organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(1H-Benzimidazol-2-ylsulfan­yl)eth­yl]-1,3-oxazolidin-2-one

aCentre National de l'Energie, des Sciences et des Techniques Nucléaires, Maamoura Kenitra, Morocco, bInstitut of Nanomaterials and Nanotechnology, INANOTECH, Avenue de l Armée, Royale, Rabat, Morocco, cLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II, Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco, dLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco, and eLaboratoire de Chimie Physique et Minérale, Service de Cristallographie, Université Victor Segalen Bordeaux II, France
*Correspondence e-mail: lazar_said@yahoo.fr

(Received 4 November 2010; accepted 8 November 2010; online 13 November 2010)

In the title compound, C12H13N3O2S, the oxazolidin ring displays an envelope conformation. The dihedral angle between the benzimidazole ring and the 1,3-oxazolidin-2-one mean plane is 69.85 (13)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, forming a chain parallel to the b axis.

Related literature

For the structures of oxazolidin-2-one linked to dioxoindolin, quinoxaline, benzodiazepin-2(3H)-one and indolo[2,3-b]quinoxalin, see: Al Subari et al. (2010a[Al Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2461.],b[Al Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o454.]); Ahoya et al. (2010[Ahoya, C. A., Bouhfid, R., Daouda, B., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o1050.]); Ballo et al. (2010[Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o2080.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O2S

  • Mr = 263.31

  • Orthorhombic, P b c a

  • a = 8.258 (1) Å

  • b = 10.074 (1) Å

  • c = 29.201 (3) Å

  • V = 2429.3 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.37 mm−1

  • T = 296 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.589, Tmax = 0.891

  • 2065 measured reflections

  • 2065 independent reflections

  • 1580 reflections with I > 2σ(I)

  • 2 standard reflections every 90 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.04

  • 2065 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯N7i 0.86 2.03 2.866 (3) 165
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of new oxindole derivatives having an oxazolindin-2-one unit has been detailed in recent reports (Al Subari et al., 2010a,b; Ahoya et al., 2010; Ballo et al.,2010).

In the new oxazolidin-2-one, C12H13N3O2S, the dihedral angle between the 1H-benzimidazole ring and the 1,3-oxazolidin-2-one mean plane is: 69.85 (13)° (Fig.1). The oxazolidin ring is not planar but display envelope conformation on C14 with puckering parameters Q(2) = 0.258 (3) Å and φ(2) = 63.3 (7) ° (Cremer & Pople, 1975).

In the crystal structure, the molecules are linked by intermolecular N—H···N hydrogen bonds forming a chain parallel to the b axis (Table 1, Fig. 2).

Related literature top

For the structures of oxazolidin-2-one linked to dioxoindolin, quinoxaline, benzodiazepin-2(3H)-one and indolo[2,3-b]quinoxalin, see: Al Subari et al. (2010a,b); Ahoya et al. (2010); Ballo et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To the solution of benzimidazole-2-thione (1,35 g, 9 mmoles) and dichloroethyl amine hydrochloride (2,41 g, 13.5 mmoles) in dimethylformamide (80 ml) were added potassium carbonate (4,14 g, 30 mmoles) and tetra-n-butylammonium bromide (0,10 g, 0,3 mmoles). The resulting mixture was refluxed for 4 h. After filtering the solvent was removed and the residue was purified by column chromatography on silica gel (Hexane/AcOEt: 60/40) to afford the title compound.

Yield = 55%

F = 230–232 °C (ethanol-water).

RMN 1H (d p.p.m.): 3.57: SCH2 (2H, t, J = 6.25 Hz); 3,36: NCH2 (4H, m); 4.23: OCH2 (4H, t, J = 6,25 Hz); 7.30–7.70: CH (benzénique)(8H, m); 11.57: NH (1H, s)

Mass Spectre IE: M+ (m/z=263).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with Uiso(H) = 1.2Ueq(C).

Structure description top

The synthesis of new oxindole derivatives having an oxazolindin-2-one unit has been detailed in recent reports (Al Subari et al., 2010a,b; Ahoya et al., 2010; Ballo et al.,2010).

In the new oxazolidin-2-one, C12H13N3O2S, the dihedral angle between the 1H-benzimidazole ring and the 1,3-oxazolidin-2-one mean plane is: 69.85 (13)° (Fig.1). The oxazolidin ring is not planar but display envelope conformation on C14 with puckering parameters Q(2) = 0.258 (3) Å and φ(2) = 63.3 (7) ° (Cremer & Pople, 1975).

In the crystal structure, the molecules are linked by intermolecular N—H···N hydrogen bonds forming a chain parallel to the b axis (Table 1, Fig. 2).

For the structures of oxazolidin-2-one linked to dioxoindolin, quinoxaline, benzodiazepin-2(3H)-one and indolo[2,3-b]quinoxalin, see: Al Subari et al. (2010a,b); Ahoya et al. (2010); Ballo et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by N-H···N hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) -x+1/2, y+1/2, z ]
3-[2-(1H-Benzimidazol-2-ylsulfanyl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C12H13N3O2SF(000) = 1104
Mr = 263.31Dx = 1.440 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.258 (1) Åθ = 25–35°
b = 10.074 (1) ŵ = 2.37 mm1
c = 29.201 (3) ÅT = 296 K
V = 2429.3 (5) Å3Plate, colourless
Z = 80.25 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1580 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 64.9°, θmin = 3.0°
ω–2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.589, Tmax = 0.891l = 034
2065 measured reflections2 standard reflections every 90 min
2065 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0753P)2 + 1.285P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2065 reflectionsΔρmax = 0.50 e Å3
164 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (3)
Crystal data top
C12H13N3O2SV = 2429.3 (5) Å3
Mr = 263.31Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.258 (1) ŵ = 2.37 mm1
b = 10.074 (1) ÅT = 296 K
c = 29.201 (3) Å0.25 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1580 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.589, Tmax = 0.8912 standard reflections every 90 min
2065 measured reflections intensity decay: none
2065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
2065 reflectionsΔρmin = 0.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4252 (3)0.6613 (3)0.32287 (8)0.0308 (6)
C20.5563 (4)0.7150 (3)0.29974 (10)0.0418 (7)
H20.57650.80580.29960.050*
C30.6553 (4)0.6266 (3)0.27685 (11)0.0491 (8)
H30.74510.65890.26120.059*
C40.6247 (4)0.4910 (3)0.27658 (10)0.0452 (8)
H40.69300.43490.26020.054*
C50.4960 (4)0.4382 (3)0.29994 (10)0.0387 (7)
H50.47720.34710.30000.046*
C60.3939 (3)0.5243 (3)0.32364 (8)0.0300 (6)
N70.2541 (3)0.4990 (2)0.34878 (7)0.0331 (5)
C80.2044 (3)0.6179 (3)0.36218 (9)0.0323 (6)
N90.3018 (3)0.7182 (2)0.34785 (7)0.0341 (5)
H90.28900.80140.35330.041*
S100.03324 (10)0.65185 (8)0.39498 (3)0.0466 (3)
C110.0806 (4)0.5004 (3)0.38524 (11)0.0461 (8)
H11A0.07860.47860.35290.055*
H11B0.03060.42790.40190.055*
C120.2545 (4)0.5167 (4)0.40086 (11)0.0515 (8)
H12A0.30710.58240.38170.062*
H12B0.31090.43310.39670.062*
N130.2688 (3)0.5569 (3)0.44810 (8)0.0421 (6)
C140.2251 (4)0.4720 (4)0.48622 (11)0.0524 (9)
H14A0.11010.45270.48660.063*
H14B0.28570.38950.48590.063*
C150.2743 (4)0.5603 (4)0.52586 (12)0.0624 (10)
H15A0.31620.50790.55110.075*
H15B0.18320.61240.53660.075*
O160.3993 (3)0.6452 (2)0.50692 (8)0.0568 (6)
C170.3857 (4)0.6431 (3)0.46087 (11)0.0465 (8)
O180.4713 (3)0.7117 (3)0.43673 (9)0.0683 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (14)0.0282 (15)0.0275 (12)0.0002 (11)0.0008 (11)0.0017 (10)
C20.0495 (18)0.0290 (15)0.0469 (17)0.0053 (13)0.0046 (14)0.0035 (12)
C30.0486 (18)0.0473 (18)0.0513 (18)0.0047 (16)0.0098 (15)0.0036 (15)
C40.0474 (17)0.0447 (18)0.0436 (17)0.0103 (15)0.0090 (13)0.0055 (13)
C50.0432 (16)0.0254 (14)0.0474 (16)0.0052 (13)0.0044 (13)0.0010 (12)
C60.0351 (14)0.0218 (13)0.0330 (13)0.0008 (11)0.0046 (11)0.0008 (10)
N70.0381 (12)0.0221 (12)0.0391 (12)0.0007 (9)0.0051 (10)0.0001 (9)
C80.0376 (15)0.0227 (13)0.0365 (14)0.0019 (11)0.0012 (11)0.0006 (11)
N90.0406 (13)0.0176 (11)0.0441 (13)0.0002 (10)0.0036 (10)0.0018 (9)
S100.0457 (5)0.0336 (4)0.0604 (5)0.0002 (3)0.0160 (3)0.0094 (3)
C110.0460 (17)0.0395 (18)0.0527 (18)0.0037 (14)0.0117 (15)0.0059 (13)
C120.0413 (16)0.061 (2)0.0521 (18)0.0089 (16)0.0026 (15)0.0091 (16)
N130.0346 (13)0.0480 (15)0.0437 (13)0.0020 (12)0.0031 (11)0.0000 (11)
C140.0382 (17)0.059 (2)0.060 (2)0.0090 (16)0.0014 (15)0.0143 (17)
C150.047 (2)0.088 (3)0.053 (2)0.003 (2)0.0054 (15)0.0077 (19)
O160.0518 (14)0.0638 (17)0.0549 (13)0.0065 (12)0.0019 (11)0.0115 (11)
C170.0414 (17)0.0403 (17)0.0578 (19)0.0041 (15)0.0020 (15)0.0040 (15)
O180.0727 (17)0.0523 (16)0.0798 (18)0.0179 (14)0.0127 (14)0.0047 (13)
Geometric parameters (Å, º) top
S10—C81.741 (3)C4—C51.370 (4)
S10—C111.815 (3)C5—C61.394 (4)
O16—C151.450 (4)C11—C121.516 (5)
O16—C171.350 (4)C14—C151.515 (5)
O18—C171.214 (4)C2—H20.9298
N7—C61.392 (3)C3—H30.9299
N7—C81.325 (4)C4—H40.9308
N9—C11.378 (3)C5—H50.9308
N9—C81.358 (4)C11—H11A0.9697
N13—C121.443 (4)C11—H11B0.9698
N13—C141.449 (4)C12—H12A0.9694
N13—C171.351 (4)C12—H12B0.9700
N9—H90.8597C14—H14A0.9694
C1—C21.386 (4)C14—H14B0.9702
C1—C61.404 (4)C15—H15A0.9704
C2—C31.381 (4)C15—H15B0.9694
C3—C41.389 (4)
C8—S10—C1199.74 (15)C1—C2—H2121.75
C15—O16—C17108.2 (2)C3—C2—H2121.73
C6—N7—C8104.3 (2)C2—C3—H3118.96
C1—N9—C8107.0 (2)C4—C3—H3119.10
C12—N13—C14123.3 (3)C3—C4—H4119.32
C12—N13—C17120.2 (3)C5—C4—H4119.35
C14—N13—C17110.2 (2)C4—C5—H5120.87
C8—N9—H9126.57C6—C5—H5120.79
C1—N9—H9126.47S10—C11—H11A109.53
N9—C1—C6105.3 (2)S10—C11—H11B109.51
N9—C1—C2132.3 (3)C12—C11—H11A109.50
C2—C1—C6122.4 (3)C12—C11—H11B109.51
C1—C2—C3116.5 (3)H11A—C11—H11B108.10
C2—C3—C4121.9 (3)N13—C12—H12A108.88
C3—C4—C5121.3 (3)N13—C12—H12B108.92
C4—C5—C6118.3 (3)C11—C12—H12A108.95
N7—C6—C5130.5 (3)C11—C12—H12B108.85
C1—C6—C5119.5 (2)H12A—C12—H12B107.78
N7—C6—C1109.9 (2)N13—C14—H14A111.78
N7—C8—N9113.5 (2)N13—C14—H14B111.70
S10—C8—N7126.3 (2)C15—C14—H14A111.82
S10—C8—N9120.3 (2)C15—C14—H14B111.83
S10—C11—C12110.6 (2)H14A—C14—H14B109.49
N13—C12—C11113.3 (3)O16—C15—H15A110.90
N13—C14—C15100.0 (3)O16—C15—H15B110.88
O16—C15—C14104.2 (3)C14—C15—H15A110.88
O18—C17—N13128.4 (3)C14—C15—H15B110.91
O16—C17—O18121.4 (3)H15A—C15—H15B109.00
O16—C17—N13110.2 (3)
C11—S10—C8—N720.2 (3)C14—N13—C17—O1614.2 (4)
C11—S10—C8—N9159.9 (2)C14—N13—C12—C1168.2 (4)
C8—S10—C11—C12166.3 (2)C12—N13—C17—O16167.1 (3)
C15—O16—C17—O18176.2 (3)C12—N13—C17—O1812.7 (5)
C15—O16—C17—N134.0 (3)N9—C1—C6—N70.1 (3)
C17—O16—C15—C1419.3 (3)N9—C1—C2—C3178.2 (3)
C6—N7—C8—S10179.8 (2)N9—C1—C6—C5178.2 (2)
C8—N7—C6—C10.3 (3)C6—C1—C2—C30.5 (4)
C6—N7—C8—N90.3 (3)C2—C1—C6—N7179.2 (2)
C8—N7—C6—C5177.8 (3)C2—C1—C6—C50.9 (4)
C1—N9—C8—N70.3 (3)C1—C2—C3—C40.6 (5)
C1—N9—C8—S10179.83 (18)C2—C3—C4—C51.4 (5)
C8—N9—C1—C60.1 (3)C3—C4—C5—C61.0 (5)
C8—N9—C1—C2178.9 (3)C4—C5—C6—C10.1 (4)
C12—N13—C14—C15176.6 (3)C4—C5—C6—N7178.0 (3)
C14—N13—C17—O18165.6 (3)S10—C11—C12—N1355.8 (4)
C17—N13—C12—C11142.6 (3)N13—C14—C15—O1625.6 (3)
C17—N13—C14—C1524.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···N7i0.862.032.866 (3)165
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H13N3O2S
Mr263.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.258 (1), 10.074 (1), 29.201 (3)
V3)2429.3 (5)
Z8
Radiation typeCu Kα
µ (mm1)2.37
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.589, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
2065, 2065, 1580
Rint0.000
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.04
No. of reflections2065
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···N7i0.862.032.866 (3)165
Symmetry code: (i) x+1/2, y+1/2, z.
 

References

First citationAhoya, C. A., Bouhfid, R., Daouda, B., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBallo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o2080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds