organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1-Naphth­yl)benzo­nitrile

aCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: che562@abdn.ac.uk

(Received 8 October 2010; accepted 17 October 2010; online 24 November 2010)

The title compound, C17H11N, crystallizes with two mol­ecules in the asymmetric unit which are linked by a weak C—H⋯N hydrogen bond. The dihedral angles between the benzene ring and the naphthalene ring system in the two mol­ecules are 60.28 (3) and 60.79 (3)°. In the crystal, mol­ecules are linked into a three-dimensional network by weak C—H⋯π inter­actions.

Related literature

For the structure of the related compound 1-(3,4,5-trimeth­oxy­phen­yl)naphthalene, see: Suthar et al. (2005[Suthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607-o608.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N

  • Mr = 229.27

  • Triclinic, [P \overline 1]

  • a = 7.3387 (3) Å

  • b = 11.3461 (5) Å

  • c = 15.5804 (7) Å

  • α = 71.237 (2)°

  • β = 89.981 (2)°

  • γ = 87.647 (2)°

  • V = 1227.22 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.40 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.996

  • 17670 measured reflections

  • 7450 independent reflections

  • 5228 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.02

  • 7450 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C11–C110, C111–C116, C21–C210, C28–C210 and C211–C216 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C113—H113⋯N42 0.95 2.58 3.4804 (17) 158
C14—H14⋯Cg6i 0.95 2.99 3.9165 (14) 165
C15—H15⋯Cg5i 0.95 2.51 3.4128 (14) 160
C17—H17⋯Cg3ii 0.95 2.86 3.6648 (15) 144
C25—H25⋯Cg1iii 0.95 2.52 3.4155 (14) 158
C27—H27⋯Cg7iv 0.95 2.91 3.7205 (15) 144
C115—H115⋯Cg1v 0.95 2.81 3.5935 (13) 141
C215—H215⋯Cg5v 0.95 2.77 3.5740 (13) 143
Symmetry codes: (i) x, y+1, z-1; (ii) -x, -y+2, -z+1; (iii) x+1, y-1, z+1; (iv) -x+1, -y, -z+2; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound crystallizes with two molecules on the asymmetric unit. The asymmetric unit was selected so that the 2 molecules were connected by the weak C113—H113···N42 hydrogen bond with H···N, 2.58 Å, C···N, 3.4804 (17)Å and the angle at H, 158°, Fig.1. Molecule 1 contains atoms C1X and molecule 2 contains atoms C2X. The two molecules show no unusual bonds or angles. The naphthalene rings form dihedral angles of 60.28 (3)° and 60.79 (3)° with the the phenyl rings for molecules 1 and 2 respectively. In the related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, Suthar et al., (2005), which has only one molecule in the asymmetric unit, this dihedral angle is 68.19 (10)°.

Apart from the C—H···N hydrogen bond, seven weak C—H···π interactions stabilize the supramolecular structure linking the molecules into a three dimensional network (Table 1). There are no π···π interactions

Atoms C14 and C15 form weak C—H···π interactions with the C28—C210(Cg6) and C21—C210(Cg5) naphthalene rings at (x,1 + y,-1 + z), forming a dimer. These dimers are linked by the C—H···N hydrogen bond to form a chain which runs parallel to [10–1], Fig. 2.

Atoms C115 and C215 form weak C—H···π interactions with the C11—C110(Cg1) and C21—C210(Cg5) naphthalene rings at (-1 + x,y,z) respectively, forming a ladder which runs along the a axis with the C—H···N hydrogen bond forming the rungs, Fig.3.

Atom C17 forms a weak C—H···π interaction with the phenyl ring C111—C116(Cg3) at (-x,2 - y,1 - z) to give a centrosymmetric dimer. Similarly, C27 forms a centrosymmetric dimer through a C—H···π with the phenyl ring C211—C216(Cg7). These dimers are linked together via the C—H···N hydrogen bond forming a chain which runs parallel to the b axis, Fig 4.

Atom C25 forms a weak C—H···π interaction with the C11—C110(Cg1) phenyl ring at (1 + x,1 - y,1 + z) alternating with the C—H···N hydrogen bond to form a chain which runs parallel to [1–11], Fig. 5.

The related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, Suthar et al., (2005) by contrast is stabilized by one C—H···π interaction. There are no π···π or C—H···O hydrogen bonds.

Related literature top

For the structure of the related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, see: Suthar et al. (2005).

Experimental top

A solution of K2CO3 (6.2 mmol) in 20 ml of water was added to a solution of 1-bromonaphthalene (3.1 mmol), 4-cyanophenylboronic acid (4.5 mmol) and Pd(OAc)2 (1 mol %) in 20 ml of DMF. The resultant mixture was heated at 100°C for 8 h under stirring. The final solution was allowed to cool to room temperature, and extracted with ethyl acetate. The organic layer was washed with water and aqueous 0.1 M NaOH, dried over anhydrous sodium sulfate and evaporated. The brown solid obtained (0.45 g, 58%) was recrystallized from MeOH and sublimed under reduced pressure to yield white crystals of the title compound; 1H-NMR (400 MHz, CDCl3, 300 K, TMS) 7.98–7.92 (2H, m, 2-H + 8-H), 7.81 (2H, d, 2-H, J=8.2), 7.84–7.78 (1H, m), 7.64 (2H, d, 3-H, J=8.2), 7.61–7.40 (4H, m); 13C-NMR (100.6 MHz, CDCl3, 300 K) 146.6, 139.1, 134.7, 133.0, 131.9, 131.7, 129.7, 129.5, 127.9,127.6, 127.1, 126.3, 126.1, 119.8, 112.1.

Refinement top

Molecule (1) crystallized in the triclinc system; space group P-1. H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C). The positions of the H atoms were calculated and checked against a difference map during the refinement.

Structure description top

The title compound crystallizes with two molecules on the asymmetric unit. The asymmetric unit was selected so that the 2 molecules were connected by the weak C113—H113···N42 hydrogen bond with H···N, 2.58 Å, C···N, 3.4804 (17)Å and the angle at H, 158°, Fig.1. Molecule 1 contains atoms C1X and molecule 2 contains atoms C2X. The two molecules show no unusual bonds or angles. The naphthalene rings form dihedral angles of 60.28 (3)° and 60.79 (3)° with the the phenyl rings for molecules 1 and 2 respectively. In the related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, Suthar et al., (2005), which has only one molecule in the asymmetric unit, this dihedral angle is 68.19 (10)°.

Apart from the C—H···N hydrogen bond, seven weak C—H···π interactions stabilize the supramolecular structure linking the molecules into a three dimensional network (Table 1). There are no π···π interactions

Atoms C14 and C15 form weak C—H···π interactions with the C28—C210(Cg6) and C21—C210(Cg5) naphthalene rings at (x,1 + y,-1 + z), forming a dimer. These dimers are linked by the C—H···N hydrogen bond to form a chain which runs parallel to [10–1], Fig. 2.

Atoms C115 and C215 form weak C—H···π interactions with the C11—C110(Cg1) and C21—C210(Cg5) naphthalene rings at (-1 + x,y,z) respectively, forming a ladder which runs along the a axis with the C—H···N hydrogen bond forming the rungs, Fig.3.

Atom C17 forms a weak C—H···π interaction with the phenyl ring C111—C116(Cg3) at (-x,2 - y,1 - z) to give a centrosymmetric dimer. Similarly, C27 forms a centrosymmetric dimer through a C—H···π with the phenyl ring C211—C216(Cg7). These dimers are linked together via the C—H···N hydrogen bond forming a chain which runs parallel to the b axis, Fig 4.

Atom C25 forms a weak C—H···π interaction with the C11—C110(Cg1) phenyl ring at (1 + x,1 - y,1 + z) alternating with the C—H···N hydrogen bond to form a chain which runs parallel to [1–11], Fig. 5.

The related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, Suthar et al., (2005) by contrast is stabilized by one C—H···π interaction. There are no π···π or C—H···O hydrogen bonds.

For the structure of the related compound 1-(3,4,5-trimethoxyphenyl)naphthalene, see: Suthar et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OSCAIL (McArdle et al., 2004); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of the chain running parallel to [10–1] formed by C—H···π dimers linked by the C—H···N hydrogen bond. Hydrogen atoms not involved in the motifs are not included.
[Figure 3] Fig. 3. Stereoview of the ladder formed by C—H···π chains linking molecules 1 and 2. These chains are linked by the C—H···N hydrogen bond. The ladder runs parallel to the a axis. Hydrogen atoms not involved in the motifs are not included.
[Figure 4] Fig. 4. View of part of a chain of linked centrosymmetric C—H···π dimers of molecule 1 and of molecule 2. These dimers are linked by the C—H···N hydrogen bond and the chain runs parallel to the b axis. The molecule labelled *is at (-x,2 - y,1 - z) and that labelled # is at (1 - x,y,2 - z). Hydrogen atoms not involved in the motifs are not included.
[Figure 5] Fig. 5. Stereoview of the chain parallel to [1–11] made up of an alternating C—H···π interaction and the C—H···N hydrogen bond. Hydrogen atoms not involved in the motifs are not included.
4-(1-Naphthyl)benzonitrile top
Crystal data top
C17H11NZ = 4
Mr = 229.27F(000) = 480
Triclinic, P1Dx = 1.241 Mg m3
a = 7.3387 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3461 (5) ÅCell parameters from 414 reflections
c = 15.5804 (7) Åθ = 1.4–29.9°
α = 71.237 (2)°µ = 0.07 mm1
β = 89.981 (2)°T = 150 K
γ = 87.647 (2)°Plate, white
V = 1227.22 (9) Å30.40 × 0.18 × 0.06 mm
Data collection top
Bruker SMART APEX
diffractometer
7450 independent reflections
Radiation source: fine-focus sealed tube5228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.33 pixels mm-1θmax = 30.6°, θmin = 1.4°
ω scansh = 108
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1616
Tmin = 0.972, Tmax = 0.996l = 2222
17670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
7450 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H11Nγ = 87.647 (2)°
Mr = 229.27V = 1227.22 (9) Å3
Triclinic, P1Z = 4
a = 7.3387 (3) ÅMo Kα radiation
b = 11.3461 (5) ŵ = 0.07 mm1
c = 15.5804 (7) ÅT = 150 K
α = 71.237 (2)°0.40 × 0.18 × 0.06 mm
β = 89.981 (2)°
Data collection top
Bruker SMART APEX
diffractometer
7450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5228 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.996Rint = 0.029
17670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
7450 reflectionsΔρmin = 0.26 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.14757 (16)0.76418 (10)0.38598 (8)0.0221 (2)
C120.19777 (17)0.70862 (11)0.32255 (8)0.0269 (3)
H120.13400.63890.31940.032*
C130.34105 (18)0.75237 (12)0.26217 (8)0.0299 (3)
H130.37470.71090.22000.036*
C140.43179 (17)0.85400 (12)0.26389 (8)0.0286 (3)
H140.52840.88310.22290.034*
C150.47043 (18)1.02562 (12)0.32668 (9)0.0309 (3)
H150.56661.05540.28560.037*
C160.41930 (19)1.08849 (13)0.38456 (10)0.0336 (3)
H160.47881.16190.38320.040*
C170.27844 (18)1.04476 (12)0.44638 (9)0.0310 (3)
H170.24321.08890.48660.037*
C180.19164 (17)0.93904 (11)0.44906 (8)0.0255 (3)
H180.09740.91040.49160.031*
C190.24048 (15)0.87157 (10)0.38918 (8)0.0217 (2)
C1100.38284 (16)0.91668 (11)0.32656 (8)0.0241 (2)
C1110.00642 (16)0.71497 (10)0.44700 (8)0.0222 (2)
C1120.01541 (17)0.67331 (11)0.54144 (8)0.0261 (3)
H1120.13170.67600.56740.031*
C1130.12902 (17)0.62850 (11)0.59737 (8)0.0269 (3)
H1130.11250.60140.66130.032*
C1140.29969 (16)0.62316 (11)0.55959 (8)0.0240 (2)
C1150.32370 (17)0.66236 (12)0.46573 (8)0.0274 (3)
H1150.43950.65790.43990.033*
C1160.17772 (17)0.70781 (12)0.41035 (8)0.0269 (3)
H1160.19430.73460.34640.032*
C410.45145 (17)0.57807 (11)0.61786 (8)0.0266 (3)
N410.57332 (16)0.54308 (11)0.66387 (8)0.0347 (3)
C210.60833 (16)0.24602 (11)1.10821 (8)0.0226 (2)
C220.64704 (17)0.30616 (11)1.16966 (8)0.0271 (3)
H220.57130.37541.17110.032*
C230.79668 (18)0.26710 (12)1.23036 (9)0.0302 (3)
H230.82290.31161.27080.036*
C240.90385 (17)0.16564 (12)1.23120 (8)0.0291 (3)
H241.00430.13981.27240.035*
C250.97139 (17)0.01063 (12)1.17380 (9)0.0308 (3)
H251.07130.03751.21520.037*
C260.93146 (18)0.07747 (12)1.11799 (9)0.0333 (3)
H261.00230.15081.12130.040*
C270.78535 (18)0.03792 (12)1.05543 (9)0.0299 (3)
H270.75820.08481.01670.036*
C280.68220 (16)0.06749 (11)1.05006 (8)0.0251 (2)
H280.58480.09341.00710.030*
C290.71839 (16)0.13901 (11)1.10776 (8)0.0221 (2)
C2100.86654 (16)0.09829 (11)1.17107 (8)0.0245 (2)
C2110.44769 (16)0.29091 (10)1.04619 (8)0.0221 (2)
C2120.46649 (17)0.33005 (11)0.95198 (8)0.0256 (2)
H2120.58390.32710.92680.031*
C2130.31684 (17)0.37292 (11)0.89494 (8)0.0255 (2)
H2130.33100.39870.83100.031*
C2140.14495 (17)0.37801 (10)0.93206 (8)0.0234 (2)
C2150.12375 (17)0.34016 (12)1.02594 (8)0.0264 (3)
H2150.00660.34401.05110.032*
C2160.27502 (17)0.29704 (11)1.08210 (8)0.0262 (3)
H2160.26080.27131.14600.031*
C420.01204 (17)0.42267 (11)0.87356 (8)0.0260 (3)
N420.13766 (16)0.45805 (11)0.82711 (8)0.0352 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0239 (5)0.0214 (5)0.0193 (5)0.0010 (4)0.0004 (4)0.0047 (4)
C120.0319 (6)0.0242 (6)0.0249 (6)0.0016 (5)0.0000 (5)0.0087 (5)
C130.0358 (7)0.0313 (7)0.0235 (6)0.0072 (5)0.0024 (5)0.0112 (5)
C140.0270 (6)0.0335 (7)0.0221 (6)0.0040 (5)0.0053 (5)0.0050 (5)
C150.0267 (6)0.0303 (7)0.0320 (7)0.0046 (5)0.0050 (5)0.0047 (5)
C160.0328 (7)0.0277 (7)0.0409 (8)0.0076 (5)0.0030 (6)0.0110 (6)
C170.0326 (7)0.0295 (7)0.0352 (7)0.0030 (5)0.0030 (6)0.0161 (6)
C180.0253 (6)0.0263 (6)0.0257 (6)0.0025 (5)0.0038 (5)0.0091 (5)
C190.0212 (5)0.0224 (5)0.0201 (5)0.0016 (4)0.0004 (4)0.0053 (4)
C1100.0221 (5)0.0257 (6)0.0217 (6)0.0014 (4)0.0009 (4)0.0041 (5)
C1110.0253 (6)0.0193 (5)0.0215 (5)0.0015 (4)0.0009 (4)0.0057 (4)
C1120.0257 (6)0.0282 (6)0.0220 (6)0.0038 (5)0.0032 (5)0.0042 (5)
C1130.0304 (6)0.0274 (6)0.0200 (6)0.0032 (5)0.0016 (5)0.0035 (5)
C1140.0261 (6)0.0201 (5)0.0250 (6)0.0026 (4)0.0024 (5)0.0059 (5)
C1150.0252 (6)0.0303 (6)0.0268 (6)0.0033 (5)0.0030 (5)0.0089 (5)
C1160.0292 (6)0.0305 (6)0.0204 (6)0.0017 (5)0.0029 (5)0.0073 (5)
C410.0280 (6)0.0247 (6)0.0261 (6)0.0014 (5)0.0005 (5)0.0067 (5)
N410.0327 (6)0.0354 (6)0.0344 (6)0.0034 (5)0.0042 (5)0.0089 (5)
C210.0239 (5)0.0225 (6)0.0202 (5)0.0044 (4)0.0023 (4)0.0050 (4)
C220.0316 (6)0.0248 (6)0.0260 (6)0.0052 (5)0.0025 (5)0.0094 (5)
C230.0350 (7)0.0338 (7)0.0245 (6)0.0108 (5)0.0014 (5)0.0122 (5)
C240.0268 (6)0.0353 (7)0.0235 (6)0.0074 (5)0.0025 (5)0.0064 (5)
C250.0255 (6)0.0322 (7)0.0299 (7)0.0016 (5)0.0014 (5)0.0038 (5)
C260.0317 (7)0.0291 (7)0.0375 (7)0.0058 (5)0.0014 (6)0.0092 (6)
C270.0307 (6)0.0289 (6)0.0323 (7)0.0004 (5)0.0022 (5)0.0130 (5)
C280.0242 (6)0.0266 (6)0.0252 (6)0.0022 (5)0.0005 (5)0.0092 (5)
C290.0217 (5)0.0232 (6)0.0199 (5)0.0038 (4)0.0024 (4)0.0047 (4)
C2100.0220 (5)0.0272 (6)0.0217 (6)0.0053 (5)0.0019 (5)0.0034 (5)
C2110.0253 (6)0.0199 (5)0.0215 (6)0.0019 (4)0.0019 (4)0.0071 (4)
C2120.0251 (6)0.0271 (6)0.0235 (6)0.0019 (5)0.0053 (5)0.0066 (5)
C2130.0305 (6)0.0252 (6)0.0195 (5)0.0021 (5)0.0034 (5)0.0055 (5)
C2140.0280 (6)0.0193 (5)0.0221 (6)0.0017 (4)0.0002 (5)0.0056 (4)
C2150.0244 (6)0.0296 (6)0.0241 (6)0.0003 (5)0.0050 (5)0.0074 (5)
C2160.0295 (6)0.0288 (6)0.0188 (5)0.0001 (5)0.0034 (5)0.0057 (5)
C420.0309 (6)0.0250 (6)0.0215 (6)0.0028 (5)0.0030 (5)0.0063 (5)
N420.0352 (6)0.0409 (7)0.0275 (6)0.0007 (5)0.0019 (5)0.0085 (5)
Geometric parameters (Å, º) top
C11—C121.3753 (16)C21—C221.3782 (16)
C11—C191.4351 (16)C21—C291.4323 (16)
C11—C1111.4840 (17)C21—C2111.4892 (15)
C12—C131.4067 (18)C22—C231.4099 (17)
C12—H120.9500C22—H220.9500
C13—C141.3627 (19)C23—C241.3638 (18)
C13—H130.9500C23—H230.9500
C14—C1101.4190 (17)C24—C2101.4194 (17)
C14—H140.9500C24—H240.9500
C15—C161.3618 (19)C25—C261.3638 (19)
C15—C1101.4170 (18)C25—C2101.4175 (17)
C15—H150.9500C25—H250.9500
C16—C171.4059 (19)C26—C271.4074 (18)
C16—H160.9500C26—H260.9500
C17—C181.3700 (18)C27—C281.3681 (16)
C17—H170.9500C27—H270.9500
C18—C191.4219 (16)C28—C291.4228 (16)
C18—H180.9500C28—H280.9500
C19—C1101.4239 (17)C29—C2101.4264 (15)
C111—C1161.3970 (16)C211—C2161.3932 (17)
C111—C1121.4003 (16)C211—C2121.3987 (16)
C112—C1131.3784 (18)C212—C2131.3824 (16)
C112—H1120.9500C212—H2120.9500
C113—C1141.3959 (17)C213—C2141.3944 (17)
C113—H1130.9500C213—H2130.9500
C114—C1151.3938 (17)C214—C2151.3961 (17)
C114—C411.4400 (18)C214—C421.4390 (16)
C115—C1161.3845 (18)C215—C2161.3849 (16)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C41—N411.1477 (17)C42—N421.1480 (16)
C12—C11—C19119.21 (11)C22—C21—C29119.52 (10)
C12—C11—C111119.27 (11)C22—C21—C211119.00 (10)
C19—C11—C111121.47 (10)C29—C21—C211121.43 (10)
C11—C12—C13121.72 (12)C21—C22—C23121.39 (11)
C11—C12—H12119.1C21—C22—H22119.3
C13—C12—H12119.1C23—C22—H22119.3
C14—C13—C12120.26 (11)C24—C23—C22120.24 (11)
C14—C13—H13119.9C24—C23—H23119.9
C12—C13—H13119.9C22—C23—H23119.9
C13—C14—C110120.38 (12)C23—C24—C210120.54 (11)
C13—C14—H14119.8C23—C24—H24119.7
C110—C14—H14119.8C210—C24—H24119.7
C16—C15—C110121.25 (13)C26—C25—C210121.17 (11)
C16—C15—H15119.4C26—C25—H25119.4
C110—C15—H15119.4C210—C25—H25119.4
C15—C16—C17119.98 (12)C25—C26—C27120.08 (11)
C15—C16—H16120.0C25—C26—H26120.0
C17—C16—H16120.0C27—C26—H26120.0
C18—C17—C16120.56 (12)C28—C27—C26120.48 (12)
C18—C17—H17119.7C28—C27—H27119.8
C16—C17—H17119.7C26—C27—H27119.8
C17—C18—C19121.00 (12)C27—C28—C29121.11 (11)
C17—C18—H18119.5C27—C28—H28119.4
C19—C18—H18119.5C29—C28—H28119.4
C18—C19—C110118.11 (11)C28—C29—C210118.10 (10)
C18—C19—C11123.17 (11)C28—C29—C21123.21 (10)
C110—C19—C11118.65 (10)C210—C29—C21118.62 (10)
C15—C110—C14121.12 (12)C25—C210—C24121.30 (11)
C15—C110—C19119.10 (11)C25—C210—C29119.05 (11)
C14—C110—C19119.76 (11)C24—C210—C29119.64 (11)
C116—C111—C112118.44 (11)C216—C211—C212118.85 (11)
C116—C111—C11119.89 (10)C216—C211—C21119.74 (10)
C112—C111—C11121.66 (10)C212—C211—C21121.40 (11)
C113—C112—C111121.08 (11)C213—C212—C211120.99 (11)
C113—C112—H112119.5C213—C212—H212119.5
C111—C112—H112119.5C211—C212—H212119.5
C112—C113—C114119.70 (11)C212—C213—C214119.39 (11)
C112—C113—H113120.1C212—C213—H213120.3
C114—C113—H113120.1C214—C213—H213120.3
C115—C114—C113120.15 (12)C213—C214—C215120.43 (11)
C115—C114—C41120.03 (11)C213—C214—C42120.02 (11)
C113—C114—C41119.82 (11)C215—C214—C42119.55 (11)
C116—C115—C114119.55 (11)C216—C215—C214119.44 (11)
C116—C115—H115120.2C216—C215—H215120.3
C114—C115—H115120.2C214—C215—H215120.3
C115—C116—C111121.07 (11)C215—C216—C211120.91 (11)
C115—C116—H116119.5C215—C216—H216119.5
C111—C116—H116119.5C211—C216—H216119.5
N41—C41—C114179.38 (15)N42—C42—C214179.76 (18)
C19—C11—C12—C131.65 (17)C29—C21—C22—C232.10 (19)
C111—C11—C12—C13179.14 (10)C211—C21—C22—C23179.58 (12)
C11—C12—C13—C141.52 (18)C21—C22—C23—C242.0 (2)
C12—C13—C14—C1100.03 (18)C22—C23—C24—C2100.1 (2)
C110—C15—C16—C170.7 (2)C210—C25—C26—C270.8 (2)
C15—C16—C17—C180.0 (2)C25—C26—C27—C280.1 (2)
C16—C17—C18—C190.49 (19)C26—C27—C28—C290.6 (2)
C17—C18—C19—C1100.27 (17)C27—C28—C29—C2100.50 (18)
C17—C18—C19—C11176.63 (11)C27—C28—C29—C21176.45 (12)
C12—C11—C19—C18176.55 (11)C22—C21—C29—C28176.52 (12)
C111—C11—C19—C180.88 (17)C211—C21—C29—C280.89 (18)
C12—C11—C19—C1100.34 (16)C22—C21—C29—C2100.41 (18)
C111—C11—C19—C110177.77 (10)C211—C21—C29—C210177.83 (11)
C16—C15—C110—C14177.62 (12)C26—C25—C210—C24177.80 (13)
C16—C15—C110—C190.89 (18)C26—C25—C210—C290.9 (2)
C13—C14—C110—C15177.25 (11)C23—C24—C210—C25177.11 (13)
C13—C14—C110—C191.25 (17)C23—C24—C210—C291.55 (19)
C18—C19—C110—C150.40 (16)C28—C29—C210—C250.21 (18)
C11—C19—C110—C15177.45 (10)C21—C29—C210—C25177.31 (11)
C18—C19—C110—C14178.13 (10)C28—C29—C210—C24178.48 (11)
C11—C19—C110—C141.08 (16)C21—C29—C210—C241.38 (18)
C12—C11—C111—C11656.88 (15)C22—C21—C211—C21657.00 (16)
C19—C11—C111—C116120.55 (12)C29—C21—C211—C216120.43 (13)
C12—C11—C111—C112122.22 (12)C22—C21—C211—C212121.53 (13)
C19—C11—C111—C11260.36 (15)C29—C21—C211—C21261.03 (16)
C116—C111—C112—C1131.28 (18)C216—C211—C212—C2130.71 (18)
C11—C111—C112—C113179.61 (11)C21—C211—C212—C213179.26 (11)
C111—C112—C113—C1140.66 (18)C211—C212—C213—C2140.49 (18)
C112—C113—C114—C1150.34 (18)C212—C213—C214—C2150.03 (18)
C112—C113—C114—C41179.11 (11)C212—C213—C214—C42179.87 (11)
C113—C114—C115—C1160.69 (18)C213—C214—C215—C2160.20 (18)
C41—C114—C115—C116178.75 (11)C42—C214—C215—C216179.90 (11)
C114—C115—C116—C1110.05 (18)C214—C215—C216—C2110.03 (19)
C112—C111—C116—C1150.92 (18)C212—C211—C216—C2150.47 (18)
C11—C111—C116—C115179.96 (11)C21—C211—C216—C215179.05 (11)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C11–C110, C111–C116, C21–C210, C28–C210 and C211–C216 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C113—H113···N420.952.583.4804 (17)158
C14—H14···Cg6i0.952.993.9165 (14)165
C15—H15···Cg5i0.952.513.4128 (14)160
C17—H17···Cg3ii0.952.863.6648 (15)144
C25—H25···Cg1iii0.952.523.4155 (14)158
C27—H27···Cg7iv0.952.913.7205 (15)144
C115—H115···Cg1v0.952.813.5935 (13)141
C215—H215···Cg5v0.952.773.5740 (13)143
Symmetry codes: (i) x, y+1, z1; (ii) x, y+2, z+1; (iii) x+1, y1, z+1; (iv) x+1, y, z+2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H11N
Mr229.27
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.3387 (3), 11.3461 (5), 15.5804 (7)
α, β, γ (°)71.237 (2), 89.981 (2), 87.647 (2)
V3)1227.22 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.972, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17670, 7450, 5228
Rint0.029
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.02
No. of reflections7450
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OSCAIL (McArdle et al., 2004), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C11–C110, C111–C116, C21–C210, C28–C210 and C211–C216 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C113—H113···N420.952.583.4804 (17)158
C14—H14···Cg6i0.952.993.9165 (14)165
C15—H15···Cg5i0.952.513.4128 (14)160
C17—H17···Cg3ii0.952.863.6648 (15)144
C25—H25···Cg1iii0.952.523.4155 (14)158
C27—H27···Cg7iv0.952.913.7205 (15)144
C115—H115···Cg1v0.952.813.5935 (13)141
C215—H215···Cg5v0.952.773.5740 (13)143
Symmetry codes: (i) x, y+1, z1; (ii) x, y+2, z+1; (iii) x+1, y1, z+1; (iv) x+1, y, z+2; (v) x1, y, z.
 

Acknowledgements

CFL thanks the FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607–o608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds