organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Meth­­oxy­benz­yl)imino­meth­yl]phenol

aResearch Centre of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 15 November 2010; accepted 19 November 2010; online 24 November 2010)

In the title Schiff base compound, C15H15NO2, prepared from 4-meth­oxy­benzyl­amine and salicyl­aldehyde, an intra­molecular O—H⋯N hydrogen bonds influences the mol­ecular conformation; the two aromatic rings form a dihedral angle of 73.5 (1)°. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into chains propagating in [010].

Related literature

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For related structures, see: Phurat et al. (2010[Phurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2310.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of the synthesis, see: Phurat et al. (2010[Phurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2310.]); Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2

  • Mr = 241.28

  • Orthorhombic, P 21 21 21

  • a = 5.7190 (8) Å

  • b = 12.7229 (19) Å

  • c = 17.936 (3) Å

  • V = 1305.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 5776 measured reflections

  • 1573 independent reflections

  • 1177 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.162

  • S = 1.13

  • 1573 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.85 2.574 (3) 146
C11—H11⋯O1i 0.93 2.54 3.464 (4) 175
Symmetry code: (i) [-x+3, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff base complexes have gained importance from physiological and pharmacological activities point of view (Adsule et al., 2006; Karthikeyan et al., 2006). As a part of our research focused on the area of transition metal complex-based anticancer agents, the title compound (I) has been prepared as a ligand by Schiff base reaction between 4-methoxybenzylamine and salicylaldehyde.

The molecule of (I) (Fig. 1) adopts a V-shape structure. The dihedral angle between the methoxybenzene ring and 2-methyliminophenol moiety is 73.5 (1)°. The 2-methyliminophenol (C1 to C7, N1 and O1) moiety is nearly planar (r.m.s. deviation = 0.021 Å). The methoxybenzene and 2-methyliminophenol groups are located on the opposite side of the C=N bond, showing an E configuration. The bond lengths and angles in (I) are normal and comparable with those observed in the related compounds (Phurat et al., 2010; Tariq et al., 2010; Khalaji & Simpson, 2009). Intramolecular O—H···N hydrogen bond (Table 1) generates a S(6) ring (Bernstein et al., 1995).

In the crystal structure, weak intermolecular C—H···O interactions (Table 1) link the molecules into chains propagated in direction [010].

Related literature top

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006); Karthikeyan et al. (2006). For related structures, see: Phurat et al. (2010); Tariq et al. (2010); Khalaji & Simpson (2009). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of the synthesis, see: Phurat et al. (2010); Kannappan et al. (2005).

Experimental top

The title compound was prepared according to the method reported in the literature (Kannappan et al., 2005; Phurat et al., 2010). 4-Methoxybenzylamine (2.50 ml.2.63 g, 0.02 mol) was added to a stirred ethanol solution of salicylaldehyde (2.50 ml, 2.86 g, 0.02 mol). The reaction mixture was stirred at reflux for 2 h and then the mixture was allowed to stand at room temperature for 1 week to give yellow cystals suitable for X-ray diffraction analysis.

Refinement top

H-atoms were geometrically positioned (C—H 0.93-0.97 Å, O—H 0.82 Å) and refined using a riding model, with Uiso= 1.2-1.5 Ueq of the parent atom. The absolute structure could not be determined and therefore 1,086 Friedel opposites were merged.

Structure description top

Schiff base complexes have gained importance from physiological and pharmacological activities point of view (Adsule et al., 2006; Karthikeyan et al., 2006). As a part of our research focused on the area of transition metal complex-based anticancer agents, the title compound (I) has been prepared as a ligand by Schiff base reaction between 4-methoxybenzylamine and salicylaldehyde.

The molecule of (I) (Fig. 1) adopts a V-shape structure. The dihedral angle between the methoxybenzene ring and 2-methyliminophenol moiety is 73.5 (1)°. The 2-methyliminophenol (C1 to C7, N1 and O1) moiety is nearly planar (r.m.s. deviation = 0.021 Å). The methoxybenzene and 2-methyliminophenol groups are located on the opposite side of the C=N bond, showing an E configuration. The bond lengths and angles in (I) are normal and comparable with those observed in the related compounds (Phurat et al., 2010; Tariq et al., 2010; Khalaji & Simpson, 2009). Intramolecular O—H···N hydrogen bond (Table 1) generates a S(6) ring (Bernstein et al., 1995).

In the crystal structure, weak intermolecular C—H···O interactions (Table 1) link the molecules into chains propagated in direction [010].

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006); Karthikeyan et al. (2006). For related structures, see: Phurat et al. (2010); Tariq et al. (2010); Khalaji & Simpson (2009). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of the synthesis, see: Phurat et al. (2010); Kannappan et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.
2-[(4-Methoxybenzyl)iminomethyl]phenol top
Crystal data top
C15H15NO2F(000) = 512
Mr = 241.28Dx = 1.228 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.7190 (8) ŵ = 0.08 mm1
b = 12.7229 (19) ÅT = 293 K
c = 17.936 (3) ÅNeedle, yellow
V = 1305.0 (3) Å30.3 × 0.18 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1177 reflections with I > 2σ(I)
Radiation source: Mo KαRint = 0.040
Graphite monochromatorθmax = 26.5°, θmin = 2.0°
φ and ω scansh = 77
5776 measured reflectionsk = 1514
1573 independent reflectionsl = 2022
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.15 e Å3
1573 reflectionsΔρmin = 0.16 e Å3
164 parameters
Crystal data top
C15H15NO2V = 1305.0 (3) Å3
Mr = 241.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7190 (8) ŵ = 0.08 mm1
b = 12.7229 (19) ÅT = 293 K
c = 17.936 (3) Å0.3 × 0.18 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1177 reflections with I > 2σ(I)
5776 measured reflectionsRint = 0.040
1573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.13Δρmax = 0.15 e Å3
1573 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7854 (7)0.1595 (3)0.54878 (17)0.0795 (9)
H10.6420.1830.53080.095*
C20.8661 (10)0.0614 (3)0.5283 (2)0.1029 (14)
H20.77870.01910.49650.123*
C31.0749 (9)0.0274 (3)0.5552 (3)0.1095 (15)
H31.12830.0390.54170.131*
C41.2087 (7)0.0879 (3)0.6015 (2)0.0909 (11)
H41.34990.06270.61990.109*
C51.1300 (5)0.1875 (2)0.62042 (17)0.0668 (8)
C60.9144 (5)0.2235 (2)0.59563 (14)0.0570 (6)
C70.8246 (5)0.3261 (2)0.61737 (18)0.0675 (7)
H70.68060.34820.5990.081*
C80.8369 (7)0.4881 (3)0.6807 (3)0.1079 (14)
H8A0.79990.48890.73350.129*
H8B0.69290.49890.65320.129*
C91.0065 (6)0.5755 (3)0.6632 (2)0.0814 (10)
C101.1673 (7)0.6086 (3)0.71468 (18)0.0783 (9)
H101.16880.57750.76160.094*
C111.3269 (6)0.6865 (2)0.69908 (16)0.0695 (8)
H111.43430.70770.7350.083*
C121.3254 (6)0.7330 (2)0.62925 (15)0.0642 (7)
C131.1673 (8)0.7010 (3)0.57680 (19)0.0836 (10)
H131.16670.73190.52980.1*
C141.0094 (7)0.6231 (3)0.5935 (2)0.0892 (11)
H140.90250.60180.55750.107*
C151.6382 (7)0.8487 (3)0.6610 (2)0.0891 (10)
H15A1.730.9040.63940.134*
H15B1.73890.79190.67540.134*
H15C1.55730.87490.7040.134*
N10.9379 (4)0.3862 (2)0.66067 (15)0.0790 (7)
O11.2662 (4)0.2479 (2)0.66466 (15)0.0979 (8)
H1A1.19210.29970.67820.147*
O21.4738 (5)0.81229 (18)0.60808 (11)0.0847 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (2)0.070 (2)0.0865 (18)0.0248 (18)0.0068 (17)0.0110 (16)
C20.129 (4)0.069 (2)0.110 (3)0.037 (3)0.019 (3)0.015 (2)
C30.138 (4)0.055 (2)0.135 (3)0.009 (3)0.063 (3)0.006 (2)
C40.079 (2)0.075 (2)0.119 (3)0.015 (2)0.026 (2)0.031 (2)
C50.0600 (15)0.0640 (17)0.0764 (16)0.0006 (15)0.0024 (14)0.0127 (14)
C60.0554 (14)0.0459 (14)0.0696 (14)0.0079 (12)0.0013 (12)0.0121 (12)
C70.0515 (13)0.0542 (16)0.0968 (18)0.0058 (14)0.0057 (14)0.0154 (15)
C80.091 (2)0.068 (2)0.165 (3)0.010 (2)0.043 (3)0.030 (2)
C90.081 (2)0.0504 (17)0.113 (2)0.0010 (16)0.026 (2)0.0255 (18)
C100.099 (2)0.0543 (16)0.0814 (18)0.0031 (19)0.0169 (18)0.0043 (15)
C110.0839 (19)0.0552 (16)0.0694 (16)0.0009 (16)0.0002 (15)0.0039 (13)
C120.0789 (18)0.0457 (14)0.0680 (14)0.0075 (16)0.0052 (14)0.0091 (12)
C130.108 (3)0.072 (2)0.0708 (16)0.004 (2)0.0044 (18)0.0100 (15)
C140.095 (2)0.073 (2)0.099 (2)0.001 (2)0.008 (2)0.030 (2)
C150.097 (2)0.070 (2)0.100 (2)0.015 (2)0.008 (2)0.0039 (17)
N10.0726 (15)0.0577 (15)0.1068 (17)0.0101 (14)0.0126 (15)0.0071 (14)
O10.0699 (13)0.111 (2)0.1132 (17)0.0012 (16)0.0258 (14)0.0017 (16)
O20.1129 (18)0.0647 (13)0.0765 (12)0.0104 (13)0.0065 (13)0.0056 (11)
Geometric parameters (Å, º) top
C1—C21.381 (6)C8—H8B0.97
C1—C61.383 (4)C9—C101.369 (5)
C1—H10.93C9—C141.390 (5)
C2—C31.359 (7)C10—C111.376 (5)
C2—H20.93C10—H100.93
C3—C41.366 (6)C11—C121.385 (4)
C3—H30.93C11—H110.93
C4—C51.387 (5)C12—C131.367 (5)
C4—H40.93C12—O21.372 (4)
C5—O11.352 (4)C13—C141.374 (5)
C5—C61.389 (4)C13—H130.93
C6—C71.456 (4)C14—H140.93
C7—N11.268 (4)C15—O21.413 (4)
C7—H70.93C15—H15A0.96
C8—N11.464 (4)C15—H15B0.96
C8—C91.509 (5)C15—H15C0.96
C8—H8A0.97O1—H1A0.82
C2—C1—C6121.0 (4)C10—C9—C14117.7 (3)
C2—C1—H1119.5C10—C9—C8121.2 (4)
C6—C1—H1119.5C14—C9—C8121.0 (4)
C3—C2—C1119.1 (4)C9—C10—C11122.0 (3)
C3—C2—H2120.4C9—C10—H10119
C1—C2—H2120.4C11—C10—H10119
C2—C3—C4121.9 (4)C10—C11—C12119.2 (3)
C2—C3—H3119C10—C11—H11120.4
C4—C3—H3119C12—C11—H11120.4
C3—C4—C5118.8 (4)C13—C12—O2116.0 (3)
C3—C4—H4120.6C13—C12—C11119.9 (3)
C5—C4—H4120.6O2—C12—C11124.1 (3)
O1—C5—C4118.5 (3)C12—C13—C14120.0 (3)
O1—C5—C6120.8 (3)C12—C13—H13120
C4—C5—C6120.7 (3)C14—C13—H13120
C1—C6—C5118.3 (3)C13—C14—C9121.2 (3)
C1—C6—C7120.1 (3)C13—C14—H14119.4
C5—C6—C7121.6 (3)C9—C14—H14119.4
N1—C7—C6121.6 (3)O2—C15—H15A109.5
N1—C7—H7119.2O2—C15—H15B109.5
C6—C7—H7119.2H15A—C15—H15B109.5
N1—C8—C9110.4 (3)O2—C15—H15C109.5
N1—C8—H8A109.6H15A—C15—H15C109.5
C9—C8—H8A109.6H15B—C15—H15C109.5
N1—C8—H8B109.6C7—N1—C8118.9 (3)
C9—C8—H8B109.6C5—O1—H1A109.5
H8A—C8—H8B108.1C12—O2—C15117.8 (2)
C6—C1—C2—C30.5 (5)C14—C9—C10—C110.4 (5)
C1—C2—C3—C40.6 (6)C8—C9—C10—C11178.5 (3)
C2—C3—C4—C51.1 (6)C9—C10—C11—C120.1 (5)
C3—C4—C5—O1178.3 (3)C10—C11—C12—C130.3 (4)
C3—C4—C5—C62.9 (5)C10—C11—C12—O2179.0 (3)
C2—C1—C6—C51.3 (4)O2—C12—C13—C14179.0 (3)
C2—C1—C6—C7179.2 (3)C11—C12—C13—C140.3 (5)
O1—C5—C6—C1178.2 (3)C12—C13—C14—C90.0 (5)
C4—C5—C6—C13.0 (4)C10—C9—C14—C130.3 (5)
O1—C5—C6—C71.3 (4)C8—C9—C14—C13178.4 (3)
C4—C5—C6—C7177.5 (3)C6—C7—N1—C8179.6 (3)
C1—C6—C7—N1179.4 (3)C9—C8—N1—C7125.6 (4)
C5—C6—C7—N11.0 (4)C13—C12—O2—C15179.2 (3)
N1—C8—C9—C1089.5 (4)C11—C12—O2—C150.0 (4)
N1—C8—C9—C1488.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.852.574 (3)146
C11—H11···O1i0.932.543.464 (4)175
Symmetry code: (i) x+3, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H15NO2
Mr241.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.7190 (8), 12.7229 (19), 17.936 (3)
V3)1305.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5776, 1573, 1177
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.162, 1.13
No. of reflections1573
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.852.574 (3)146.4
C11—H11···O1i0.932.543.464 (4)174.8
Symmetry code: (i) x+3, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek Somphot Endowment Fund) to CP, the Research Funds from the Faculty of Science (A1B1), the Thailand Research Fund (TRF) to NM, and the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agrigulture and Center for Petroleum Petrochemicals and Advanced Materials.

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPhurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds