metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(pyridin-2-yl)ethanol-κ2N,O]bis­­(thio­cyanato-κN)nickel(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 1 November 2010; accepted 11 November 2010; online 17 November 2010)

In the title complex, [Ni(NCS)2(C7H9NO)2], the NiII atom is in a distorted octa­hedral coordination environment defined by two N atoms of the two thio­cyanate ions and by the N and O atoms of the two chelating 2-(pyridin-2-yl)ethanol ligands. The complex mol­ecule is located around a crystallographic inversion center. In the crystal, mol­ecules are connected into a two-dimensional polymeric structure parallel to (100) by O—H⋯S hydrogen bonds.

Related literature

For related structures, see: Pan et al. (2007[Pan, Y.-P., Li, D.-C. & Wang, D.-Q. (2007). Acta Cryst. E63, m3034.]); Yu et al. (2010[Yu, Y., Guo, Y., Wang, D. & Li, D. (2010). Acta Cryst. E66, m753.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C7H9NO)2]

  • Mr = 421.17

  • Monoclinic, P 21 /c

  • a = 8.7197 (9) Å

  • b = 13.8634 (15) Å

  • c = 7.8655 (7) Å

  • β = 105.496 (2)°

  • V = 916.26 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 K

  • 0.42 × 0.41 × 0.40 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.611, Tmax = 0.624

  • 4493 measured reflections

  • 1616 independent reflections

  • 1408 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.07

  • 1616 reflections

  • 115 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 2.052 (2)
Ni1—N1 2.1011 (19)
Ni1—O1 2.1030 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.93 2.66 3.2183 (19) 119
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular materials with porous coordination frameworks have recently drawn considerable interest because of their attractive properties. The importance of the work in this area is the construction of porous materials from metal ions and organic ligands as building blocks. As a flexible ligand, 2-(hydroxyethyl)pyridine (hepH) can adopt a variety of possible binding modes. As a contribution to this field, we report here the synthesis and structure of the title compound.

In the title complex molecule, [Ni(SCN)2(C7H9NO)2], the nickel(II) atom displays a distorted octahedral coordination geometry, provided by two N atoms of two thiocyanate ions and by the N and O atoms of two 2-(hydroxyethyl)pyridine ligands. Bond lengths and angles involving the metal centre are typical and comparable with those observed in related Co(II) complexes (Pan et al., 2007; Yu et al., 2010). In the crystal structure, molecules are linked through intermolecular O—H···S hydrogen bonds (Table 1).

Related literature top

For related structures, see: Pan et al. (2007); Yu et al. (2010).

Experimental top

To a stirred methanol (10 ml) and acetonitrile (10 ml) solution of NiCl2.6H2O (1 mmol, 238 mg) was added 2-(pyridyn-2-yl)ethanol (2 mmol, 246 mg) in 5 ml me thanol and tetramethylammonium hydroxide(0.4 mmol, 165 mg, 25% solution in water). After 30 min to the above solution was added KSCN (2 mmol, 194 mg) and the solution was stirred for additional 6 h. The resulting red solution was filtered and was allowed to stand at room temperature for about one week, whereupon blue block crystal, suitable for X-ray diffraction analysis, was obtained.

Refinement top

All H atoms were placed in geometrically idealized positions (O–H= 0.93, C—H = 0.93-0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C). A rigid bond restraints were applied to the Uij values of Ni1, N2, S1 and C8 atoms via DELU instruction of SHELXL97 (Sheldrick, 2008).

Structure description top

Molecular materials with porous coordination frameworks have recently drawn considerable interest because of their attractive properties. The importance of the work in this area is the construction of porous materials from metal ions and organic ligands as building blocks. As a flexible ligand, 2-(hydroxyethyl)pyridine (hepH) can adopt a variety of possible binding modes. As a contribution to this field, we report here the synthesis and structure of the title compound.

In the title complex molecule, [Ni(SCN)2(C7H9NO)2], the nickel(II) atom displays a distorted octahedral coordination geometry, provided by two N atoms of two thiocyanate ions and by the N and O atoms of two 2-(hydroxyethyl)pyridine ligands. Bond lengths and angles involving the metal centre are typical and comparable with those observed in related Co(II) complexes (Pan et al., 2007; Yu et al., 2010). In the crystal structure, molecules are linked through intermolecular O—H···S hydrogen bonds (Table 1).

For related structures, see: Pan et al. (2007); Yu et al. (2010).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation -x + 2,-y,-z.
Bis[2-(pyridin-2-yl)ethanol-κ2N,O]bis(thiocyanato- κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C7H9NO)2]F(000) = 436
Mr = 421.17Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2904 reflections
a = 8.7197 (9) Åθ = 2.4–28.0°
b = 13.8634 (15) ŵ = 1.30 mm1
c = 7.8655 (7) ÅT = 298 K
β = 105.496 (2)°Block, blue
V = 916.26 (16) Å30.42 × 0.41 × 0.40 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
1616 independent reflections
Radiation source: fine-focus sealed tube1408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.611, Tmax = 0.624k = 1615
4493 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.5792P]
where P = (Fo2 + 2Fc2)/3
1616 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.41 e Å3
5 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni(NCS)2(C7H9NO)2]V = 916.26 (16) Å3
Mr = 421.17Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7197 (9) ŵ = 1.30 mm1
b = 13.8634 (15) ÅT = 298 K
c = 7.8655 (7) Å0.42 × 0.41 × 0.40 mm
β = 105.496 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1408 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.624Rint = 0.020
4493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0275 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
1616 reflectionsΔρmin = 0.55 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.03039 (15)
S11.22010 (9)0.69823 (5)0.50929 (9)0.0528 (2)
N10.7906 (2)0.54485 (14)0.0607 (2)0.0341 (4)
N21.1214 (2)0.57961 (15)0.2136 (3)0.0409 (5)
O10.9851 (2)0.62603 (12)0.1523 (2)0.0415 (4)
H11.07930.64890.17170.050*
C10.8438 (3)0.6798 (2)0.2289 (4)0.0498 (7)
H1A0.84090.69680.34930.060*
H1B0.84480.73910.16300.060*
C20.6971 (3)0.62185 (19)0.2278 (3)0.0452 (6)
H2A0.60390.65700.29360.054*
H2B0.70050.56130.28860.054*
C30.6788 (3)0.60033 (17)0.0472 (3)0.0373 (5)
C40.5510 (3)0.6363 (2)0.0063 (4)0.0484 (6)
H40.47620.67540.06920.058*
C50.5344 (3)0.6142 (2)0.1710 (4)0.0535 (7)
H50.44840.63740.20770.064*
C60.6478 (3)0.5570 (2)0.2799 (4)0.0499 (7)
H60.63970.54090.39200.060*
C70.7733 (3)0.52394 (19)0.2214 (3)0.0415 (6)
H70.84960.48540.29630.050*
C81.1618 (3)0.62905 (16)0.3352 (3)0.0320 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0355 (2)0.0261 (2)0.0306 (2)0.00073 (16)0.01065 (17)0.00126 (16)
S10.0696 (5)0.0394 (4)0.0428 (4)0.0032 (3)0.0034 (3)0.0099 (3)
N10.0367 (10)0.0311 (10)0.0352 (10)0.0005 (8)0.0107 (8)0.0025 (8)
N20.0445 (11)0.0363 (11)0.0409 (10)0.0004 (9)0.0100 (9)0.0065 (8)
O10.0447 (9)0.0338 (9)0.0486 (10)0.0025 (7)0.0170 (8)0.0102 (7)
C10.0591 (17)0.0436 (15)0.0482 (15)0.0122 (12)0.0168 (13)0.0162 (12)
C20.0467 (15)0.0452 (15)0.0402 (13)0.0105 (12)0.0057 (11)0.0042 (11)
C30.0365 (12)0.0326 (12)0.0409 (13)0.0014 (10)0.0070 (10)0.0048 (10)
C40.0398 (13)0.0425 (15)0.0630 (17)0.0045 (12)0.0137 (12)0.0034 (12)
C50.0480 (15)0.0498 (16)0.0713 (19)0.0007 (13)0.0310 (14)0.0105 (14)
C60.0558 (16)0.0530 (16)0.0485 (15)0.0084 (13)0.0271 (13)0.0068 (13)
C70.0453 (14)0.0429 (14)0.0393 (13)0.0025 (11)0.0163 (11)0.0006 (11)
C80.0324 (12)0.0273 (11)0.0361 (11)0.0002 (9)0.0087 (9)0.0011 (7)
Geometric parameters (Å, º) top
Ni1—N22.052 (2)C2—C31.501 (3)
Ni1—N12.1011 (19)C2—H2A0.9700
Ni1—O12.1030 (15)C2—H2B0.9700
S1—C81.637 (2)C3—C41.386 (4)
N1—C71.344 (3)C4—C51.375 (4)
N1—C31.349 (3)C4—H40.9300
N2—C81.153 (3)C5—C61.374 (4)
O1—C11.428 (3)C5—H50.9300
O1—H10.9300C6—C71.375 (4)
C1—C21.513 (4)C6—H60.9300
C1—H1A0.9700C7—H70.9300
C1—H1B0.9700
N2i—Ni1—N2180.00 (9)O1—C1—H1B109.5
N2i—Ni1—N1i86.82 (8)C2—C1—H1B109.5
N2—Ni1—N1i93.18 (8)H1A—C1—H1B108.1
N2i—Ni1—N193.18 (8)C3—C2—C1114.5 (2)
N2—Ni1—N186.82 (8)C3—C2—H2A108.6
N1i—Ni1—N1180.0C1—C2—H2A108.6
N2i—Ni1—O192.32 (7)C3—C2—H2B108.6
N2—Ni1—O187.68 (7)C1—C2—H2B108.6
N1i—Ni1—O192.38 (7)H2A—C2—H2B107.6
N1—Ni1—O187.62 (7)N1—C3—C4121.2 (2)
N2i—Ni1—O1i87.68 (7)N1—C3—C2117.8 (2)
N2—Ni1—O1i92.32 (7)C4—C3—C2120.9 (2)
N1i—Ni1—O1i87.62 (7)C5—C4—C3120.1 (3)
N1—Ni1—O1i92.38 (7)C5—C4—H4119.9
O1—Ni1—O1i180.00 (5)C3—C4—H4119.9
C7—N1—C3118.1 (2)C6—C5—C4118.5 (3)
C7—N1—Ni1118.18 (16)C6—C5—H5120.8
C3—N1—Ni1123.47 (16)C4—C5—H5120.8
C8—N2—Ni1167.28 (19)C5—C6—C7119.2 (3)
C1—O1—Ni1126.06 (15)C5—C6—H6120.4
C1—O1—H1117.0C7—C6—H6120.4
Ni1—O1—H1117.0N1—C7—C6122.8 (3)
O1—C1—C2110.9 (2)N1—C7—H7118.6
O1—C1—H1A109.5C6—C7—H7118.6
C2—C1—H1A109.5N2—C8—S1179.3 (2)
N2i—Ni1—N1—C7121.90 (18)N1—Ni1—O1—C123.9 (2)
N2—Ni1—N1—C758.10 (18)O1—C1—C2—C365.5 (3)
O1—Ni1—N1—C7145.91 (18)C7—N1—C3—C41.0 (3)
O1i—Ni1—N1—C734.09 (18)Ni1—N1—C3—C4173.23 (18)
N2i—Ni1—N1—C363.84 (19)C7—N1—C3—C2178.9 (2)
N2—Ni1—N1—C3116.16 (19)Ni1—N1—C3—C26.9 (3)
O1—Ni1—N1—C328.35 (18)C1—C2—C3—N163.6 (3)
O1i—Ni1—N1—C3151.65 (18)C1—C2—C3—C4116.5 (3)
N1i—Ni1—N2—C8176.2 (9)N1—C3—C4—C51.2 (4)
N1—Ni1—N2—C83.8 (9)C2—C3—C4—C5178.7 (2)
O1—Ni1—N2—C884.0 (9)C3—C4—C5—C60.7 (4)
O1i—Ni1—N2—C896.0 (9)C4—C5—C6—C70.0 (4)
N2i—Ni1—O1—C169.2 (2)C3—N1—C7—C60.4 (4)
N2—Ni1—O1—C1110.8 (2)Ni1—N1—C7—C6174.2 (2)
N1i—Ni1—O1—C1156.1 (2)C5—C6—C7—N10.1 (4)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1ii0.932.663.2183 (19)119
Symmetry code: (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C7H9NO)2]
Mr421.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.7197 (9), 13.8634 (15), 7.8655 (7)
β (°) 105.496 (2)
V3)916.26 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.42 × 0.41 × 0.40
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.611, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
4493, 1616, 1408
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.07
No. of reflections1616
No. of parameters115
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.55

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N22.052 (2)Ni1—O12.1030 (15)
Ni1—N12.1011 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.932.663.2183 (19)119.0
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 20671048, 21041002).

References

First citationPan, Y.-P., Li, D.-C. & Wang, D.-Q. (2007). Acta Cryst. E63, m3034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYu, Y., Guo, Y., Wang, D. & Li, D. (2010). Acta Cryst. E66, m753.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds