanudo, E. C., Brechin, E. K., Boskovic, C., Wernsdorfer, W., Yoo, J., Yamaguchi, A., Concolino, T. R., Hendrickson, D. N. & Christou, G. (2003). Polyhedron, 22, 2267–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804–1816.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds