organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Di­ethyl­amino-2-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­­idene]meth­yl}phenol

aCollege of Chemical Engineering and Environment, North University of China, Taiyuan 030051, People's Republic of China, and bKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: zhaolinxiu126@126.com

(Received 20 October 2010; accepted 3 November 2010; online 10 November 2010)

In the title compound, C17H19N5O5, obtained from the condensation reaction of 4-diethyl­amino-2-hy­droxy­benzalde­hyde and 2,4-dinitro­phenyl­hydrazine, the two benzene rings are twisted by a dihedral angle of 1.75 (12)°. The nitro groups are slightly twisted with the respect to the benzene ring to which they are attached, making dihedral angles of 8.20 (15) and 5.78 (15)°. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are linked by pairs of inter­molecular N—H⋯O hydrogen bonds, forming dimers through R22(12) rings. These dimers are further linked by C—H⋯O and C—H⋯π and weak slipped ππ inter­actions [centroid–centroid distance = 3.743 (2)Å]. One of the ethyl groups is disordered over two positions, with occupancy factors in the ratio 0.72:0.28.

Related literature

For related structures, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); Kuleshova et al. (2003[Kuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Kristallografiya, 48, 645-652.]); Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Szczesna & Urbanczyk-Lipkowska (2002[Szczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243-249..]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721-o3722.]). For discussion of hydrogen-bonding patterns, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N5O5

  • Mr = 373.37

  • Triclinic, [P \overline 1]

  • a = 8.5300 (7) Å

  • b = 8.5410 (4) Å

  • c = 12.4910 (11) Å

  • α = 84.554 (7)°

  • β = 89.733 (6)°

  • γ = 75.109 (7)°

  • V = 875.31 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.980

  • 5395 measured reflections

  • 3069 independent reflections

  • 1727 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.125

  • S = 0.95

  • 3069 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.95 2.672 (3) 146
N2—H2⋯O3i 0.86 2.51 3.344 (3) 162
C15—H15B⋯O4ii 0.96 2.43 3.359 (6) 164
C14—H14CCg2iii 0.96 2.71 3.620 (4) 157
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents(Okabe et al. 1993). Structural information for phenylhydrazone derivatives is useful in studying their coordination properties. As part of our work, we have synthesized the title compound and report the crystal structure.

The molecule is coplanar, the two phenyl rings are only twisted by a dihedral angle of 1.75 (12)°. Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives(Ohba,1996; Baughman et al., 2004; Kuleshova et al., 2003; Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005)

There are intramolecular N—H···O hydrogen bond within the hydrazone molecules. Molecules are linked two by two by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 1) which form a R22(12) ring (Etter et al., 1990; Bernstein et al., 1995). These dimer are further linked by C-H···O, C-H···π (Table 1) and by weak slippest π-π interactions [centroid to centroid = 3.743 (2)Å, interplanar distance = 3.42Å and offset angle= 24°]

Related literature top

For related structures, see: Baughman et al. (2004); Kuleshova et al. (2003); Ohba (1996); Okabe et al. (1993); Szczesna & Urbanczyk-Lipkowska (2002); Zhen & Han (2005). For discussion of hydrogen-bonding patterns, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

2,4-dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous ethanol (10 ml), H2SO4(98%, 0.5 ml) was then added and The mixture was stirred for several minitutes at 351k, 4-(diethylamino)-2-hydroxybenzaldehyde (1 mmol, 0.193 g) in ethanol (10 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF, red single crystals of (I) was obtained after one month.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene), 0.96 Å(methyl) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH) and Uiso(H)=1.5Ueq(CH3).

The C15 atom is distributed over two positions C15 and C15B. The occupancy factor with the sum of the occupancy factor constraints to be 1.0, was first refined using a overall isotropic thermal parameter for the two carbon atoms. Once the occupancy factor has been determined, it was fixed and the isotropic thermal parameters were freely refined. The geometry of the ethyl has been kept chemically reasonable using restraints (SAME, Sheldrick, 2008). Using such disoredered model improved greatly the refinement.

Structure description top

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents(Okabe et al. 1993). Structural information for phenylhydrazone derivatives is useful in studying their coordination properties. As part of our work, we have synthesized the title compound and report the crystal structure.

The molecule is coplanar, the two phenyl rings are only twisted by a dihedral angle of 1.75 (12)°. Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives(Ohba,1996; Baughman et al., 2004; Kuleshova et al., 2003; Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005)

There are intramolecular N—H···O hydrogen bond within the hydrazone molecules. Molecules are linked two by two by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 1) which form a R22(12) ring (Etter et al., 1990; Bernstein et al., 1995). These dimer are further linked by C-H···O, C-H···π (Table 1) and by weak slippest π-π interactions [centroid to centroid = 3.743 (2)Å, interplanar distance = 3.42Å and offset angle= 24°]

For related structures, see: Baughman et al. (2004); Kuleshova et al. (2003); Ohba (1996); Okabe et al. (1993); Szczesna & Urbanczyk-Lipkowska (2002); Zhen & Han (2005). For discussion of hydrogen-bonding patterns, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of I with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethyl group is shown. H atoms are represented as small spheres of arbitrary radii. Intramolecular H bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of the R22(12) ring. H atoms not involved in the hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x-1, -y+2, -z+1]
5-Diethylamino-2-{[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]methyl}phenol top
Crystal data top
C17H19N5O5Z = 2
Mr = 373.37F(000) = 392
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5300 (7) ÅCell parameters from 2780 reflections
b = 8.5410 (4) Åθ = 3.0–25.0°
c = 12.4910 (11) ŵ = 0.11 mm1
α = 84.554 (7)°T = 293 K
β = 89.733 (6)°Block, red
γ = 75.109 (7)°0.22 × 0.19 × 0.17 mm
V = 875.31 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.975, Tmax = 0.980k = 109
5395 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0449P)2]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C17H19N5O5γ = 75.109 (7)°
Mr = 373.37V = 875.31 (11) Å3
Triclinic, P1Z = 2
a = 8.5300 (7) ÅMo Kα radiation
b = 8.5410 (4) ŵ = 0.11 mm1
c = 12.4910 (11) ÅT = 293 K
α = 84.554 (7)°0.22 × 0.19 × 0.17 mm
β = 89.733 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1727 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.033
5395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.125H-atom parameters constrained
S = 0.95Δρmax = 0.18 e Å3
3069 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25187 (19)0.6271 (3)0.50881 (14)0.0542 (6)
H10.17460.68620.53690.081*
O20.5619 (2)1.2021 (3)0.72130 (18)0.0859 (9)
O30.4850 (2)1.0820 (3)0.57933 (16)0.0674 (7)
O40.1960 (3)1.2721 (3)0.98125 (17)0.0822 (8)
O50.0601 (3)1.1684 (3)0.96747 (16)0.0757 (7)
N10.0540 (2)0.8040 (3)0.52221 (16)0.0361 (5)
N20.1829 (2)0.9124 (3)0.56372 (15)0.0380 (6)
H20.27680.93520.53260.046*
N30.4544 (3)1.1282 (3)0.6656 (2)0.0510 (7)
N40.0803 (3)1.1929 (3)0.93582 (19)0.0538 (7)
N50.3830 (2)0.2866 (3)0.22459 (17)0.0418 (6)
C140.3429 (3)0.2320 (4)0.1233 (2)0.0612 (9)0.72
H14A0.41000.12230.11940.073*0.72
H14B0.23120.22530.12680.073*0.72
C150.3598 (5)0.3248 (6)0.0249 (3)0.0738 (14)0.72
H15A0.47110.32710.01670.111*0.72
H15B0.29320.43400.02580.111*0.72
H15C0.32630.27600.03420.111*0.72
C14B0.3429 (3)0.2320 (4)0.1233 (2)0.0612 (9)0.28
H14C0.26530.16840.14070.073*0.28
H14D0.28420.32920.07960.073*0.28
C15B0.4529 (12)0.1441 (16)0.0563 (9)0.067 (3)0.28
H15D0.40030.14150.01100.101*0.28
H15E0.49440.03500.08920.101*0.28
H15F0.54070.19440.04410.101*0.28
C10.0349 (3)0.6209 (3)0.38800 (18)0.0316 (6)
C20.1988 (3)0.5694 (3)0.42192 (19)0.0347 (7)
C30.3117 (3)0.4608 (3)0.36813 (19)0.0372 (7)
H30.41880.42910.39310.045*
C40.2693 (3)0.3972 (3)0.27695 (19)0.0340 (6)
C50.1057 (3)0.4485 (3)0.24127 (19)0.0378 (7)
H50.07330.40940.18030.045*
C60.0054 (3)0.5558 (3)0.29623 (19)0.0378 (7)
H60.11270.58680.27150.045*
C70.0867 (3)0.7351 (3)0.4408 (2)0.0353 (7)
H70.19340.76030.41520.042*
C80.1625 (3)0.9827 (3)0.65262 (19)0.0325 (6)
C90.2895 (3)1.0890 (3)0.7042 (2)0.0349 (6)
C100.2620 (3)1.1567 (3)0.79614 (19)0.0388 (7)
H100.34751.22540.82880.047*
C110.1096 (3)1.1223 (3)0.83856 (19)0.0379 (7)
C120.0190 (3)1.0181 (4)0.7912 (2)0.0476 (8)
H120.12290.99490.82130.057*
C130.0069 (3)0.9507 (3)0.7016 (2)0.0420 (7)
H130.08030.88110.67110.050*
C160.5551 (3)0.2546 (4)0.2534 (2)0.0504 (8)
H16A0.61380.15670.22260.060*
H16B0.56750.23360.33100.060*
C170.6308 (3)0.3901 (4)0.2167 (2)0.0611 (9)
H17A0.61770.41340.14010.092*
H17B0.74430.35820.23560.092*
H17C0.57900.48560.25080.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (11)0.0745 (17)0.0458 (12)0.0051 (11)0.0017 (9)0.0321 (11)
O20.0393 (11)0.118 (2)0.0921 (17)0.0162 (12)0.0029 (11)0.0701 (16)
O30.0473 (11)0.0875 (18)0.0636 (14)0.0035 (11)0.0156 (10)0.0452 (13)
O40.0799 (16)0.102 (2)0.0634 (15)0.0050 (14)0.0036 (13)0.0537 (14)
O50.0664 (14)0.102 (2)0.0637 (14)0.0249 (13)0.0202 (12)0.0256 (14)
N10.0338 (12)0.0365 (14)0.0357 (12)0.0033 (10)0.0072 (10)0.0090 (11)
N20.0330 (12)0.0389 (15)0.0385 (13)0.0000 (10)0.0015 (10)0.0117 (11)
N30.0367 (13)0.0542 (18)0.0583 (16)0.0033 (12)0.0024 (12)0.0271 (14)
N40.0623 (17)0.0568 (19)0.0433 (15)0.0149 (14)0.0056 (14)0.0109 (13)
N50.0365 (12)0.0470 (16)0.0454 (14)0.0113 (11)0.0070 (11)0.0209 (12)
C140.0525 (18)0.078 (3)0.056 (2)0.0138 (17)0.0129 (16)0.0328 (19)
C150.084 (3)0.083 (4)0.058 (3)0.031 (3)0.006 (2)0.000 (3)
C14B0.0525 (18)0.078 (3)0.056 (2)0.0138 (17)0.0129 (16)0.0328 (19)
C15B0.057 (7)0.083 (10)0.074 (8)0.021 (6)0.036 (6)0.061 (7)
C10.0313 (14)0.0314 (16)0.0318 (14)0.0073 (12)0.0025 (11)0.0034 (12)
C20.0376 (15)0.0386 (18)0.0307 (15)0.0125 (13)0.0020 (12)0.0089 (13)
C30.0272 (13)0.0469 (18)0.0362 (15)0.0047 (12)0.0013 (12)0.0107 (13)
C40.0352 (14)0.0326 (17)0.0364 (15)0.0114 (12)0.0064 (12)0.0066 (13)
C50.0373 (15)0.0395 (17)0.0386 (15)0.0096 (13)0.0012 (12)0.0143 (13)
C60.0300 (14)0.0413 (18)0.0415 (16)0.0068 (12)0.0020 (12)0.0080 (14)
C70.0327 (14)0.0348 (17)0.0368 (15)0.0048 (12)0.0016 (12)0.0068 (13)
C80.0365 (15)0.0282 (16)0.0312 (14)0.0054 (12)0.0028 (12)0.0036 (12)
C90.0299 (14)0.0336 (17)0.0388 (15)0.0027 (12)0.0002 (12)0.0078 (13)
C100.0366 (15)0.0381 (18)0.0385 (16)0.0017 (13)0.0024 (13)0.0094 (13)
C110.0436 (16)0.0413 (18)0.0295 (15)0.0109 (13)0.0022 (13)0.0072 (13)
C120.0344 (15)0.058 (2)0.0458 (17)0.0043 (14)0.0064 (13)0.0065 (16)
C130.0356 (15)0.0456 (19)0.0414 (16)0.0018 (13)0.0035 (13)0.0110 (14)
C160.0351 (15)0.049 (2)0.066 (2)0.0040 (14)0.0092 (14)0.0243 (16)
C170.0512 (18)0.070 (2)0.068 (2)0.0201 (17)0.0168 (16)0.0263 (18)
Geometric parameters (Å, º) top
O1—C21.359 (3)C1—C21.408 (3)
O1—H10.8200C1—C71.434 (3)
O2—N31.226 (3)C2—C31.376 (3)
O3—N31.234 (3)C3—C41.395 (3)
O4—N41.216 (3)C3—H30.9300
O5—N41.223 (3)C4—C51.412 (3)
N1—C71.288 (3)C5—C61.369 (3)
N1—N21.377 (3)C5—H50.9300
N2—C81.344 (3)C6—H60.9300
N2—H20.8600C7—H70.9300
N3—C91.434 (3)C8—C131.414 (3)
N4—C111.457 (3)C8—C91.419 (3)
N5—C41.379 (3)C9—C101.381 (3)
N5—C141.460 (3)C10—C111.356 (3)
N5—C161.462 (3)C10—H100.9300
C14—C151.426 (5)C11—C121.391 (4)
C14—H14A0.9700C12—C131.351 (3)
C14—H14B0.9700C12—H120.9300
C15—H15A0.9600C13—H130.9300
C15—H15B0.9600C16—C171.500 (4)
C15—H15C0.9600C16—H16A0.9700
C15B—H15D0.9600C16—H16B0.9700
C15B—H15E0.9600C17—H17A0.9600
C15B—H15F0.9600C17—H17B0.9600
C1—C61.402 (3)C17—H17C0.9600
C2—O1—H1109.5C4—C5—H5119.9
C7—N1—N2116.1 (2)C5—C6—C1123.1 (2)
C8—N2—N1120.3 (2)C5—C6—H6118.5
C8—N2—H2119.8C1—C6—H6118.5
N1—N2—H2119.8N1—C7—C1122.6 (2)
O2—N3—O3121.8 (2)N1—C7—H7118.7
O2—N3—C9118.9 (2)C1—C7—H7118.7
O3—N3—C9119.3 (2)N2—C8—C13120.1 (2)
O4—N4—O5123.6 (3)N2—C8—C9124.3 (2)
O4—N4—C11118.6 (3)C13—C8—C9115.7 (2)
O5—N4—C11117.8 (3)C10—C9—C8121.9 (2)
C4—N5—C14121.1 (2)C10—C9—N3116.3 (2)
C4—N5—C16119.8 (2)C8—C9—N3121.8 (2)
C14—N5—C16117.2 (2)C11—C10—C9119.6 (2)
C15—C14—N5119.0 (3)C11—C10—H10120.2
C15—C14—H14A107.6C9—C10—H10120.2
N5—C14—H14A107.6C10—C11—C12120.8 (3)
C15—C14—H14B107.6C10—C11—N4119.7 (2)
N5—C14—H14B107.6C12—C11—N4119.6 (2)
H14A—C14—H14B107.0C13—C12—C11120.1 (2)
H15D—C15B—H15E109.5C13—C12—H12120.0
H15D—C15B—H15F109.5C11—C12—H12120.0
H15E—C15B—H15F109.5C12—C13—C8122.1 (3)
C6—C1—C2116.0 (2)C12—C13—H13119.0
C6—C1—C7120.4 (2)C8—C13—H13119.0
C2—C1—C7123.6 (2)N5—C16—C17114.4 (2)
O1—C2—C3117.4 (2)N5—C16—H16A108.7
O1—C2—C1121.0 (2)C17—C16—H16A108.7
C3—C2—C1121.7 (2)N5—C16—H16B108.7
C2—C3—C4121.5 (2)C17—C16—H16B108.7
C2—C3—H3119.3H16A—C16—H16B107.6
C4—C3—H3119.3C16—C17—H17A109.5
N5—C4—C3121.0 (2)C16—C17—H17B109.5
N5—C4—C5121.4 (2)H17A—C17—H17B109.5
C3—C4—C5117.6 (2)C16—C17—H17C109.5
C6—C5—C4120.1 (2)H17A—C17—H17C109.5
C6—C5—H5119.9H17B—C17—H17C109.5
C7—N1—N2—C8175.9 (2)N1—N2—C8—C9176.6 (2)
C4—N5—C14—C1586.9 (4)N2—C8—C9—C10179.3 (2)
C16—N5—C14—C1577.4 (4)C13—C8—C9—C100.1 (4)
C6—C1—C2—O1178.8 (2)N2—C8—C9—N31.3 (4)
C7—C1—C2—O10.2 (4)C13—C8—C9—N3177.9 (2)
C6—C1—C2—C30.3 (3)O2—N3—C9—C108.1 (4)
C7—C1—C2—C3179.3 (2)O3—N3—C9—C10174.4 (2)
O1—C2—C3—C4178.8 (2)O2—N3—C9—C8170.0 (3)
C1—C2—C3—C40.3 (4)O3—N3—C9—C87.5 (4)
C14—N5—C4—C3173.9 (2)C8—C9—C10—C110.5 (4)
C16—N5—C4—C310.0 (4)N3—C9—C10—C11178.6 (2)
C14—N5—C4—C57.0 (4)C9—C10—C11—C120.8 (4)
C16—N5—C4—C5170.8 (2)C9—C10—C11—N4179.7 (2)
C2—C3—C4—N5179.0 (2)O4—N4—C11—C105.3 (4)
C2—C3—C4—C50.2 (4)O5—N4—C11—C10175.0 (2)
N5—C4—C5—C6178.5 (2)O4—N4—C11—C12173.7 (3)
C3—C4—C5—C60.6 (4)O5—N4—C11—C126.0 (4)
C4—C5—C6—C10.6 (4)C10—C11—C12—C130.4 (4)
C2—C1—C6—C50.1 (4)N4—C11—C12—C13179.4 (2)
C7—C1—C6—C5178.9 (2)C11—C12—C13—C80.2 (4)
N2—N1—C7—C1179.2 (2)N2—C8—C13—C12179.7 (2)
C6—C1—C7—N1176.6 (2)C9—C8—C13—C120.4 (4)
C2—C1—C7—N12.3 (4)C4—N5—C16—C1772.3 (3)
N1—N2—C8—C132.6 (3)C14—N5—C16—C1792.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.952.672 (3)146
N2—H2···O3i0.862.513.344 (3)162
C15—H15B···O4ii0.962.433.359 (6)164
C14—H14C···Cg2iii0.962.713.620 (4)157
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H19N5O5
Mr373.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5300 (7), 8.5410 (4), 12.4910 (11)
α, β, γ (°)84.554 (7), 89.733 (6), 75.109 (7)
V3)875.31 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5395, 3069, 1727
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.125, 0.95
No. of reflections3069
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.952.672 (3)146.1
N2—H2···O3i0.862.513.344 (3)162.3
C15—H15B···O4ii0.962.433.359 (6)164.1
C14—H14C···Cg2iii0.962.713.620 (4)157
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1.
 

References

First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Kristallografiya, 48, 645–652.  Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243–249..  Web of Science CSD CrossRef CAS Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721–o3722.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds