organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N3-[(E)-Morpholin-4-yl­methyl­­idene]-1-phenyl-1H-1,2,4-triazole-3,5-di­amine monohydrate

aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bA. N. Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russian Federation
*Correspondence e-mail: chern13@yandex.ru

(Received 13 November 2010; accepted 15 November 2010; online 20 November 2010)

In the title compound, C13H16N6O·H2O, the mean planes of the benzene and 1,2,4-triazole rings form a dihedral angle of 54.80 (5)°. The N atom of the amino group adopts a trigonal–pyramidal configuration. Conjugation in the amidine N=C—N fragment results in sufficient shortening of the formal single bond. In the crystal, inter­molecular N—H⋯O and O—H⋯N hydrogen bonds link mol­ecules into double layers parallel to the bc plane.

Related literature

The title compound was synthesized according to Astakhov & Chernyshev (2010[Astakhov, A. V. & Chernyshev, V. M. (2010). Chem. Heterocycl. Comp. In the press.]). The synthesis of 3,5-diamino-1-phenyl-1,2,4-triazole is described by Steck et al. (1958[Steck, E. A., Brundage, R. P. & Fletcher, L. T. (1958). J. Am. Chem. Soc. 80, 3929-3931.]). Intra­molecular reactions of N-substituted amino­methyl­ene malonates accompanied by nucleophilic substitution of malonic ester were described by Sunder & Peet (1980[Sunder, Sh. & Peet, N. P. (1980). J. Heterocycl. Chem. 17, 1527-1529.]); Yamazaki et al. (1988[Yamazaki, Ch., Takahashi, T. & Hata, K. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1897-1903.]); Selic et al. (1998[Selic, L. & Stanovnik, B. (1998). J. Heterocycl. Chem. 35, 1527-1529.], 2000[Selic, L., Jakse, R., Lampic, K., Golic, L., Golic-Grdadolnik, S. & Stanovnik, B. (2000). Helv. Chim. Acta, 83, 2802-2811.]); Tkachev et al. (2007[Tkachev, R. P., Bityukova, O. S., Dyachenko, V. D., Tkacheva, V. P. & Dyachenko, A. D. (2007). Russ. J. Gen. Chem. 77, 116-123.]). Analogous inter­molecular reaction affording substituted formamidines was described by Rajappa et al. (1970[Rajappa, S., Nagarajan, K. & Akerkar, A. S. (1970). Indian J. Chem. 8, 499-501.]); Bao et al. (2008[Bao, K., Zhang, W., Bu, X., Song, Zh., Zhang, L. & Cheng, M. (2008). Chem. Commun. pp. 5429-5431.]). For examples of the use of the triazolyl-substituted amidines in the synthesis of annulated heterocycles, see: Dolzhenko et al. (2007[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Tetrahedron, 63, 12888-12895.], 2008a[Dolzhenko, A. V., Nan, B. J., Dolzhenko, A. V., Chui, G. N. Ch. & Chui, W. K. (2008a). J. Fluorine Chem. 129, 429-434.],b[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180-7183.]). For crystal structures of substituted 3,5-diamino-1,2,4-triazoles, see: Ried et al. (1983[Ried, W., Broft, G. W. & Bats, J. W. (1983). Chem. Ber. 116, 1547-1563.]); Dunstan et al. (1998[Dunstan, A. R., Weber, H.-P., Rihs, G., Widmer, H. & Dziadulewicz, E. K. (1998). Tetrahedron Lett. 39, 7983-7986.]); Chernyshev et al. (2006[Chernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. & Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338-344.], 2007[Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Starikova, Z. A. (2007). Chem. Heterocycl. Compd, 43, 776-780.], 2009[Chernyshev, V. M., Rakitov, V. A., Blinov, V. V., Taranushich, V. A. & Starikova, Z. A. (2009). Chem. Heterocycl. Compd, 45, 436-444.]). For crystal structures of hetaryl substituted amidines, see: Ryng & Glowiak (1998[Ryng, S. & Glowiak, T. (1998). J. Chem. Crystallogr. 28, 373-378.]); Kurbatov et al. (2006[Kurbatov, E. S., Starikova, Z. A., Krasnikov, V. V. & Mezheritsky, V. V. (2006). Russ. J. Org. Chem. 42, 1578-1580.]); Xie et al. (2007[Xie, D.-M., Shu, Z., Shen, L., Ding, Z.-W. & Jin, Z.-M. (2007). Acta Cryst. E63, o4562.]); Lyakhov et al. (2008[Lyakhov, A. S., Vorobiov, A. N., Ivashkevich, L. S. & Gaponik, P. N. (2008). Acta Cryst. C64, o414-o416.]); Quiroga et al. (2010[Quiroga, J., Trilleras, J., Hursthouse, M. B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o245-o248.]). The synthesis of mesoionic [1,2,4]triazolo[4,3-a]pyrimidines from N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted enamino­esters was described by Chernyshev et al. (2010[Chernyshev, V. M., Astakhov, A. V. & Starikova, Z. A. (2010). Tetrahedron, 66, 3301-3313.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For values of bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the correlation of bond lengths with bond orders between sp2 hybridized C and N atoms, see: Burke-Laing & Laing (1976[Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216-3224.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N6O·H2O

  • Mr = 290.33

  • Triclinic, [P \overline 1]

  • a = 8.7886 (7) Å

  • b = 9.0100 (7) Å

  • c = 9.4373 (7) Å

  • α = 99.938 (1)°

  • β = 105.933 (1)°

  • γ = 95.331 (1)°

  • V = 700.00 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.55 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.976

  • 5231 measured reflections

  • 2724 independent reflections

  • 2510 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.00

  • 2724 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1i 0.89 (2) 2.08 (2) 2.929 (2) 159 (1)
N5—H5B⋯O2ii 0.89 (2) 2.04 (2) 2.906 (2) 164 (1)
O2—H2A⋯N3 0.89 (2) 2.07 (2) 2.929 (2) 164 (1)
O2—H2B⋯N4iii 0.91 (2) 2.01 (2) 2.916 (2) 172 (1)
Symmetry codes: (i) x, y-1, z-1; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, we have reported a simple method for the synthesis of mesoionic 3-amino-5-oxo-2-R-2,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidines by heating of N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted enaminoesters in alkaline alcoholic solutions (Chernyshev et al., 2010). In the analogous conditions, N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted aminomethylene malonates 1 (Fig. 1) furnished mesoionic 3-amino-6-(ethoxycarbonyl)-2-R-5-oxo-5H-[1,2,4]triazolo[4,3- a]pyrimidines 2 in high yield (Astakhov & Chernyshev, 2010). However, when the compounds 1 were heated with aliphatic amines in acetonitrile, nucleophilic substitution of malonic ester affording the amidines 3 was observed instead of the expected reactions of heterocyclization or amidation (Fig. 1). This reaction is analogous to the previously described intramolecular heterocyclizations of N-substituted aminomethylene malonates (Sunder & Peet, 1980;Yamazaki et al., 1988; Selic et al., 1998, 2000; Tkachev et al., 2007). However, we could find the intermolecular variant of the reaction in two publications (Rajappa et al., 1970; Bao et al., 2008), only. Good yields of the compounds 3 allow to expect that the reaction will be a useful tool for the selective synthesis of N-hetaryl substituted formamidines. Analogous compounds are valuable building blocks for the preparation of annulated heterocycles (Dolzhenko et al., 2007, 2008a,b).

For unambiguous confirmation of structure of the compounds 3 (Fig. 1), we performed an X-ray investigation of the title compound. In accordance with the X-ray diffraction data (Fig. 2), the benzene and triazole rings are not coplanar, the dihedral angle is 54.80 (5)°. Bond lengths and angles in the triazole cycle are within the normal ranges and are comparable with those found in the other substituted 3,5-diamino-1,2,4-triazoles (Ried et al., 1983; Dunstan et al., 1998; Chernyshev et al., 2006, 2007, 2009). The nitrogen atom of the amino group is in a trigonal pyramidal configuration (sum of valence angles is 349.8°) and deviates from the triazole plane by only 0.020 (2) Å. Conjugation between the unshared electron pair of N5 and the π system of the triazole fragment leads to a shortening of the N5—C5 bond (1.352 (2) Å) relative to the standard length of a purely single Nsp2-Csp2 bond (1.43–1.45 Å) (Burke-Laing & Laing,1976; Allen et al., 1987). The N3 atom deviates from the least-squares plane of the triazole cycle by 0.056 (2) Å. The dihedral angle between the planes of the triazole cycle and amidine fragment (H1/C1/N3/N6) of the molecule is 8.66 (7)°. The amidine fragment is in the E configuration, as in the majority of other (het)aryl substituted formamidines (Cambridge Structural Database, Version 5.31 of November 2009, including updates up to August 2010, Allen, 2002). Although the formally single bond N6—C1 (1.337 (2) Å) is longer than the double bond N3—C1 (1.297 (2) Å), it is sufficiently shorter than the purely single Nsp2-Csp2 bond (1.43–1.45 Å) (Burke-Laing & Laing,1976; Allen et al., 1987). Apparently, that is caused by conjugation of the N6 atom lone pair with the N3—C1 double bond, analogously to the other hetaryl substituted formamidines (Ryng & Glowiak, 1998; Kurbatov et al., 2006; Xie et al., 2007; Lyakhov et al., 2008; Quiroga et al., 2010). Atom N6 of morpholine cycle has a slightly pyramidalized trigonal configuration (sum of valence angles is 359.1°). The morpholine ring adopts the usual chair conformation.

In the crystal, the molecules C13H16N6O with the parallel oriented triazole and morpholine cycles form stacks along the a axis of the triclinic cell (Fig. 3). The nearest molecules in the stacks adopt inverse orientation, i. e. they are space related by the inversion centres with coordinates [0, 0, 0]. The pairs of the nearest inversely oriented molecules in the stacks are connected with two water molecules located between them by means of the hydrogen bonds O2—H2A···N3 and O2—H2B···N4 (Table 1). These stacks together with the water molecules form rows which are parallel to the (011) plane (Fig. 3). In these rows the inversely oriented molecules C13H16N6O of the neighboring stacks are linked with each other by the chains of N5—H5A···O1 hydrogen bonds. The rows are connected with one another by the system of N5—H5B···O2 hydrogen bonds (Table 1). In the crystal, parallel to (100), one can see two types of molecular layers consisting of the molecules C13H16N6O (Fig. 4). The adjacent layers are related by the inversion centres. In the each layer the nearest molecules C13H16N6O are displaced from each other by the cell parameter along the b and c axes. The neighbouring layers from both sides of the (100) crystallographic planes are pairwise linked by the O2—H2A···N3, O2—H2B···N4 and N5—H5B···O2 hydrogen bonds. Thus, the crystal structure consists of the C13H16N6O×H2O molecular double layers in the direction of normal to the (100) plane.

Related literature top

The title compound was synthesized according to Astakhov & Chernyshev (2010). The synthesis of 3,5-diamino-1-phenyl-1,2,4-triazole is described by Steck et al. (1958). Intramolecular reactions of N-substituted aminomethylene malonates accompanied by nucleophilic substitution of malonic ester were described by Sunder & Peet (1980); Yamazaki et al. (1988); Selic et al. (1998, 2000); Tkachev et al. (2007). Analogous intermolecular reaction affording substituted formamidines was described by Rajappa et al. (1970); Bao et al. (2008). For examples of the use of the triazolyl-substituted amidines in the synthesis of annulated heterocycles, see: Dolzhenko et al. (2007, 2008a,b). For crystal structures of substituted 3,5-diamino-1,2,4-triazoles, see: Ried et al. (1983); Dunstan et al. (1998); Chernyshev et al. (2006, 2007, 2009). For crystal structures of hetaryl substituted amidines, see: Ryng & Glowiak (1998); Kurbatov et al. (2006); Xie et al. (2007); Lyakhov et al. (2008); Quiroga et al. (2010). The synthesis of mesoionic [1,2,4]triazolo[4,3-a]pyrimidines from N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted enaminoesters was described by Chernyshev et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002). For values of bond lengths in organic compounds, see: Allen et al. (1987). For the correlation of bond lengths with bond orders between sp2 hybridized C and N atoms, see: Burke-Laing & Laing (1976).

Experimental top

The crystals of N3-[(E)-morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4- triazole-3,5-diamine hydrate suitable for X-ray analysis were grown by slow evaporation from 1:9 water: acetonitrile mixture at room temperature. The title compound was prepared by the following procedure.

A mixture of diethyl 2-(((5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)amino)methylene)malonate (1a, R1 = Ph, 0.69 g, 2 mmol), morpholine (0.37 g, 4.2 mmol) and acetonitrile (5 ml) was refluxed for 5 h, then cooled to 0 °C. The precipitate formed was isolated by filtration, recrystallized from acetonitrile and dried at 130 °C to give 0.46 g (84% yield) of white powder, m. p. 208–208.5 °C. Spectrum 1H NMR (300 MHz), δ: 3.42–3.61 (m, 8H, 4CH2), 6.21 (s, 2H, NH2), 7.25–7.53 (m, 5H, Ph), 8.26 (s, 1H, CH). Spectrum 13C NMR (125 MHz), δ: 42.52, 48.58, 65.44, 66.57, 121.68, 125.75, 129.16, 137.71, 153.59 (C5 of triazole), 155.03 (N—CHN), 163.52 (C3 of triazole). MS (EI, 70 eV), m/z (%): 272 (M+, 100), 241 (25), 186 (17), 175 (17), 77 (27). Anal. Calcd for C13H16N6O: C 57.34; H 5.92; N 30.86. Found: C 57.35; H 5.94; N 30.88.

For the preparation of compound 1a a solution of 3,5-diamino-1-phenyl-1,2,4-triazole (1.05 g, 6 mmol) and diethyl 2-(ethoxymethylene)malonate (1.56 g, 7.2 mmol) in EtOH (5 ml) was refluxed for 2 h, then water (5 ml) was added. After cooling to 20 °C, the precipitate formed was isolated by filtration and recrystallized from ethanol. Yield 2.07 g (97%) of white powder, m. p. 140–141 °C. Spectrum 1H NMR (300 MHz) δ: 1.22 (t, J = 6.9 Hz, 3H, OCH2CH3), 1.24 (t, J = 6.9 Hz, 3H, OCH2CH3), 4.12 (q, J = 6.9 Hz, 2H, OCH2CH3), 4.20 (q, J = 6.9 Hz, 2H, OCH2CH3), 6.84 (s, 2H, NH2), 7.33–7.54 (m, 5H, Ph), 8.53 (d, J=13.4 Hz, 1H, CH), 10.56 (d, J=13.4 Hz, 1H, NH). MS (EI, 70 eV), m/z (%): 345 (M+, 21), 254 (18), 253 (99), 186 (21), 119 (37), 105 (16), 91 (34), 77 (100). Anal. Calcd for C16H19N5O4: C, 55.64; H, 5.55; N, 20.28. Found: C, 55.81; H, 5.62; N, 20.04. Starting 3,5-diamino-1-phenyl-1,2,4-triazole was synthesized by known method (Steck, et al., 1958).

Refinement top

The hydrogen atoms of NH2 group and H2O molecule were found in difference Fourier synthesis and were refined in isotropic approximation. C-bound H atoms were geometrically positioned (C—H 0.93-0.97 Å) and refined in riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Recently, we have reported a simple method for the synthesis of mesoionic 3-amino-5-oxo-2-R-2,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidines by heating of N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted enaminoesters in alkaline alcoholic solutions (Chernyshev et al., 2010). In the analogous conditions, N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted aminomethylene malonates 1 (Fig. 1) furnished mesoionic 3-amino-6-(ethoxycarbonyl)-2-R-5-oxo-5H-[1,2,4]triazolo[4,3- a]pyrimidines 2 in high yield (Astakhov & Chernyshev, 2010). However, when the compounds 1 were heated with aliphatic amines in acetonitrile, nucleophilic substitution of malonic ester affording the amidines 3 was observed instead of the expected reactions of heterocyclization or amidation (Fig. 1). This reaction is analogous to the previously described intramolecular heterocyclizations of N-substituted aminomethylene malonates (Sunder & Peet, 1980;Yamazaki et al., 1988; Selic et al., 1998, 2000; Tkachev et al., 2007). However, we could find the intermolecular variant of the reaction in two publications (Rajappa et al., 1970; Bao et al., 2008), only. Good yields of the compounds 3 allow to expect that the reaction will be a useful tool for the selective synthesis of N-hetaryl substituted formamidines. Analogous compounds are valuable building blocks for the preparation of annulated heterocycles (Dolzhenko et al., 2007, 2008a,b).

For unambiguous confirmation of structure of the compounds 3 (Fig. 1), we performed an X-ray investigation of the title compound. In accordance with the X-ray diffraction data (Fig. 2), the benzene and triazole rings are not coplanar, the dihedral angle is 54.80 (5)°. Bond lengths and angles in the triazole cycle are within the normal ranges and are comparable with those found in the other substituted 3,5-diamino-1,2,4-triazoles (Ried et al., 1983; Dunstan et al., 1998; Chernyshev et al., 2006, 2007, 2009). The nitrogen atom of the amino group is in a trigonal pyramidal configuration (sum of valence angles is 349.8°) and deviates from the triazole plane by only 0.020 (2) Å. Conjugation between the unshared electron pair of N5 and the π system of the triazole fragment leads to a shortening of the N5—C5 bond (1.352 (2) Å) relative to the standard length of a purely single Nsp2-Csp2 bond (1.43–1.45 Å) (Burke-Laing & Laing,1976; Allen et al., 1987). The N3 atom deviates from the least-squares plane of the triazole cycle by 0.056 (2) Å. The dihedral angle between the planes of the triazole cycle and amidine fragment (H1/C1/N3/N6) of the molecule is 8.66 (7)°. The amidine fragment is in the E configuration, as in the majority of other (het)aryl substituted formamidines (Cambridge Structural Database, Version 5.31 of November 2009, including updates up to August 2010, Allen, 2002). Although the formally single bond N6—C1 (1.337 (2) Å) is longer than the double bond N3—C1 (1.297 (2) Å), it is sufficiently shorter than the purely single Nsp2-Csp2 bond (1.43–1.45 Å) (Burke-Laing & Laing,1976; Allen et al., 1987). Apparently, that is caused by conjugation of the N6 atom lone pair with the N3—C1 double bond, analogously to the other hetaryl substituted formamidines (Ryng & Glowiak, 1998; Kurbatov et al., 2006; Xie et al., 2007; Lyakhov et al., 2008; Quiroga et al., 2010). Atom N6 of morpholine cycle has a slightly pyramidalized trigonal configuration (sum of valence angles is 359.1°). The morpholine ring adopts the usual chair conformation.

In the crystal, the molecules C13H16N6O with the parallel oriented triazole and morpholine cycles form stacks along the a axis of the triclinic cell (Fig. 3). The nearest molecules in the stacks adopt inverse orientation, i. e. they are space related by the inversion centres with coordinates [0, 0, 0]. The pairs of the nearest inversely oriented molecules in the stacks are connected with two water molecules located between them by means of the hydrogen bonds O2—H2A···N3 and O2—H2B···N4 (Table 1). These stacks together with the water molecules form rows which are parallel to the (011) plane (Fig. 3). In these rows the inversely oriented molecules C13H16N6O of the neighboring stacks are linked with each other by the chains of N5—H5A···O1 hydrogen bonds. The rows are connected with one another by the system of N5—H5B···O2 hydrogen bonds (Table 1). In the crystal, parallel to (100), one can see two types of molecular layers consisting of the molecules C13H16N6O (Fig. 4). The adjacent layers are related by the inversion centres. In the each layer the nearest molecules C13H16N6O are displaced from each other by the cell parameter along the b and c axes. The neighbouring layers from both sides of the (100) crystallographic planes are pairwise linked by the O2—H2A···N3, O2—H2B···N4 and N5—H5B···O2 hydrogen bonds. Thus, the crystal structure consists of the C13H16N6O×H2O molecular double layers in the direction of normal to the (100) plane.

The title compound was synthesized according to Astakhov & Chernyshev (2010). The synthesis of 3,5-diamino-1-phenyl-1,2,4-triazole is described by Steck et al. (1958). Intramolecular reactions of N-substituted aminomethylene malonates accompanied by nucleophilic substitution of malonic ester were described by Sunder & Peet (1980); Yamazaki et al. (1988); Selic et al. (1998, 2000); Tkachev et al. (2007). Analogous intermolecular reaction affording substituted formamidines was described by Rajappa et al. (1970); Bao et al. (2008). For examples of the use of the triazolyl-substituted amidines in the synthesis of annulated heterocycles, see: Dolzhenko et al. (2007, 2008a,b). For crystal structures of substituted 3,5-diamino-1,2,4-triazoles, see: Ried et al. (1983); Dunstan et al. (1998); Chernyshev et al. (2006, 2007, 2009). For crystal structures of hetaryl substituted amidines, see: Ryng & Glowiak (1998); Kurbatov et al. (2006); Xie et al. (2007); Lyakhov et al. (2008); Quiroga et al. (2010). The synthesis of mesoionic [1,2,4]triazolo[4,3-a]pyrimidines from N-(5-amino-1-R-1,2,4-triazol-3-yl)-substituted enaminoesters was described by Chernyshev et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002). For values of bond lengths in organic compounds, see: Allen et al. (1987). For the correlation of bond lengths with bond orders between sp2 hybridized C and N atoms, see: Burke-Laing & Laing (1976).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reactions of the compounds 1 with sodium ethoxide and aliphatic amines.
[Figure 2] Fig. 2. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Molecular packing in the crystal, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The crystal packing of the title compound viewed approximately along the b axis and showing double layers parallel to the bc planes. Hydrogen bonds are shown as dashed lines.
N3-[(E)-Morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4- triazole-3,5-diamine monohydrate top
Crystal data top
C13H16N6O·H2OZ = 2
Mr = 290.33F(000) = 308
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Melting point: 208 K
a = 8.7886 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0100 (7) ÅCell parameters from 334 reflections
c = 9.4373 (7) Åθ = 3–26°
α = 99.938 (1)°µ = 0.10 mm1
β = 105.933 (1)°T = 100 K
γ = 95.331 (1)°Plate, colourless
V = 700.00 (9) Å30.55 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2724 independent reflections
Radiation source: fine-focus sealed tube2510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.948, Tmax = 0.976k = 1111
5231 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3407P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H16N6O·H2Oγ = 95.331 (1)°
Mr = 290.33V = 700.00 (9) Å3
Triclinic, P1Z = 2
a = 8.7886 (7) ÅMo Kα radiation
b = 9.0100 (7) ŵ = 0.10 mm1
c = 9.4373 (7) ÅT = 100 K
α = 99.938 (1)°0.55 × 0.30 × 0.25 mm
β = 105.933 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2510 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.976Rint = 0.015
5231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
2724 reflectionsΔρmin = 0.29 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71171 (11)0.75346 (9)0.92066 (9)0.0197 (2)
N10.75642 (11)0.22365 (11)0.11933 (11)0.0140 (2)
N20.73939 (12)0.36780 (11)0.19018 (11)0.0149 (2)
N40.82835 (11)0.22141 (11)0.36142 (11)0.0140 (2)
N50.83821 (12)0.00456 (11)0.19122 (12)0.0163 (2)
H5A0.7927 (19)0.0581 (18)0.0975 (19)0.025 (4)*
H5B0.8474 (19)0.0575 (18)0.2638 (19)0.027 (4)*
N30.77750 (11)0.48235 (11)0.44096 (11)0.0146 (2)
N60.79432 (12)0.56639 (11)0.69189 (11)0.0154 (2)
C50.80778 (13)0.13965 (13)0.22417 (12)0.0132 (2)
C30.78422 (13)0.35886 (13)0.33343 (13)0.0131 (2)
C10.81153 (13)0.46393 (13)0.57891 (13)0.0139 (2)
H10.84980.37500.60030.017*
C60.85744 (15)0.55214 (13)0.84809 (13)0.0179 (3)
H6A0.96200.61360.89260.021*
H6B0.86970.44680.85150.021*
C70.74577 (17)0.60386 (14)0.93772 (14)0.0225 (3)
H7A0.64680.53290.90310.027*
H7B0.79490.60461.04330.027*
C80.63106 (14)0.74989 (14)0.76612 (13)0.0173 (2)
H8A0.59860.84840.75570.021*
H8B0.53560.67430.73220.021*
C90.73945 (15)0.71137 (13)0.66976 (13)0.0179 (3)
H9A0.68190.70380.56460.021*
H9B0.83060.79120.69750.021*
C100.71449 (14)0.18521 (13)0.04071 (12)0.0141 (2)
C110.56426 (14)0.20692 (14)0.12420 (13)0.0179 (3)
H110.49030.23910.07610.021*
C120.52581 (15)0.18009 (14)0.27987 (14)0.0206 (3)
H120.42520.19370.33650.025*
C130.63660 (15)0.13300 (14)0.35193 (13)0.0188 (3)
H130.61140.11800.45620.023*
C140.78489 (14)0.10853 (13)0.26786 (13)0.0167 (2)
H140.85810.07490.31620.020*
C150.82470 (14)0.13401 (13)0.11178 (13)0.0154 (2)
H150.92390.11700.05550.019*
O20.88944 (11)0.77890 (11)0.38883 (10)0.0217 (2)
H2A0.840 (2)0.688 (2)0.389 (2)0.041 (5)*
H2B0.979 (2)0.788 (2)0.467 (2)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0301 (5)0.0169 (4)0.0141 (4)0.0069 (4)0.0092 (4)0.0025 (3)
N10.0184 (5)0.0133 (5)0.0105 (5)0.0043 (4)0.0048 (4)0.0016 (4)
N20.0192 (5)0.0134 (5)0.0131 (5)0.0043 (4)0.0063 (4)0.0015 (4)
N40.0147 (5)0.0149 (5)0.0122 (5)0.0028 (4)0.0039 (4)0.0027 (4)
N50.0218 (5)0.0148 (5)0.0120 (5)0.0049 (4)0.0037 (4)0.0027 (4)
N30.0166 (5)0.0150 (5)0.0128 (5)0.0035 (4)0.0055 (4)0.0018 (4)
N60.0205 (5)0.0156 (5)0.0114 (5)0.0062 (4)0.0052 (4)0.0034 (4)
C50.0108 (5)0.0158 (5)0.0132 (5)0.0012 (4)0.0037 (4)0.0036 (4)
C30.0117 (5)0.0147 (5)0.0135 (5)0.0018 (4)0.0047 (4)0.0029 (4)
C10.0140 (5)0.0134 (5)0.0147 (5)0.0023 (4)0.0047 (4)0.0025 (4)
C60.0241 (6)0.0168 (6)0.0121 (6)0.0059 (5)0.0032 (5)0.0037 (4)
C70.0373 (7)0.0187 (6)0.0164 (6)0.0082 (5)0.0133 (5)0.0061 (5)
C80.0177 (6)0.0177 (6)0.0163 (6)0.0041 (4)0.0054 (5)0.0021 (4)
C90.0252 (6)0.0171 (6)0.0146 (6)0.0087 (5)0.0082 (5)0.0053 (4)
C100.0181 (6)0.0128 (5)0.0112 (5)0.0011 (4)0.0044 (4)0.0029 (4)
C110.0161 (6)0.0215 (6)0.0172 (6)0.0039 (5)0.0064 (5)0.0039 (5)
C120.0176 (6)0.0266 (6)0.0160 (6)0.0031 (5)0.0014 (5)0.0060 (5)
C130.0243 (6)0.0190 (6)0.0113 (5)0.0017 (5)0.0043 (5)0.0025 (4)
C140.0211 (6)0.0143 (5)0.0164 (6)0.0012 (4)0.0099 (5)0.0016 (4)
C150.0161 (5)0.0136 (5)0.0168 (6)0.0024 (4)0.0047 (4)0.0036 (4)
O20.0204 (5)0.0227 (5)0.0224 (5)0.0028 (4)0.0027 (4)0.0121 (4)
Geometric parameters (Å, º) top
O1—C81.4292 (14)C7—H7A0.9700
O1—C71.4338 (15)C7—H7B0.9700
N1—C51.3536 (15)C8—C91.5109 (16)
N1—N21.3956 (13)C8—H8A0.9700
N1—C101.4238 (14)C8—H8B0.9700
N2—C31.3193 (15)C9—H9A0.9700
N4—C51.3305 (15)C9—H9B0.9700
N4—C31.3783 (15)C10—C111.3900 (16)
N5—C51.3517 (15)C10—C151.3906 (16)
N5—H5A0.893 (17)C11—C121.3858 (17)
N5—H5B0.890 (17)C11—H110.9300
N3—C11.2968 (15)C12—C131.3897 (18)
N3—C31.3880 (15)C12—H120.9300
N6—C11.3367 (15)C13—C141.3866 (17)
N6—C61.4584 (14)C13—H130.9300
N6—C91.4623 (15)C14—C151.3893 (16)
C1—H10.9300C14—H140.9300
C6—C71.5167 (17)C15—H150.9300
C6—H6A0.9700O2—H2A0.89 (2)
C6—H6B0.9700O2—H2B0.91 (2)
C8—O1—C7109.34 (9)H7A—C7—H7B108.1
C5—N1—N2109.50 (9)O1—C8—C9110.45 (9)
C5—N1—C10130.86 (10)O1—C8—H8A109.6
N2—N1—C10119.58 (9)C9—C8—H8A109.6
C3—N2—N1101.95 (9)O1—C8—H8B109.6
C5—N4—C3103.04 (9)C9—C8—H8B109.6
C5—N5—H5A117.9 (10)H8A—C8—H8B108.1
C5—N5—H5B116.4 (10)N6—C9—C8109.22 (9)
H5A—N5—H5B115.6 (14)N6—C9—H9A109.8
C1—N3—C3116.52 (10)C8—C9—H9A109.8
C1—N6—C6121.12 (10)N6—C9—H9B109.8
C1—N6—C9122.19 (10)C8—C9—H9B109.8
C6—N6—C9115.74 (9)H9A—C9—H9B108.3
N4—C5—N5126.03 (10)C11—C10—C15120.75 (10)
N4—C5—N1110.18 (10)C11—C10—N1118.68 (10)
N5—C5—N1123.76 (10)C15—C10—N1120.49 (10)
N2—C3—N4115.33 (10)C12—C11—C10119.35 (11)
N2—C3—N3118.89 (10)C12—C11—H11120.3
N4—C3—N3125.73 (10)C10—C11—H11120.3
N3—C1—N6123.28 (11)C11—C12—C13120.41 (11)
N3—C1—H1118.4C11—C12—H12119.8
N6—C1—H1118.4C13—C12—H12119.8
N6—C6—C7110.52 (10)C14—C13—C12119.80 (11)
N6—C6—H6A109.5C14—C13—H13120.1
C7—C6—H6A109.5C12—C13—H13120.1
N6—C6—H6B109.5C13—C14—C15120.40 (11)
C7—C6—H6B109.5C13—C14—H14119.8
H6A—C6—H6B108.1C15—C14—H14119.8
O1—C7—C6110.56 (10)C14—C15—C10119.25 (11)
O1—C7—H7A109.5C14—C15—H15120.4
C6—C7—H7A109.5C10—C15—H15120.4
O1—C7—H7B109.5H2A—O2—H2B101.2 (16)
C6—C7—H7B109.5
C5—N1—N2—C30.70 (11)C8—O1—C7—C662.51 (13)
C10—N1—N2—C3178.22 (9)N6—C6—C7—O152.83 (13)
C3—N4—C5—N5178.66 (11)C7—O1—C8—C964.75 (12)
C3—N4—C5—N10.87 (12)C1—N6—C9—C8142.14 (11)
N2—N1—C5—N41.03 (12)C6—N6—C9—C848.90 (13)
C10—N1—C5—N4178.18 (10)O1—C8—C9—N656.40 (13)
N2—N1—C5—N5178.89 (10)C5—N1—C10—C11124.87 (13)
C10—N1—C5—N53.96 (19)N2—N1—C10—C1152.04 (14)
N1—N2—C3—N40.16 (12)C5—N1—C10—C1558.21 (16)
N1—N2—C3—N3177.65 (9)N2—N1—C10—C15124.87 (11)
C5—N4—C3—N20.43 (12)C15—C10—C11—C121.36 (18)
C5—N4—C3—N3176.86 (10)N1—C10—C11—C12175.55 (10)
C1—N3—C3—N2175.10 (10)C10—C11—C12—C130.46 (18)
C1—N3—C3—N42.11 (16)C11—C12—C13—C141.84 (18)
C3—N3—C1—N6172.89 (10)C12—C13—C14—C151.42 (18)
C6—N6—C1—N3170.20 (11)C13—C14—C15—C100.37 (17)
C9—N6—C1—N31.83 (17)C11—C10—C15—C141.77 (17)
C1—N6—C6—C7143.44 (11)N1—C10—C15—C14175.08 (10)
C9—N6—C6—C747.47 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.89 (2)2.08 (2)2.929 (2)159 (1)
N5—H5B···O2ii0.89 (2)2.04 (2)2.906 (2)164 (1)
O2—H2A···N30.89 (2)2.07 (2)2.929 (2)164 (1)
O2—H2B···N4iii0.91 (2)2.01 (2)2.916 (2)172 (1)
Symmetry codes: (i) x, y1, z1; (ii) x, y1, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H16N6O·H2O
Mr290.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7886 (7), 9.0100 (7), 9.4373 (7)
α, β, γ (°)99.938 (1), 105.933 (1), 95.331 (1)
V3)700.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.948, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5231, 2724, 2510
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.00
No. of reflections2724
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.89 (2)2.08 (2)2.929 (2)159 (1)
N5—H5B···O2ii0.89 (2)2.04 (2)2.906 (2)164 (1)
O2—H2A···N30.89 (2)2.07 (2)2.929 (2)164 (1)
O2—H2B···N4iii0.91 (2)2.01 (2)2.916 (2)172 (1)
Symmetry codes: (i) x, y1, z1; (ii) x, y1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Education and Science of the Russian Federation for the financial support of this work through the Federal Target Program "Research and Educational Personnel of Innovative Russia at 2009–2013 Years", State contract P302, project NK-109P/2.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAstakhov, A. V. & Chernyshev, V. M. (2010). Chem. Heterocycl. Comp. In the press.  Google Scholar
First citationBao, K., Zhang, W., Bu, X., Song, Zh., Zhang, L. & Cheng, M. (2008). Chem. Commun. pp. 5429–5431.  Web of Science CrossRef Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216–3224.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChernyshev, V. M., Astakhov, A. V. & Starikova, Z. A. (2010). Tetrahedron, 66, 3301–3313.  Web of Science CSD CrossRef CAS Google Scholar
First citationChernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. & Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338–344.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Blinov, V. V., Taranushich, V. A. & Starikova, Z. A. (2009). Chem. Heterocycl. Compd, 45, 436–444.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Starikova, Z. A. (2007). Chem. Heterocycl. Compd, 43, 776–780.  CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Tetrahedron, 63, 12888–12895.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Nan, B. J., Dolzhenko, A. V., Chui, G. N. Ch. & Chui, W. K. (2008a). J. Fluorine Chem. 129, 429–434.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180–7183.  Web of Science CrossRef CAS Google Scholar
First citationDunstan, A. R., Weber, H.-P., Rihs, G., Widmer, H. & Dziadulewicz, E. K. (1998). Tetrahedron Lett. 39, 7983–7986.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKurbatov, E. S., Starikova, Z. A., Krasnikov, V. V. & Mezheritsky, V. V. (2006). Russ. J. Org. Chem. 42, 1578–1580.  Web of Science CrossRef CAS Google Scholar
First citationLyakhov, A. S., Vorobiov, A. N., Ivashkevich, L. S. & Gaponik, P. N. (2008). Acta Cryst. C64, o414–o416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuiroga, J., Trilleras, J., Hursthouse, M. B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o245–o248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajappa, S., Nagarajan, K. & Akerkar, A. S. (1970). Indian J. Chem. 8, 499–501.  CAS Google Scholar
First citationRied, W., Broft, G. W. & Bats, J. W. (1983). Chem. Ber. 116, 1547–1563.  CrossRef CAS Web of Science Google Scholar
First citationRyng, S. & Glowiak, T. (1998). J. Chem. Crystallogr. 28, 373–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelic, L., Jakse, R., Lampic, K., Golic, L., Golic-Grdadolnik, S. & Stanovnik, B. (2000). Helv. Chim. Acta, 83, 2802–2811.  CrossRef CAS Google Scholar
First citationSelic, L. & Stanovnik, B. (1998). J. Heterocycl. Chem. 35, 1527-1529.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A., Brundage, R. P. & Fletcher, L. T. (1958). J. Am. Chem. Soc. 80, 3929–3931.  CrossRef CAS Web of Science Google Scholar
First citationSunder, Sh. & Peet, N. P. (1980). J. Heterocycl. Chem. 17, 1527–1529.  CrossRef CAS Google Scholar
First citationTkachev, R. P., Bityukova, O. S., Dyachenko, V. D., Tkacheva, V. P. & Dyachenko, A. D. (2007). Russ. J. Gen. Chem. 77, 116–123.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, D.-M., Shu, Z., Shen, L., Ding, Z.-W. & Jin, Z.-M. (2007). Acta Cryst. E63, o4562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamazaki, Ch., Takahashi, T. & Hata, K. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1897–1903.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds