organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­nium perchlorate–dibenzo-18-crown-6 (1/1): monoclinic polymorph

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, and bFaculty of Applied Sciences, University of West Bohemia, Husova 11, 306 14 Pilsen, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 11 November 2010; accepted 22 November 2010; online 27 November 2010)

The asymmetric unit of the title compound, H3O+·ClO4·C20H24O6, contains two mol­ecules/ions of each species. Both dibenzo-18-crown-6 mol­ecules have a complexed hydro­nium ion inside their cavity with O—H⋯O and O—H⋯(O,O) links between the two species. The associated perchlorate anions also accept O—H⋯O hydrogen bonds from the hydro­nium ion. Both crown ether mol­ecules are present in a butterfly conformation with approximate C2v symmetry and their cavities are closed by the benzene ring of a neighbouring mol­ecule. The packing is consolidated by C—H⋯O and C—H⋯π inter­actions.

Related literature

For the triclinic polymorph of the title compound, see: Chekhlov (2007[Chekhlov, A. N. (2007). Russ. J. Inorg. Chem. 52, 859-864.]).

[Scheme 1]

Experimental

Crystal data
  • H3O+·ClO4·C20H24O6

  • Mr = 478.9

  • Monoclinic, P 21 /c

  • a = 8.6586 (1) Å

  • b = 26.7718 (3) Å

  • c = 19.1518 (2) Å

  • β = 100.0011 (10)°

  • V = 4372.05 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.09 mm−1

  • T = 124 K

  • 0.26 × 0.18 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.098, Tmax = 1.000

  • 36184 measured reflections

  • 6865 independent reflections

  • 5283 reflections with I > 3σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.124

  • S = 2.07

  • 6865 reflections

  • 595 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C11–C16, C21–C26 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H1⋯O3 1.14 (3) 1.64 (3) 2.763 (3) 168 (3)
O21—H1⋯O4 1.14 (3) 2.39 (3) 2.835 (3) 101 (2)
O21—H7⋯O17 1.22 (4) 1.73 (4) 2.945 (4) 171 (3)
O22—H8⋯O9 1.20 (3) 1.66 (3) 2.802 (3) 157 (3)
O22—H8⋯O10 1.20 (3) 2.29 (3) 2.837 (3) 104.4 (19)
O21—H9⋯O4 1.09 (3) 2.40 (3) 2.835 (3) 102 (2)
O21—H9⋯O5 1.09 (3) 1.87 (3) 2.910 (3) 159 (3)
O21—H9⋯O6 1.09 (3) 2.47 (4) 2.967 (3) 107 (2)
O22—H10⋯O11 1.05 (3) 1.90 (3) 2.840 (3) 149 (3)
O22—H10⋯O12 1.05 (3) 2.34 (3) 2.895 (3) 112 (2)
C5—H5⋯O18i 0.96 2.52 3.479 (3) 177
C8—H8b⋯O19 0.96 2.55 3.416 (3) 150
C15—H15⋯O13ii 0.96 2.42 3.369 (3) 169.02
C20—H20b⋯O16iii 0.96 2.43 3.165 (3) 134
C35—H35⋯O15ii 0.96 2.59 3.278 (4) 129
C38—H38b⋯O19iv 0.96 2.50 3.447 (3) 168
C17—H17aCg1 0.96 2.87 3.704 (3) 146
C37—H37bCg2v 0.96 2.99 3.825 (3) 146
C13—H13⋯Cg3 0.96 3.20 4.070 (3) 150
C33—H33⋯Cg4v 0.96 3.00 3.899 (3) 156
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of dibenzo-18-crown-6 hydronium perchlorate was previously published by A.N.Chekhlov (2007). The published structure determined at room temperature is triclinic(space group P-1, a = 8.582 Å, b = 10.486 Å, c = 26.293 Å, α = 79.45°,β = 82.00° and γ = 79.36°, V =2272.5 Å) with asymmetric unit consisting of two independent molecules of macrocycle with complexed hydronium ions. The neutrality of the compound is ensured by two perchlorate anions. The data of crystal structure, presented in this paper, were collected at room temperature (testing stage) and at 120 K (final data collection). We found the complex monoclinic, P21/c space group, with unit-cell parameters a = 8.6535 Å, b = 26.7823 Å, c = 19.1707 Å, β = 99.9987° and doubled unit cell volume V = 4372.05 Å3. The difference between both structures is in their system of hydrogen bonds. In Chekhlov's structure, the hydronium ion is held by three hydrogen bonds inside the crown cavity. In presented structure, hydronium ion and crown-ether form only two hydrogen bonds. The third hydrogen atom of hydronium ion is shared with perchlorate anion which makes it to point out of the cavity. This hydrogen bond causes that the perchlorate anions are not disordered as it was observed in Chekhlov's structure. Consequently, sharp maxima in difference Fourier map could be used for localizing hydrogen positions in both oxonia cations (Fig 3) and the found hydrogen positions could be refined without restraints. The distance between hydronium and oxygen atoms in macrocycles are 1.637 Å (O21—H1···O3) and 1.864 Å (O21—H9···O5) for one crownether molecule and 1.895 Å (O22—H10···O11) and 1.661 Å (O22—H8···O9) for the other one. The length of hydrogen bond between hydronium ion and perchlorate is 1.732 Å (O21—H7···O17) and 1.687 Å (O22—H6···O14). The distances between hydrogen atoms and oxygen atoms in hydronium correspond to the extent of their participation in hydrogen bonding system: O—H distance close (but still longer) to the standard value 0.983 Å has been only found for the weakest hydrogen bond O22—H10···O11. For stronger hydrogen bonds O—H distance becomes significantly longer, taking the maximum value 1.29 (4) for O22—H6···O14. The O—H and corresponding H···O distances for oxonia are summarized in Table 2. The hydronium ions are enclosed in the crown-ether cavities by phenyl ring of neighbouring molecules. This arrangement is stabilized due to CH-π interactions between phenyl rings and CH2 groups of crownether (the distance between centroid of phenyl ring C11C16 and H37b in ethylen group is 2.989 Å and between centriod of phenyl ring C31C36 and H17a in ethylen group is 2.870 Å) and due to the face-to-edge orientation of phenyl rings (distance between the centriod of phenyl ring C21C26 and H13 of phenyl ring C11C16 is 3.207 Å and between the centriod of phenyl ring C1C6 and H33 in phenyl ring C31C36 is 3.004 Å).

Related literature top

For the triclinic polymorph of the title compound, see: Chekhlov (2007).

Experimental top

Dibenzo-18-crown-6, perchloric acid and acetonitrile were purchased by Fluka. Crystals were prepared by slow evaporation of equimolar mixture of dibenzo-18-crown-6 (0.05M) and perchloric acid (0.05M) in acetonitrile to yield colourless prisms of the title compound.

Structure description top

The crystal structure of dibenzo-18-crown-6 hydronium perchlorate was previously published by A.N.Chekhlov (2007). The published structure determined at room temperature is triclinic(space group P-1, a = 8.582 Å, b = 10.486 Å, c = 26.293 Å, α = 79.45°,β = 82.00° and γ = 79.36°, V =2272.5 Å) with asymmetric unit consisting of two independent molecules of macrocycle with complexed hydronium ions. The neutrality of the compound is ensured by two perchlorate anions. The data of crystal structure, presented in this paper, were collected at room temperature (testing stage) and at 120 K (final data collection). We found the complex monoclinic, P21/c space group, with unit-cell parameters a = 8.6535 Å, b = 26.7823 Å, c = 19.1707 Å, β = 99.9987° and doubled unit cell volume V = 4372.05 Å3. The difference between both structures is in their system of hydrogen bonds. In Chekhlov's structure, the hydronium ion is held by three hydrogen bonds inside the crown cavity. In presented structure, hydronium ion and crown-ether form only two hydrogen bonds. The third hydrogen atom of hydronium ion is shared with perchlorate anion which makes it to point out of the cavity. This hydrogen bond causes that the perchlorate anions are not disordered as it was observed in Chekhlov's structure. Consequently, sharp maxima in difference Fourier map could be used for localizing hydrogen positions in both oxonia cations (Fig 3) and the found hydrogen positions could be refined without restraints. The distance between hydronium and oxygen atoms in macrocycles are 1.637 Å (O21—H1···O3) and 1.864 Å (O21—H9···O5) for one crownether molecule and 1.895 Å (O22—H10···O11) and 1.661 Å (O22—H8···O9) for the other one. The length of hydrogen bond between hydronium ion and perchlorate is 1.732 Å (O21—H7···O17) and 1.687 Å (O22—H6···O14). The distances between hydrogen atoms and oxygen atoms in hydronium correspond to the extent of their participation in hydrogen bonding system: O—H distance close (but still longer) to the standard value 0.983 Å has been only found for the weakest hydrogen bond O22—H10···O11. For stronger hydrogen bonds O—H distance becomes significantly longer, taking the maximum value 1.29 (4) for O22—H6···O14. The O—H and corresponding H···O distances for oxonia are summarized in Table 2. The hydronium ions are enclosed in the crown-ether cavities by phenyl ring of neighbouring molecules. This arrangement is stabilized due to CH-π interactions between phenyl rings and CH2 groups of crownether (the distance between centroid of phenyl ring C11C16 and H37b in ethylen group is 2.989 Å and between centriod of phenyl ring C31C36 and H17a in ethylen group is 2.870 Å) and due to the face-to-edge orientation of phenyl rings (distance between the centriod of phenyl ring C21C26 and H13 of phenyl ring C11C16 is 3.207 Å and between the centriod of phenyl ring C1C6 and H33 in phenyl ring C31C36 is 3.004 Å).

For the triclinic polymorph of the title compound, see: Chekhlov (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit. The elipsoids are show with 50% probability and hydrogen atoms were omitted for better clarity.
[Figure 2] Fig. 2. View along the a axis. The crown ether molecules form penentrating infinite channels filled with hydronium ions.
[Figure 3] Fig. 3. Difference electron density maps of hydronium groups.
Hydronium perchlorate–dibenzo-18-crown-6 (1/1) top
Crystal data top
H3O+·ClO4·C20H24O6F(000) = 2016
Mr = 478.9Dx = 1.455 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 20984 reflections
a = 8.6586 (1) Åθ = 3.3–62.5°
b = 26.7718 (3) ŵ = 2.09 mm1
c = 19.1518 (2) ÅT = 124 K
β = 100.0011 (10)°Prism, colourless
V = 4372.05 (8) Å30.26 × 0.18 × 0.13 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
6865 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5283 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.3784 pixels mm-1θmax = 62.6°, θmin = 3.3°
rotation method data acquisition using ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 3028
Tmin = 0.098, Tmax = 1.000l = 2221
36184 measured reflections
Refinement top
Refinement on F2198 constraints
R[F > 3σ(F)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.124Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 2.07(Δ/σ)max = 0.022
6865 reflectionsΔρmax = 0.49 e Å3
595 parametersΔρmin = 0.32 e Å3
0 restraints
Crystal data top
H3O+·ClO4·C20H24O6V = 4372.05 (8) Å3
Mr = 478.9Z = 8
Monoclinic, P21/cCu Kα radiation
a = 8.6586 (1) ŵ = 2.09 mm1
b = 26.7718 (3) ÅT = 124 K
c = 19.1518 (2) Å0.26 × 0.18 × 0.13 mm
β = 100.0011 (10)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
6865 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
5283 reflections with I > 3σ(I)
Tmin = 0.098, Tmax = 1.000Rint = 0.048
36184 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0510 restraints
wR(F) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 2.07Δρmax = 0.49 e Å3
6865 reflectionsΔρmin = 0.32 e Å3
595 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

All the H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. Despite of it the H atoms bonded to carbon atoms were constrained to ideal positions. The O—H distances and angles in hydronium ions were not restrained. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25806 (7)0.16885 (2)0.35587 (3)0.0248 (2)
Cl20.74151 (7)0.41184 (2)0.38383 (4)0.0261 (2)
O11.0665 (2)0.50098 (6)0.15146 (9)0.0252 (6)
O21.2316 (2)0.46140 (6)0.26441 (9)0.0238 (6)
O31.1821 (2)0.35876 (6)0.28737 (9)0.0270 (6)
O40.9437 (2)0.30634 (6)0.19288 (9)0.0249 (6)
O50.7465 (2)0.35281 (6)0.09651 (9)0.0271 (6)
O60.8039 (2)0.45403 (6)0.06355 (9)0.0243 (6)
O70.5802 (2)0.08959 (6)0.11052 (9)0.0263 (6)
O80.7525 (2)0.12376 (6)0.22540 (9)0.0243 (6)
O90.7056 (2)0.22401 (6)0.27262 (9)0.0268 (6)
O100.4558 (2)0.28100 (6)0.19535 (10)0.0267 (6)
O110.2643 (2)0.24193 (6)0.08853 (9)0.0284 (6)
O120.3196 (2)0.14350 (6)0.03615 (10)0.0266 (6)
O130.4098 (2)0.17956 (8)0.39605 (12)0.0404 (7)
O140.2617 (2)0.17463 (8)0.28118 (10)0.0400 (8)
O150.1434 (2)0.20252 (7)0.37496 (10)0.0327 (7)
O160.2159 (2)0.11841 (7)0.36877 (11)0.0348 (7)
O170.7348 (2)0.40931 (8)0.30779 (10)0.0399 (8)
O180.6961 (2)0.46121 (6)0.40192 (10)0.0298 (6)
O190.8976 (2)0.40152 (8)0.41890 (12)0.0452 (8)
O200.6341 (2)0.37595 (7)0.40378 (11)0.0345 (7)
O210.9470 (3)0.41200 (9)0.20320 (14)0.0495 (9)
O220.4740 (3)0.17637 (9)0.17481 (13)0.0478 (9)
C11.2210 (3)0.51595 (9)0.16739 (14)0.0213 (8)
C21.2909 (3)0.54843 (9)0.12647 (14)0.0249 (9)
C31.4465 (3)0.56198 (10)0.14712 (14)0.0273 (9)
C41.5327 (3)0.54337 (10)0.20921 (15)0.0272 (9)
C51.4644 (3)0.50926 (9)0.25017 (14)0.0251 (9)
C61.3092 (3)0.49536 (9)0.22946 (14)0.0218 (8)
C71.3267 (3)0.43350 (10)0.32048 (13)0.0243 (9)
C81.2279 (3)0.39347 (10)0.34457 (14)0.0271 (9)
C91.0956 (3)0.31719 (9)0.30858 (14)0.0277 (9)
C101.0523 (3)0.28207 (10)0.24743 (13)0.0251 (9)
C110.8679 (3)0.27715 (9)0.13818 (14)0.0235 (9)
C120.8904 (3)0.22609 (10)0.13211 (14)0.0263 (9)
C130.8027 (3)0.19963 (10)0.07643 (15)0.0295 (10)
C140.6942 (3)0.22368 (10)0.02681 (16)0.0315 (10)
C150.6734 (3)0.27535 (10)0.03163 (15)0.0300 (9)
C160.7594 (3)0.30152 (9)0.08723 (14)0.0249 (9)
C170.6510 (3)0.37942 (10)0.03977 (14)0.0264 (9)
C180.6510 (3)0.43353 (10)0.05990 (14)0.0267 (9)
C190.8080 (3)0.50524 (9)0.08415 (14)0.0264 (9)
C200.9729 (3)0.52437 (10)0.09165 (14)0.0251 (9)
C210.7327 (3)0.07209 (9)0.12468 (14)0.0224 (8)
C220.7959 (3)0.03910 (10)0.08188 (14)0.0268 (9)
C230.9502 (3)0.02291 (10)0.10120 (15)0.0295 (9)
C241.0392 (3)0.04011 (10)0.16306 (15)0.0285 (9)
C250.9785 (3)0.07432 (9)0.20588 (15)0.0262 (9)
C260.8251 (3)0.09029 (9)0.18699 (14)0.0232 (8)
C270.8501 (3)0.14721 (9)0.28477 (13)0.0237 (8)
C280.7525 (3)0.18269 (10)0.31932 (14)0.0272 (9)
C290.6189 (3)0.26055 (9)0.30496 (15)0.0277 (9)
C300.5650 (3)0.30146 (10)0.25339 (14)0.0258 (9)
C310.3730 (3)0.31430 (10)0.14860 (14)0.0247 (9)
C320.3859 (3)0.36568 (10)0.15492 (15)0.0291 (10)
C330.2916 (3)0.39643 (11)0.10659 (15)0.0336 (10)
C340.1876 (4)0.37606 (11)0.05210 (16)0.0362 (10)
C350.1769 (4)0.32457 (10)0.04384 (16)0.0329 (10)
C360.2687 (3)0.29363 (9)0.09150 (14)0.0247 (9)
C370.1739 (3)0.22021 (10)0.02603 (14)0.0287 (9)
C390.3192 (3)0.09096 (9)0.04725 (14)0.0269 (9)
C380.1685 (3)0.16499 (10)0.03607 (15)0.0291 (9)
C400.4813 (3)0.07089 (10)0.04808 (14)0.0255 (9)
H21.2314050.5617140.0834960.0299*
H31.4947680.5843920.1181910.0328*
H41.639320.553830.2242440.0326*
H51.5250770.495540.2925420.0302*
H120.9664060.2090520.1663530.0316*
H130.818110.1642920.0726150.0354*
H140.6329210.2050910.0110450.0378*
H150.5997280.2924660.0035420.036*
H220.7333160.0273090.0386980.0321*
H230.9941350.0000950.0715690.0354*
H241.1447580.0283390.176910.0342*
H251.0427040.0867490.2482460.0314*
H320.4598010.3801370.1926750.0349*
H330.2996940.4320640.1115150.0403*
H340.1217550.3974560.0194130.0435*
H350.1054290.3105040.0048580.0395*
H7a1.3641340.4554260.3594010.0292*
H7b1.4131620.418570.3028880.0292*
H8a1.2872650.3762580.3843710.0325*
H8b1.1359850.4081460.3577850.0325*
H9a1.0020670.3291640.3235450.0332*
H9b1.1590820.2999580.3472380.0332*
H10a1.1448490.2729340.2291660.0301*
H10b1.0043930.2527260.2630340.0301*
H17a0.5457540.3667380.0331410.0317*
H17b0.6944930.3757930.0027690.0317*
H18a0.5783910.4514190.025190.0321*
H18b0.61890.4367930.1052050.0321*
H19a0.7723030.5083810.1286740.0317*
H19b0.7411440.5243430.048690.0317*
H20a1.014350.5165110.0496240.0302*
H20b0.9734570.5598750.0986820.0302*
H27a0.9328840.1652850.2685310.0285*
H27b0.8937410.1221570.3183360.0285*
H28a0.6610420.1656850.3291170.0326*
H28b0.8128980.1947860.3628460.0326*
H29a0.6846420.2742750.3459990.0333*
H29b0.5295750.2449130.3192510.0333*
H30a0.5140580.3269490.276390.031*
H30b0.6534230.3151370.2359190.031*
H37a0.2227920.227520.0141190.0344*
H37b0.0693010.2334250.0189160.0344*
H39a0.2476710.075450.0095710.0323*
H39b0.2874140.0840020.0918480.0323*
H38a0.135220.1577910.0802790.0349*
H38b0.0941710.1505720.0015680.0349*
H40a0.4789540.0350640.0497770.0306*
H40b0.5195860.0823590.0067720.0306*
H11.043 (4)0.3869 (13)0.2320 (19)0.0594*
H60.384 (4)0.1733 (12)0.2216 (18)0.0574*
H70.855 (4)0.4148 (12)0.2446 (19)0.0594*
H80.572 (4)0.2039 (12)0.2057 (18)0.0574*
H90.893 (4)0.3913 (13)0.156 (2)0.0594*
H100.421 (4)0.1965 (13)0.1302 (19)0.0574*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0258 (3)0.0217 (3)0.0262 (3)0.0007 (3)0.0022 (3)0.0018 (3)
Cl20.0255 (3)0.0245 (3)0.0287 (4)0.0012 (3)0.0055 (3)0.0003 (3)
O10.0219 (10)0.0248 (10)0.0276 (10)0.0008 (8)0.0004 (8)0.0063 (8)
O20.0254 (10)0.0211 (9)0.0240 (10)0.0010 (8)0.0020 (8)0.0068 (8)
O30.0385 (11)0.0212 (10)0.0217 (10)0.0086 (8)0.0057 (8)0.0004 (8)
O40.0308 (11)0.0193 (9)0.0222 (10)0.0028 (8)0.0023 (8)0.0007 (8)
O50.0345 (11)0.0176 (9)0.0258 (10)0.0015 (8)0.0042 (8)0.0004 (8)
O60.0259 (10)0.0161 (9)0.0295 (10)0.0001 (8)0.0010 (8)0.0017 (8)
O70.0255 (10)0.0250 (10)0.0268 (10)0.0005 (8)0.0003 (8)0.0064 (8)
O80.0269 (10)0.0213 (9)0.0236 (10)0.0012 (8)0.0014 (8)0.0051 (8)
O90.0396 (11)0.0189 (9)0.0227 (10)0.0054 (8)0.0074 (8)0.0015 (8)
O100.0341 (11)0.0181 (9)0.0257 (10)0.0008 (8)0.0009 (8)0.0012 (8)
O110.0358 (11)0.0207 (10)0.0259 (10)0.0012 (8)0.0022 (9)0.0016 (8)
O120.0273 (10)0.0207 (10)0.0309 (11)0.0011 (8)0.0027 (8)0.0005 (8)
O130.0249 (11)0.0429 (13)0.0482 (14)0.0092 (9)0.0080 (10)0.0016 (10)
O140.0500 (14)0.0495 (13)0.0231 (11)0.0046 (10)0.0135 (10)0.0041 (9)
O150.0371 (12)0.0303 (11)0.0304 (11)0.0104 (9)0.0048 (9)0.0022 (9)
O160.0360 (12)0.0173 (10)0.0503 (13)0.0042 (8)0.0053 (10)0.0068 (9)
O170.0541 (14)0.0455 (13)0.0241 (11)0.0078 (10)0.0185 (10)0.0074 (9)
O180.0388 (12)0.0193 (10)0.0300 (11)0.0057 (8)0.0027 (9)0.0035 (8)
O190.0232 (11)0.0461 (13)0.0626 (16)0.0111 (10)0.0032 (10)0.0050 (11)
O200.0379 (12)0.0254 (10)0.0423 (12)0.0069 (9)0.0127 (10)0.0065 (9)
O210.0451 (14)0.0437 (14)0.0543 (16)0.0028 (11)0.0068 (12)0.0096 (12)
O220.0459 (14)0.0455 (14)0.0467 (15)0.0057 (11)0.0070 (12)0.0087 (11)
C10.0202 (13)0.0173 (13)0.0258 (14)0.0009 (11)0.0026 (11)0.0028 (11)
C20.0291 (15)0.0199 (14)0.0259 (15)0.0013 (12)0.0056 (12)0.0015 (11)
C30.0301 (16)0.0248 (15)0.0276 (15)0.0035 (12)0.0066 (12)0.0018 (12)
C40.0256 (15)0.0225 (14)0.0334 (16)0.0006 (12)0.0052 (12)0.0005 (12)
C50.0280 (15)0.0214 (14)0.0255 (15)0.0006 (12)0.0031 (12)0.0002 (11)
C60.0247 (14)0.0153 (13)0.0262 (14)0.0015 (11)0.0064 (11)0.0005 (11)
C70.0290 (15)0.0231 (14)0.0192 (14)0.0018 (12)0.0005 (11)0.0014 (11)
C80.0343 (16)0.0257 (14)0.0207 (15)0.0046 (12)0.0030 (12)0.0009 (12)
C90.0345 (16)0.0233 (14)0.0244 (15)0.0069 (12)0.0029 (12)0.0047 (12)
C100.0299 (15)0.0184 (13)0.0255 (15)0.0004 (11)0.0010 (12)0.0065 (11)
C110.0291 (15)0.0203 (14)0.0213 (14)0.0042 (12)0.0052 (12)0.0005 (11)
C120.0325 (16)0.0212 (14)0.0259 (15)0.0002 (12)0.0066 (12)0.0030 (12)
C130.0392 (17)0.0189 (14)0.0313 (16)0.0001 (12)0.0090 (13)0.0005 (12)
C140.0364 (17)0.0267 (16)0.0297 (16)0.0060 (13)0.0016 (13)0.0059 (13)
C150.0343 (17)0.0247 (15)0.0284 (16)0.0012 (13)0.0018 (13)0.0011 (12)
C160.0299 (15)0.0177 (14)0.0264 (15)0.0018 (11)0.0030 (12)0.0013 (11)
C170.0280 (15)0.0235 (14)0.0252 (15)0.0006 (12)0.0023 (12)0.0052 (12)
C180.0226 (14)0.0254 (15)0.0296 (16)0.0002 (12)0.0026 (12)0.0029 (12)
C190.0281 (15)0.0183 (14)0.0305 (16)0.0036 (11)0.0014 (12)0.0019 (12)
C200.0309 (15)0.0191 (14)0.0236 (14)0.0045 (12)0.0000 (12)0.0029 (11)
C210.0215 (14)0.0190 (13)0.0267 (15)0.0018 (11)0.0042 (11)0.0031 (11)
C220.0329 (16)0.0234 (15)0.0235 (15)0.0008 (12)0.0038 (12)0.0005 (12)
C230.0333 (16)0.0263 (15)0.0299 (16)0.0043 (13)0.0084 (13)0.0002 (12)
C240.0262 (15)0.0244 (15)0.0351 (17)0.0018 (12)0.0060 (13)0.0004 (12)
C250.0303 (15)0.0222 (14)0.0255 (15)0.0013 (12)0.0030 (12)0.0010 (12)
C260.0268 (15)0.0179 (13)0.0250 (15)0.0008 (11)0.0046 (12)0.0015 (11)
C270.0261 (15)0.0216 (14)0.0213 (14)0.0035 (11)0.0020 (11)0.0003 (11)
C280.0348 (17)0.0242 (14)0.0215 (14)0.0006 (12)0.0021 (12)0.0011 (12)
C290.0341 (16)0.0234 (14)0.0263 (15)0.0016 (12)0.0070 (12)0.0051 (12)
C300.0298 (15)0.0207 (14)0.0262 (15)0.0025 (12)0.0027 (12)0.0057 (11)
C310.0306 (16)0.0230 (14)0.0223 (14)0.0015 (12)0.0091 (12)0.0019 (11)
C320.0374 (17)0.0227 (15)0.0296 (16)0.0008 (12)0.0125 (13)0.0023 (12)
C330.0499 (19)0.0211 (15)0.0322 (17)0.0052 (14)0.0139 (15)0.0014 (13)
C340.0502 (19)0.0265 (16)0.0329 (17)0.0116 (14)0.0096 (15)0.0059 (13)
C350.0414 (18)0.0289 (16)0.0277 (16)0.0040 (13)0.0039 (14)0.0001 (13)
C360.0320 (15)0.0178 (14)0.0248 (14)0.0015 (12)0.0067 (12)0.0001 (11)
C370.0306 (16)0.0287 (15)0.0240 (15)0.0015 (12)0.0027 (12)0.0041 (12)
C390.0288 (15)0.0221 (14)0.0284 (15)0.0032 (12)0.0010 (12)0.0019 (12)
C380.0244 (15)0.0307 (15)0.0300 (16)0.0023 (12)0.0014 (12)0.0050 (13)
C400.0315 (15)0.0212 (14)0.0221 (14)0.0003 (12)0.0001 (12)0.0044 (11)
Geometric parameters (Å, º) top
Cl1—O131.4313 (19)C13—C141.375 (4)
Cl1—O141.445 (2)C13—H130.96
Cl1—O151.435 (2)C14—C151.400 (4)
Cl1—O161.4315 (19)C14—H140.96
Cl2—O171.449 (2)C15—C161.380 (4)
Cl2—O181.4385 (19)C15—H150.96
Cl2—O191.428 (2)C17—C181.499 (4)
Cl2—O201.434 (2)C17—H17a0.96
O1—C11.379 (3)C17—H17b0.96
O1—C201.428 (3)C18—H18a0.96
O2—C61.372 (3)C18—H18b0.96
O2—C71.443 (3)C19—C201.499 (4)
O3—C81.439 (3)C19—H19a0.96
O3—C91.438 (3)C19—H19b0.96
O4—C101.434 (3)C20—H20a0.96
O4—C111.379 (3)C20—H20b0.96
O5—C161.392 (3)C21—C221.381 (4)
O5—C171.435 (3)C21—C261.403 (3)
O6—C181.423 (3)C22—C231.392 (4)
O6—C191.426 (3)C22—H220.96
O7—C211.383 (3)C23—C241.376 (4)
O7—C401.435 (3)C23—H230.96
O8—C261.378 (3)C24—C251.392 (4)
O8—C271.438 (3)C24—H240.96
O9—C281.436 (3)C25—C261.382 (4)
O9—C291.437 (3)C25—H250.96
O10—C301.437 (3)C27—C281.499 (4)
O10—C311.374 (3)C27—H27a0.96
O11—C361.385 (3)C27—H27b0.96
O11—C371.435 (3)C28—H28a0.96
O12—C391.423 (3)C28—H28b0.96
O12—C381.429 (3)C29—C301.494 (4)
C1—C21.379 (4)C29—H29a0.96
C1—C61.409 (3)C29—H29b0.96
C2—C31.386 (4)C30—H30a0.96
C2—H20.96C30—H30b0.96
C3—C41.382 (4)C31—C321.384 (4)
C3—H30.96C31—C361.405 (4)
C4—C51.400 (4)C32—C331.392 (4)
C4—H40.96C32—H320.96
C5—C61.384 (4)C33—C341.368 (4)
C5—H50.96C33—H330.96
C7—C81.493 (4)C34—C351.389 (4)
C7—H7a0.96C34—H340.96
C7—H7b0.96C35—C361.378 (4)
C8—H8a0.96C35—H350.96
C8—H8b0.96C37—C381.493 (4)
C9—C101.498 (4)C37—H37a0.96
C9—H9a0.96C37—H37b0.96
C9—H9b0.96C39—C401.500 (4)
C10—H10a0.96C39—H39a0.96
C10—H10b0.96C39—H39b0.96
C11—C121.388 (4)C38—H38a0.96
C11—C161.393 (3)C38—H38b0.96
C12—C131.391 (4)C40—H40a0.96
C12—H120.96C40—H40b0.96
O13—Cl1—O14109.58 (13)O6—C19—C20109.4 (2)
O13—Cl1—O15110.37 (12)O6—C19—H19a109.4711
O13—Cl1—O16109.51 (12)O6—C19—H19b109.4709
O14—Cl1—O15108.66 (12)C20—C19—H19a109.4713
O14—Cl1—O16108.79 (13)C20—C19—H19b109.4711
O15—Cl1—O16109.90 (12)H19a—C19—H19b109.4972
O17—Cl2—O18108.66 (12)O1—C20—C19109.0 (2)
O17—Cl2—O19109.47 (14)O1—C20—H20a109.4717
O17—Cl2—O20108.77 (12)O1—C20—H20b109.4714
O18—Cl2—O19109.90 (12)C19—C20—H20a109.4707
O18—Cl2—O20109.54 (12)C19—C20—H20b109.4714
O19—Cl2—O20110.47 (12)H20a—C20—H20b109.9286
C1—O1—C20116.4 (2)O7—C21—C22124.3 (2)
C6—O2—C7116.22 (19)O7—C21—C26115.7 (2)
C8—O3—C9111.9 (2)C22—C21—C26120.0 (2)
C10—O4—C11117.51 (19)C21—C22—C23120.1 (2)
C16—O5—C17116.21 (19)C21—C22—H22119.9264
C18—O6—C19111.29 (19)C23—C22—H22119.9263
C21—O7—C40117.2 (2)C22—C23—C24119.5 (3)
C26—O8—C27116.48 (19)C22—C23—H23120.231
C28—O9—C29111.6 (2)C24—C23—H23120.2312
C30—O10—C31117.10 (19)C23—C24—C25121.0 (3)
C36—O11—C37116.52 (19)C23—C24—H24119.4897
C39—O12—C38111.8 (2)C25—C24—H24119.4882
O1—C1—C2124.2 (2)C24—C25—C26119.5 (2)
O1—C1—C6115.8 (2)C24—C25—H25120.227
C2—C1—C6120.0 (2)C26—C25—H25120.2259
C1—C2—C3120.3 (2)O8—C26—C21115.7 (2)
C1—C2—H2119.8743O8—C26—C25124.6 (2)
C3—C2—H2119.8742C21—C26—C25119.7 (2)
C2—C3—C4120.3 (3)O8—C27—C28109.1 (2)
C2—C3—H3119.8663O8—C27—H27a109.4717
C4—C3—H3119.866O8—C27—H27b109.4708
C3—C4—C5120.0 (2)C28—C27—H27a109.4709
C3—C4—H4120.0034C28—C27—H27b109.4711
C5—C4—H4120.0038H27a—C27—H27b109.8839
C4—C5—C6119.9 (2)O9—C28—C27109.5 (2)
C4—C5—H5120.0572O9—C28—H28a109.4715
C6—C5—H5120.0574O9—C28—H28b109.4712
O2—C6—C1115.6 (2)C27—C28—H28a109.4707
O2—C6—C5124.9 (2)C27—C28—H28b109.4711
C1—C6—C5119.6 (2)H28a—C28—H28b109.4873
O2—C7—C8108.6 (2)O9—C29—C30109.9 (2)
O2—C7—H7a109.4716O9—C29—H29a109.4711
O2—C7—H7b109.471O9—C29—H29b109.4712
C8—C7—H7a109.4713C30—C29—H29a109.4714
C8—C7—H7b109.4716C30—C29—H29b109.4712
H7a—C7—H7b110.3703H29a—C29—H29b109.0288
O3—C8—C7109.0 (2)O10—C30—C29108.7 (2)
O3—C8—H8a109.4704O10—C30—H30a109.4715
O3—C8—H8b109.4715O10—C30—H30b109.4713
C7—C8—H8a109.4715C29—C30—H30a109.4711
C7—C8—H8b109.4715C29—C30—H30b109.4714
H8a—C8—H8b109.952H30a—C30—H30b110.27
O3—C9—C10109.7 (2)O10—C31—C32124.3 (2)
O3—C9—H9a109.471O10—C31—C36116.3 (2)
O3—C9—H9b109.4715C32—C31—C36119.4 (2)
C10—C9—H9a109.4714C31—C32—C33120.1 (2)
C10—C9—H9b109.4705C31—C32—H32119.973
H9a—C9—H9b109.2636C33—C32—H32119.9722
O4—C10—C9109.2 (2)C32—C33—C34120.2 (3)
O4—C10—H10a109.4713C32—C33—H33119.8784
O4—C10—H10b109.4713C34—C33—H33119.8778
C9—C10—H10a109.4712C33—C34—C35120.3 (3)
C9—C10—H10b109.4714C33—C34—H34119.8372
H10a—C10—H10b109.7634C35—C34—H34119.8381
O4—C11—C12124.5 (2)C34—C35—C36120.1 (3)
O4—C11—C16116.1 (2)C34—C35—H35119.9488
C12—C11—C16119.3 (2)C36—C35—H35119.9493
C11—C12—C13120.0 (2)O11—C36—C31115.8 (2)
C11—C12—H12120.0012O11—C36—C35124.4 (2)
C13—C12—H12119.9988C31—C36—C35119.8 (2)
C12—C13—C14120.5 (3)O11—C37—C38108.6 (2)
C12—C13—H13119.7378O11—C37—H37a109.4712
C14—C13—H13119.7376O11—C37—H37b109.4723
C13—C14—C15119.8 (2)C38—C37—H37a109.4709
C13—C14—H14120.0818C38—C37—H37b109.4708
C15—C14—H14120.0821H37a—C37—H37b110.3319
C14—C15—C16119.6 (2)O12—C39—C40109.2 (2)
C14—C15—H15120.1961O12—C39—H39a109.4712
C16—C15—H15120.1939O12—C39—H39b109.4706
O5—C16—C11115.6 (2)C40—C39—H39a109.4708
O5—C16—C15123.7 (2)C40—C39—H39b109.4716
C11—C16—C15120.7 (2)H39a—C39—H39b109.7323
O5—C17—C18108.1 (2)O12—C38—C37110.4 (2)
O5—C17—H17a109.4708O12—C38—H38a109.471
O5—C17—H17b109.471O12—C38—H38b109.4713
C18—C17—H17a109.4713C37—C38—H38a109.4714
C18—C17—H17b109.4714C37—C38—H38b109.4718
H17a—C17—H17b110.8097H38a—C38—H38b108.4738
O6—C18—C17110.1 (2)O7—C40—C39107.8 (2)
O6—C18—H18a109.4711O7—C40—H40a109.4719
O6—C18—H18b109.4712O7—C40—H40b109.4709
C17—C18—H18a109.4709C39—C40—H40a109.4714
C17—C18—H18b109.4714C39—C40—H40b109.4709
H18a—C18—H18b108.827H40a—C40—H40b111.0734
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C11–C16, C21–C26 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O21—H1···O31.14 (3)1.64 (3)2.763 (3)168 (3)
O21—H1···O41.14 (3)2.39 (3)2.835 (3)101 (2)
O21—H7···O171.22 (4)1.73 (4)2.945 (4)171 (3)
O22—H8···O91.20 (3)1.66 (3)2.802 (3)157 (3)
O22—H8···O101.20 (3)2.29 (3)2.837 (3)104.4 (19)
O21—H9···O41.09 (3)2.40 (3)2.835 (3)102 (2)
O21—H9···O51.09 (3)1.87 (3)2.910 (3)159 (3)
O21—H9···O61.09 (3)2.47 (4)2.967 (3)107 (2)
O22—H10···O111.05 (3)1.90 (3)2.840 (3)149 (3)
O22—H10···O121.05 (3)2.34 (3)2.895 (3)112 (2)
C5—H5···O18i0.962.523.479 (3)177
C8—H8b···O190.962.553.416 (3)150
C15—H15···O13ii0.962.423.369 (3)169.02
C20—H20b···O16iii0.962.433.165 (3)134
C35—H35···O15ii0.962.593.278 (4)129
C38—H38b···O19iv0.962.503.447 (3)168
C17—H17a···Cg10.962.873.704 (3)146
C37—H37b···Cg2v0.962.993.825 (3)146
C13—H13···Cg30.963.204.070 (3)150
C33—H33···Cg4v0.963.003.899 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaH3O+·ClO4·C20H24O6
Mr478.9
Crystal system, space groupMonoclinic, P21/c
Temperature (K)124
a, b, c (Å)8.6586 (1), 26.7718 (3), 19.1518 (2)
β (°) 100.0011 (10)
V3)4372.05 (8)
Z8
Radiation typeCu Kα
µ (mm1)2.09
Crystal size (mm)0.26 × 0.18 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.098, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
36184, 6865, 5283
Rint0.048
(sin θ/λ)max1)0.576
Refinement
R[F > 3σ(F)], wR(F), S 0.051, 0.124, 2.07
No. of reflections6865
No. of parameters595
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C11–C16, C21–C26 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O21—H1···O31.14 (3)1.64 (3)2.763 (3)168 (3)
O21—H1···O41.14 (3)2.39 (3)2.835 (3)101 (2)
O21—H7···O171.22 (4)1.73 (4)2.945 (4)171 (3)
O22—H8···O91.20 (3)1.66 (3)2.802 (3)157 (3)
O22—H8···O101.20 (3)2.29 (3)2.837 (3)104.4 (19)
O21—H9···O41.09 (3)2.40 (3)2.835 (3)102 (2)
O21—H9···O51.09 (3)1.87 (3)2.910 (3)159 (3)
O21—H9···O61.09 (3)2.47 (4)2.967 (3)107 (2)
O22—H10···O111.05 (3)1.90 (3)2.840 (3)149 (3)
O22—H10···O121.05 (3)2.34 (3)2.895 (3)112 (2)
C5—H5···O18i0.962.523.479 (3)177
C8—H8b···O190.962.553.416 (3)150
C15—H15···O13ii0.962.423.369 (3)169.02
C20—H20b···O16iii0.962.433.165 (3)134
C35—H35···O15ii0.962.593.278 (4)129
C38—H38b···O19iv0.962.503.447 (3)168
C17—H17a···Cg10.962.873.704 (3)146
C37—H37b···Cg2v0.962.993.825 (3)146
C13—H13···Cg30.963.204.070 (3)150
C33—H33···Cg4v0.963.003.899 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z.
 

Acknowledgements

This work was supperted by the institutional research plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports, Project MSM 4977751303.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChekhlov, A. N. (2007). Russ. J. Inorg. Chem. 52, 859–864.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds