metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­(μ3-4-oxido­pyridine-2,6-di­carboxyl­ato)europium(III)] monohydrate]

aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: lvdy@lzu.edu.cn

(Received 11 November 2010; accepted 21 November 2010; online 30 November 2010)

In the title coordination polymer, {[Eu(C7H2NO5)(H2O)3]·H2O}n, the EuIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxyl­ate (hpc) trianion, two monodentate hpc anions and three water mol­ecules, forming a distorted bicapped trigonal–prismatic coordination geometry. The hpc ligands bridge adjacent EuIII ions, forming infinite double chains. Adjacent chains are further connected by hpc ligands into sheets. O—H⋯O hydrogen bonds then generate a three-dimensional supra­molecular framework.

Related literature

For the structures and properties of lanthanide coordination compounds, see: He et al. (2010[He, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605-7607.]); Kustaryono et al. (2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]); Zhu, Sun et al. (2009[Zhu, Y. Y., Sun, Z. G., Chen, H., Zhang, J., Zhao, Y., Zhang, N., Liu, L., Lu, X., Wang, W. N., Tong, F. & Zhang, L. C. (2009). Cryst. Growth Des. 9, 3228-3234.]); Wong et al. (2006[Wong, K. L., Law, G. L., Yang, Y. Y. & Wong, W. T. (2006). Adv. Mater. 18, 1051-1054.]). For the use of multi-carboxyl­ate and heterocyclic acids in coordination chemistry, see: Li et al. (2008[Li, X., Zhang, Y. B., Shi, W. & &Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869-872.]); Luo et al. (2008[Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006-2010.]) and for the dicarboxyl­ate ligand H3CAM (H3CAM is 4-hy­droxy-pyridine-2,6-dicarb­oxy­lic acid), see: Gao et al. (2006[Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & &Yan, S. P. (2006). Inorg. Chem. 45, 5980-5988.], 2008[Gao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & &Yan, S. P. (2008). Inorg. Chem. 47, 11057-11061.]). For the isotypic structure {[Dy(CAM)(H2O)3]·H2O}n, see: Gao et al. (2006[Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & &Yan, S. P. (2006). Inorg. Chem. 45, 5980-5988.]). For bond lengths and angles in other complexes with eight-coordinate EuIII, see: Li et al. (2008[Li, X., Zhang, Y. B., Shi, W. & &Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869-872.]); Zhu, Ikarashi et al. (2009[Zhu, T. Y., Ikarashi, K., Ishigaki, T., Uematsu, K., Toda, K., Okawa, H. & Sato, M. (2009). Inorg. Chim. Acta, 362, 3407-3414.])

[Scheme 1]

Experimental

Crystal data
  • [Eu(C7H2NO5)(H2O)3]·H2O

  • Mr = 404.12

  • Monoclinic, P 21 /n

  • a = 10.0041 (15) Å

  • b = 7.5456 (11) Å

  • c = 15.528 (2) Å

  • β = 104.890 (1)°

  • V = 1132.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.58 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.31 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.246, Tmax = 0.277

  • 4884 measured reflections

  • 2023 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.06

  • 2023 reflections

  • 196 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.69 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O5i 2.327 (2)
Eu1—O8 2.401 (3)
Eu1—O7 2.416 (3)
Eu1—O1 2.432 (2)
Eu1—O2ii 2.433 (2)
Eu1—O3 2.440 (2)
Eu1—O6 2.445 (3)
Eu1—N1 2.498 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1W⋯O9iii 0.90 (2) 1.85 (3) 2.696 (3) 158 (4)
O6—H2W⋯O9iv 0.87 (2) 2.15 (3) 2.962 (4) 156 (4)
O7—H4W⋯O3iii 0.86 (2) 2.09 (3) 2.805 (3) 141 (4)
O8—H5W⋯O1ii 0.86 (2) 1.84 (2) 2.684 (4) 168 (4)
O8—H6W⋯O4v 0.87 (2) 1.83 (2) 2.696 (4) 173 (4)
O9—H7W⋯O2vi 0.86 (2) 2.26 (3) 3.059 (4) 155 (5)
O9—H8W⋯O4 0.86 (2) 1.84 (2) 2.692 (4) 172 (6)
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+2, -z+2; (vi) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

The design and synthesis of lanthanide coordination polymers have achieved great progress over the past decades(He et al., 2010; Kustaryono et al., 2010). These coordination polymers have shown not only their versatile architectures but also their desirable properties luminescent, magnetic, catalytic, and gas absorption and separation properties (Zhu et al., 2009; Wong et al., 2006). Many multi-carboxylate or heterocylic carboxylic acids are used for this purpose (Li et al., 2008; Luo et al., 2008). In the designed synthesis of the lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid (H3CAM) is an excellent pyridine dicarboxylate ligand (Gao et al., 2006; Gao et al., 2008),which can afford at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we designed and synthesized one lanthanidecoordination polymer [Eu(CAM)(H2O)3]n.nH2O, and report its structure here.

The title compound is located on a twofold helical axis of symmetry, which is isomorphous with {[Dy(CAM)(H2O)3].H2O}n (Gao et al., 2006). As shown in Fig.1, the asymmetrical unit of the cell contains one Eu (III) ion, one CAM liangd, three coordinated water molecules, and one guest water molecule. Eu atom is eight-coordinated with seven oxygen atoms from three individual CAM ligands and three coordinated water molecules and one nitrogen atom from the CAM ligand, forming a distorted bicapped square-prismatic coordination geometry.

Important bond distances and angles are presented in Table 1. The Eu–O bond distances [2.327 (2) to 2.445 (3) Å]are shorter than the Eu–N bond distance [2.498 (3) Å], which are in good with those observed in other Eu (III) complexes (Li et al., 2008; Zhu et al., 2009). The CAM ligands adopt a µ3-pentadentate coordination mode, as shown in Fig.1. The CAM ligands bridge the adjacent EuIII ions to form infinite double chains (Fig.2). The adjacent chains are further connected by the coordination of the CAMligands and EuIII ions to form two-dimensional sheet (Fig.3), which are further extended into three-dimensional supramolecular frameworks through H-bond interactions (Table 4).

Related literature top

For the structures and properties of lanthanide coordination compounds, see: He et al. (2010); Kustaryono et al. (2010); Zhu, Sun et al. (2009); Wong et al. (2006). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008) and for the dicarboxylate ligand H3CAM (H3CAM is 4-hydroxy-pyridine-2,6-dicarboxylic acid), see: Gao et al. (2006, 2008). For the isotypic structure {[Dy(CAM)(H2O)3].H2O}n, see: Gao et al. (2006). For bond distances and angles in other eight-coordinated Eu IIIcomplexes, see: Li et al. (2008); Zhu, Ikarashi et al. (2009).

Experimental top

To a solution of europium nitrate hexahydrate (0.134 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded colourless blocks in ca 60% yield. Anal. Calcd for C7H10EuNO9: C, 20.80; H, 2.49; N, 3.47. Found: C, 20.51; H, 2.77; N, 3.12.

Refinement top

The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

The design and synthesis of lanthanide coordination polymers have achieved great progress over the past decades(He et al., 2010; Kustaryono et al., 2010). These coordination polymers have shown not only their versatile architectures but also their desirable properties luminescent, magnetic, catalytic, and gas absorption and separation properties (Zhu et al., 2009; Wong et al., 2006). Many multi-carboxylate or heterocylic carboxylic acids are used for this purpose (Li et al., 2008; Luo et al., 2008). In the designed synthesis of the lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid (H3CAM) is an excellent pyridine dicarboxylate ligand (Gao et al., 2006; Gao et al., 2008),which can afford at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we designed and synthesized one lanthanidecoordination polymer [Eu(CAM)(H2O)3]n.nH2O, and report its structure here.

The title compound is located on a twofold helical axis of symmetry, which is isomorphous with {[Dy(CAM)(H2O)3].H2O}n (Gao et al., 2006). As shown in Fig.1, the asymmetrical unit of the cell contains one Eu (III) ion, one CAM liangd, three coordinated water molecules, and one guest water molecule. Eu atom is eight-coordinated with seven oxygen atoms from three individual CAM ligands and three coordinated water molecules and one nitrogen atom from the CAM ligand, forming a distorted bicapped square-prismatic coordination geometry.

Important bond distances and angles are presented in Table 1. The Eu–O bond distances [2.327 (2) to 2.445 (3) Å]are shorter than the Eu–N bond distance [2.498 (3) Å], which are in good with those observed in other Eu (III) complexes (Li et al., 2008; Zhu et al., 2009). The CAM ligands adopt a µ3-pentadentate coordination mode, as shown in Fig.1. The CAM ligands bridge the adjacent EuIII ions to form infinite double chains (Fig.2). The adjacent chains are further connected by the coordination of the CAMligands and EuIII ions to form two-dimensional sheet (Fig.3), which are further extended into three-dimensional supramolecular frameworks through H-bond interactions (Table 4).

For the structures and properties of lanthanide coordination compounds, see: He et al. (2010); Kustaryono et al. (2010); Zhu, Sun et al. (2009); Wong et al. (2006). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008) and for the dicarboxylate ligand H3CAM (H3CAM is 4-hydroxy-pyridine-2,6-dicarboxylic acid), see: Gao et al. (2006, 2008). For the isotypic structure {[Dy(CAM)(H2O)3].H2O}n, see: Gao et al. (2006). For bond distances and angles in other eight-coordinated Eu IIIcomplexes, see: Li et al. (2008); Zhu, Ikarashi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit in the structure of (I), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis, showing a one-dimensional double chain of [Eu(CAM)(H2O)3].
[Figure 3] Fig. 3. A view along the a axis, showing a two-dimensional sheet of [Eu(CAM)(H2O)3].
Poly[[triaqua(µ3-4-oxidopyridine-2,6-dicarboxylato)europium(III)] monohydrate] top
Crystal data top
[Eu(C7H2NO5)(H2O)3]·H2OF(000) = 776
Mr = 404.12Dx = 2.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3455 reflections
a = 10.0041 (15) Åθ = 2.8–28.3°
b = 7.5456 (11) ŵ = 5.58 mm1
c = 15.528 (2) ÅT = 296 K
β = 104.890 (1)°Block, colorless
V = 1132.8 (3) Å30.35 × 0.32 × 0.31 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2023 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1112
Tmin = 0.246, Tmax = 0.277k = 97
4884 measured reflectionsl = 1418
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + 0.5803P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2023 reflectionsΔρmax = 0.82 e Å3
196 parametersΔρmin = 1.69 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0273 (8)
Crystal data top
[Eu(C7H2NO5)(H2O)3]·H2OV = 1132.8 (3) Å3
Mr = 404.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0041 (15) ŵ = 5.58 mm1
b = 7.5456 (11) ÅT = 296 K
c = 15.528 (2) Å0.35 × 0.32 × 0.31 mm
β = 104.890 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1856 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.277Rint = 0.074
4884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02612 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.82 e Å3
2023 reflectionsΔρmin = 1.69 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.500412 (13)0.82415 (2)0.746168 (10)0.01204 (13)
C10.7849 (3)0.5972 (4)0.8389 (2)0.0179 (7)
C20.7266 (3)0.6188 (4)0.9168 (2)0.0159 (7)
C30.7942 (3)0.5648 (4)1.0015 (2)0.0168 (7)
H30.87890.50691.01120.020*
H50.56320.70671.09800.020*
C40.7362 (3)0.5967 (4)1.0731 (2)0.0153 (7)
C50.6069 (3)0.6829 (4)1.0528 (2)0.0164 (8)
C60.5456 (3)0.7327 (4)0.9664 (2)0.0142 (7)
C70.4087 (3)0.8280 (4)0.9380 (2)0.0163 (8)
H1W0.492 (5)0.543 (3)0.609 (3)0.073 (17)*
H2W0.536 (5)0.692 (5)0.567 (3)0.060 (17)*
H3W0.327 (5)0.552 (7)0.785 (2)0.08 (2)*
H4W0.315 (4)0.511 (6)0.6919 (18)0.071 (17)*
H5W0.660 (4)1.125 (6)0.802 (2)0.069 (17)*
H6W0.623 (4)1.093 (6)0.8862 (12)0.047 (13)*
H7W0.034 (5)0.735 (6)0.899 (4)0.11 (2)*
H8W0.155 (2)0.835 (6)0.949 (4)0.078 (19)*
N10.6033 (3)0.7025 (3)0.89845 (18)0.0151 (6)
O10.7227 (3)0.6764 (3)0.76842 (16)0.0270 (7)
O20.8922 (2)0.5058 (3)0.84687 (15)0.0234 (6)
O30.3689 (2)0.8704 (3)0.85661 (15)0.0211 (5)
O40.3426 (2)0.8572 (3)0.99465 (16)0.0245 (6)
O50.8011 (2)0.5511 (3)1.15508 (14)0.0202 (5)
O60.5004 (3)0.6614 (3)0.61007 (18)0.0275 (6)
O70.3631 (3)0.5587 (4)0.73985 (19)0.0323 (7)
O80.6026 (3)1.0809 (4)0.82870 (18)0.0319 (7)
O90.0664 (3)0.8216 (3)0.9349 (2)0.0367 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01379 (17)0.01728 (17)0.00543 (16)0.00006 (5)0.00313 (11)0.00080 (5)
C10.0194 (16)0.0240 (17)0.0107 (17)0.0022 (14)0.0047 (14)0.0012 (14)
C20.0192 (16)0.0166 (16)0.0130 (17)0.0000 (13)0.0060 (14)0.0001 (14)
C30.0189 (16)0.0193 (16)0.0119 (16)0.0030 (13)0.0031 (14)0.0014 (13)
C40.0194 (15)0.0171 (16)0.0079 (16)0.0042 (13)0.0010 (13)0.0026 (13)
C50.0186 (17)0.0243 (18)0.0094 (17)0.0032 (12)0.0092 (14)0.0015 (13)
C60.0195 (17)0.0153 (15)0.0094 (16)0.0007 (13)0.0068 (14)0.0007 (13)
C70.0180 (17)0.0193 (17)0.0109 (18)0.0021 (13)0.0028 (15)0.0021 (13)
N10.0175 (14)0.0206 (13)0.0071 (14)0.0027 (11)0.0033 (12)0.0021 (11)
O10.0276 (14)0.0468 (17)0.0090 (13)0.0166 (11)0.0092 (11)0.0085 (11)
O20.0241 (13)0.0330 (14)0.0128 (12)0.0135 (11)0.0043 (10)0.0014 (11)
O30.0201 (11)0.0338 (13)0.0094 (12)0.0077 (11)0.0041 (10)0.0031 (11)
O40.0236 (12)0.0419 (15)0.0110 (13)0.0061 (11)0.0097 (11)0.0009 (11)
O50.0206 (11)0.0305 (13)0.0087 (12)0.0030 (10)0.0021 (10)0.0042 (10)
O60.0423 (17)0.0266 (15)0.0169 (15)0.0036 (12)0.0135 (14)0.0033 (11)
O70.0413 (16)0.0376 (16)0.0212 (15)0.0181 (13)0.0141 (14)0.0058 (13)
O80.0451 (16)0.0393 (16)0.0164 (14)0.0194 (14)0.0172 (13)0.0085 (12)
O90.0278 (16)0.0311 (16)0.049 (2)0.0034 (12)0.0062 (15)0.0025 (13)
Geometric parameters (Å, º) top
Eu1—O5i2.327 (2)C5—C61.377 (4)
Eu1—O82.401 (3)C5—H50.9344
Eu1—O72.416 (3)C6—N11.345 (4)
Eu1—O12.432 (2)C6—C71.509 (4)
Eu1—O2ii2.433 (2)C7—O41.249 (4)
Eu1—O32.440 (2)C7—O31.264 (4)
Eu1—O62.445 (3)O2—Eu1iii2.433 (2)
Eu1—N12.498 (3)O5—Eu1iv2.327 (2)
C1—O21.255 (4)O6—H1W0.895 (19)
C1—O11.262 (4)O6—H2W0.867 (19)
C1—C21.481 (5)O7—H3W0.871 (19)
C2—N11.350 (4)O7—H4W0.856 (19)
C2—C31.376 (4)O8—H5W0.855 (19)
C3—C41.402 (5)O8—H6W0.868 (18)
C3—H30.9300O9—H7W0.861 (19)
C4—O51.317 (3)O9—H8W0.861 (19)
C4—C51.410 (4)
O5i—Eu1—O8100.29 (9)O2—C1—C2119.1 (3)
O5i—Eu1—O785.49 (9)O1—C1—C2116.5 (3)
O8—Eu1—O7148.21 (10)N1—C2—C3122.6 (3)
O5i—Eu1—O1151.83 (8)N1—C2—C1114.1 (3)
O8—Eu1—O192.61 (9)C3—C2—C1123.2 (3)
O7—Eu1—O196.63 (9)C2—C3—C4120.4 (3)
O5i—Eu1—O2ii81.44 (8)C2—C3—H3119.8
O8—Eu1—O2ii70.73 (9)C4—C3—H3119.8
O7—Eu1—O2ii140.91 (9)O5—C4—C3121.4 (3)
O1—Eu1—O2ii79.36 (8)O5—C4—C5122.2 (3)
O5i—Eu1—O380.61 (8)C3—C4—C5116.4 (3)
O8—Eu1—O375.04 (9)C6—C5—C4119.8 (3)
O7—Eu1—O375.15 (9)C6—C5—H5120.2
O1—Eu1—O3127.18 (8)C4—C5—H5120.0
O2ii—Eu1—O3137.46 (8)N1—C6—C5123.0 (3)
O5i—Eu1—O682.43 (9)N1—C6—C7113.1 (3)
O8—Eu1—O6140.55 (10)C5—C6—C7123.9 (3)
O7—Eu1—O671.01 (10)O4—C7—O3124.9 (3)
O1—Eu1—O671.90 (9)O4—C7—C6118.9 (3)
O2ii—Eu1—O670.83 (9)O3—C7—C6116.2 (3)
O3—Eu1—O6143.08 (9)C6—N1—C2117.8 (3)
O5i—Eu1—N1143.53 (9)C6—N1—Eu1121.6 (2)
O8—Eu1—N177.05 (9)C2—N1—Eu1120.3 (2)
O7—Eu1—N179.95 (9)C1—O1—Eu1124.7 (2)
O1—Eu1—N163.77 (9)C1—O2—Eu1iii138.4 (2)
O2ii—Eu1—N1129.18 (9)C7—O3—Eu1125.3 (2)
O3—Eu1—N163.42 (8)C4—O5—Eu1iv127.88 (19)
O6—Eu1—N1122.83 (9)Eu1—O6—H1W119 (3)
O5i—Eu1—H5W101.3 (10)Eu1—O6—H2W129 (3)
O8—Eu1—H5W17.0 (6)H1W—O6—H2W108 (3)
O7—Eu1—H5W164.4 (6)Eu1—O7—H3W111 (3)
O1—Eu1—H5W84.1 (10)Eu1—O7—H4W125 (3)
O2ii—Eu1—H5W54.6 (6)H3W—O7—H4W115 (3)
O3—Eu1—H5W91.9 (6)Eu1—O8—H5W108 (3)
O6—Eu1—H5W123.6 (6)Eu1—O8—H6W126 (3)
N1—Eu1—H5W86.4 (8)H5W—O8—H6W116 (3)
O2—C1—O1124.4 (3)H7W—O9—H8W116 (3)
O2—C1—C2—N1173.0 (3)O6—Eu1—N1—C6143.3 (2)
O1—C1—C2—N18.2 (4)O5i—Eu1—N1—C2170.8 (2)
O2—C1—C2—C39.4 (5)O8—Eu1—N1—C299.4 (2)
O1—C1—C2—C3169.3 (3)O7—Eu1—N1—C2102.7 (2)
N1—C2—C3—C40.4 (5)O1—Eu1—N1—C20.1 (2)
C1—C2—C3—C4177.0 (3)O2ii—Eu1—N1—C248.0 (3)
C2—C3—C4—O5177.9 (3)O3—Eu1—N1—C2178.9 (3)
C2—C3—C4—C50.9 (5)O6—Eu1—N1—C243.2 (3)
O5—C4—C5—C6178.0 (3)O2—C1—O1—Eu1172.3 (2)
C3—C4—C5—C60.8 (4)C2—C1—O1—Eu19.0 (4)
C4—C5—C6—N10.2 (5)O5i—Eu1—O1—C1163.2 (2)
C4—C5—C6—C7179.0 (3)O8—Eu1—O1—C179.2 (3)
N1—C6—C7—O4177.2 (3)O7—Eu1—O1—C170.3 (3)
C5—C6—C7—O43.5 (5)O2ii—Eu1—O1—C1149.0 (3)
N1—C6—C7—O31.8 (4)O3—Eu1—O1—C16.0 (3)
C5—C6—C7—O3177.4 (3)O6—Eu1—O1—C1137.8 (3)
C5—C6—N1—C20.3 (5)N1—Eu1—O1—C15.0 (3)
C7—C6—N1—C2179.6 (3)O1—C1—O2—Eu1iii29.7 (5)
C5—C6—N1—Eu1173.3 (2)C2—C1—O2—Eu1iii151.6 (2)
C7—C6—N1—Eu16.0 (4)O4—C7—O3—Eu1177.6 (2)
C3—C2—N1—C60.2 (5)C6—C7—O3—Eu13.4 (4)
C1—C2—N1—C6177.8 (3)O5i—Eu1—O3—C7178.4 (3)
C3—C2—N1—Eu1173.5 (2)O8—Eu1—O3—C778.2 (3)
C1—C2—N1—Eu14.1 (4)O7—Eu1—O3—C790.6 (3)
O5i—Eu1—N1—C615.8 (3)O1—Eu1—O3—C73.6 (3)
O8—Eu1—N1—C674.1 (2)O2ii—Eu1—O3—C7115.4 (2)
O7—Eu1—N1—C683.8 (2)O6—Eu1—O3—C7114.7 (2)
O1—Eu1—N1—C6173.6 (3)N1—Eu1—O3—C74.6 (2)
O2ii—Eu1—N1—C6125.5 (2)C3—C4—O5—Eu1iv69.8 (4)
O3—Eu1—N1—C65.5 (2)C5—C4—O5—Eu1iv108.9 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O9v0.90 (2)1.85 (3)2.696 (3)158 (4)
O6—H2W···O9vi0.87 (2)2.15 (3)2.962 (4)156 (4)
O7—H4W···O3v0.86 (2)2.09 (3)2.805 (3)141 (4)
O8—H5W···O1ii0.86 (2)1.84 (2)2.684 (4)168 (4)
O8—H6W···O4vii0.87 (2)1.83 (2)2.696 (4)173 (4)
O9—H7W···O2viii0.86 (2)2.26 (3)3.059 (4)155 (5)
O9—H8W···O40.86 (2)1.84 (2)2.692 (4)172 (6)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+3/2; (vi) x+1/2, y+3/2, z1/2; (vii) x+1, y+2, z+2; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Eu(C7H2NO5)(H2O)3]·H2O
Mr404.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.0041 (15), 7.5456 (11), 15.528 (2)
β (°) 104.890 (1)
V3)1132.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.58
Crystal size (mm)0.35 × 0.32 × 0.31
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.246, 0.277
No. of measured, independent and
observed [I > 2σ(I)] reflections
4884, 2023, 1856
Rint0.074
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.06
No. of reflections2023
No. of parameters196
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 1.69

Computer programs: APEX2 (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Eu1—O5i2.327 (2)Eu1—O2ii2.433 (2)
Eu1—O82.401 (3)Eu1—O32.440 (2)
Eu1—O72.416 (3)Eu1—O62.445 (3)
Eu1—O12.432 (2)Eu1—N12.498 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O9iii0.895 (19)1.85 (3)2.696 (3)158 (4)
O6—H2W···O9iv0.867 (19)2.15 (3)2.962 (4)156 (4)
O7—H4W···O3iii0.856 (19)2.09 (3)2.805 (3)141 (4)
O8—H5W···O1ii0.855 (19)1.84 (2)2.684 (4)168 (4)
O8—H6W···O4v0.868 (18)1.833 (19)2.696 (4)173 (4)
O9—H7W···O2vi0.861 (19)2.26 (3)3.059 (4)155 (5)
O9—H8W···O40.861 (19)1.84 (2)2.692 (4)172 (6)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y+2, z+2; (vi) x1, y, z.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & &Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & &Yan, S. P. (2008). Inorg. Chem. 47, 11057–11061.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605–7607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Zhang, Y. B., Shi, W. & &Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869–872.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006–2010.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. L., Law, G. L., Yang, Y. Y. & Wong, W. T. (2006). Adv. Mater. 18, 1051–1054.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, T. Y., Ikarashi, K., Ishigaki, T., Uematsu, K., Toda, K., Okawa, H. & Sato, M. (2009). Inorg. Chim. Acta, 362, 3407–3414.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y. Y., Sun, Z. G., Chen, H., Zhang, J., Zhao, Y., Zhang, N., Liu, L., Lu, X., Wang, W. N., Tong, F. & Zhang, L. C. (2009). Cryst. Growth Des. 9, 3228–3234.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds