organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2,6-di­nitro­phenol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 November 2010; accepted 10 November 2010; online 17 November 2010)

The aromatic ring of the title compound, C6H3ClN2O5, is almost planar (r.m.s. deviation = 0.007 Å); one nitro substituent is nearly coplanar with the ring [dihedral angle = 3(1)°], whereas the other is twisted [dihedral angle = 36 (1)°]. The phenol OH group is intra­molecularly hydrogen bonded to the nitro group that is coplanar with the ring, generating an S(6) graph-set motif.

Related literature

For the crystal structure of picric acid, see: Duesler et al. (1978[Duesler, E. N., Engelmann, J. H., Curtin, D. Y. & Paul, I. C. (1978). Cryst. Struct. Commun. 7, 449-453.]); Soriano-Garcia et al. (1980[Soriano-Garcia, M., Srikrishnan, T. & Parthasarathy, R. (1980). Z. Kristallogr. 151, 317-323.]).

[Scheme 1]

Experimental

Crystal data
  • C6H3ClN2O5

  • Mr = 218.55

  • Monoclinic, P 21

  • a = 7.4700 (19) Å

  • b = 5.8973 (15) Å

  • c = 9.952 (2) Å

  • β = 109.939 (6)°

  • V = 412.13 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.897, Tmax = 0.922

  • 3209 measured reflections

  • 1434 independent reflections

  • 816 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.098

  • S = 1.01

  • 1434 reflections

  • 131 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 640 Friedel pairs

  • Flack parameter: 0.14 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.84 (6) 1.82 (4) 2.563 (6) 146 (7)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2,4,6-Trinitrophenol (picric acid) is a strong oxygen acid that dissociates in water. In the solid state, the molecule is nearly flat (Duesler et al., 1978; Soriano-Garcia et al., 1980). 4-Chloro-2,6-dinitrophenol (Scheme I) is also a similarly strong oxygen acid as it dissociates in water completely in water. In the crystal structure, the aromatic ring is nearly co-planar with one nitro substituent (dihedral angle 3(1) °) whereas it is twisted with respect to the other (dihedral angle 36 (1) °) (Fig. 1). The phenolic group is intra-molecularly hydrogen bonded to the nitro group that is co-planar with the ring.

Related literature top

For the crystal structure of picric acid, see: Duesler et al. (1978); Soriano-Garcia et al. (1980).

Experimental top

Commercially available 4-chloro-2,6-dinitrophenol was recrystallized from methanol to yield colorless prisms.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å.

Structure description top

2,4,6-Trinitrophenol (picric acid) is a strong oxygen acid that dissociates in water. In the solid state, the molecule is nearly flat (Duesler et al., 1978; Soriano-Garcia et al., 1980). 4-Chloro-2,6-dinitrophenol (Scheme I) is also a similarly strong oxygen acid as it dissociates in water completely in water. In the crystal structure, the aromatic ring is nearly co-planar with one nitro substituent (dihedral angle 3(1) °) whereas it is twisted with respect to the other (dihedral angle 36 (1) °) (Fig. 1). The phenolic group is intra-molecularly hydrogen bonded to the nitro group that is co-planar with the ring.

For the crystal structure of picric acid, see: Duesler et al. (1978); Soriano-Garcia et al. (1980).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 4-chloro-2,6-dinitrophenol at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Chloro-2,6-dinitrophenol top
Crystal data top
C6H3ClN2O5F(000) = 220
Mr = 218.55Dx = 1.761 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1662 reflections
a = 7.4700 (19) Åθ = 4.1–27.4°
b = 5.8973 (15) ŵ = 0.46 mm1
c = 9.952 (2) ÅT = 293 K
β = 109.939 (6)°Prism, colorless
V = 412.13 (18) Å30.24 × 0.21 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1434 independent reflections
Radiation source: fine-focus sealed tube816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 10.000 pixels mm-1θmax = 25.0°, θmin = 4.1°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.897, Tmax = 0.922l = 1111
3209 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1434 reflectionsΔρmax = 0.24 e Å3
131 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 640 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (14)
Crystal data top
C6H3ClN2O5V = 412.13 (18) Å3
Mr = 218.55Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4700 (19) ŵ = 0.46 mm1
b = 5.8973 (15) ÅT = 293 K
c = 9.952 (2) Å0.24 × 0.21 × 0.18 mm
β = 109.939 (6)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1434 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
816 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.922Rint = 0.067
3209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.24 e Å3
1434 reflectionsAbsolute structure: Flack (1983), 640 Friedel pairs
131 parametersAbsolute structure parameter: 0.14 (14)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.4887 (2)0.0000 (3)0.86383 (14)0.0688 (5)
O10.3354 (6)0.5743 (6)0.4395 (4)0.0733 (13)
O20.2527 (5)0.8807 (6)0.5218 (4)0.0721 (13)
O30.0108 (6)0.7765 (6)0.6318 (4)0.0604 (12)
H30.101 (7)0.774 (12)0.664 (7)0.10 (3)*
O40.1986 (6)0.6424 (8)0.7898 (4)0.0729 (14)
O50.1056 (7)0.3531 (8)0.9292 (5)0.0845 (14)
N10.2807 (6)0.6773 (8)0.5258 (5)0.0497 (12)
N20.0885 (7)0.4861 (11)0.8388 (5)0.0594 (13)
C10.3379 (8)0.2247 (7)0.7937 (5)0.0383 (13)
C20.3679 (7)0.3605 (9)0.6918 (6)0.0430 (13)
H20.46720.32930.65820.052*
C30.2500 (6)0.5442 (8)0.6390 (5)0.0376 (13)
C40.0974 (7)0.5968 (8)0.6866 (6)0.0425 (13)
C50.0733 (7)0.4491 (8)0.7875 (5)0.0387 (14)
C60.1891 (8)0.2652 (9)0.8411 (6)0.0479 (15)
H60.16660.17030.90830.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0706 (9)0.0606 (9)0.0678 (10)0.0225 (9)0.0142 (8)0.0110 (9)
O10.098 (3)0.069 (3)0.075 (3)0.012 (2)0.058 (3)0.002 (2)
O20.090 (3)0.050 (3)0.075 (3)0.002 (2)0.027 (3)0.018 (2)
O30.055 (3)0.048 (2)0.077 (3)0.011 (2)0.021 (3)0.008 (2)
O40.063 (3)0.083 (3)0.084 (3)0.023 (3)0.038 (3)0.001 (3)
O50.093 (3)0.093 (3)0.092 (4)0.009 (3)0.062 (3)0.012 (3)
N10.052 (3)0.055 (3)0.043 (3)0.011 (2)0.017 (3)0.003 (3)
N20.062 (4)0.065 (3)0.057 (3)0.005 (3)0.028 (3)0.019 (3)
C10.037 (3)0.027 (3)0.044 (3)0.011 (2)0.005 (3)0.003 (2)
C20.039 (3)0.047 (3)0.044 (3)0.000 (3)0.016 (3)0.001 (3)
C30.034 (3)0.042 (4)0.034 (3)0.009 (3)0.009 (2)0.002 (2)
C40.037 (3)0.042 (3)0.044 (3)0.001 (3)0.007 (3)0.003 (3)
C50.037 (3)0.041 (4)0.040 (3)0.002 (3)0.016 (3)0.005 (3)
C60.055 (4)0.048 (3)0.037 (3)0.004 (3)0.012 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C11.725 (4)C1—C61.369 (7)
O1—N11.230 (5)C1—C21.369 (6)
O2—N11.216 (5)C2—C31.382 (7)
O3—C41.332 (6)C2—H20.9300
O3—H30.84 (6)C3—C41.410 (6)
O4—N21.221 (6)C4—C51.387 (6)
O5—N21.233 (6)C5—C61.376 (7)
N1—C31.454 (6)C6—H60.9300
N2—C51.480 (6)
C4—O3—H3107 (5)C2—C3—C4121.9 (5)
O2—N1—O1124.0 (5)C2—C3—N1118.0 (4)
O2—N1—C3119.2 (5)C4—C3—N1120.1 (5)
O1—N1—C3116.9 (5)O3—C4—C5125.9 (5)
O4—N2—O5123.3 (5)O3—C4—C3119.0 (5)
O4—N2—C5119.5 (5)C5—C4—C3115.1 (4)
O5—N2—C5117.3 (6)C6—C5—C4123.8 (4)
C6—C1—C2120.7 (5)C6—C5—N2117.5 (5)
C6—C1—Cl1119.3 (4)C4—C5—N2118.7 (5)
C2—C1—Cl1120.0 (4)C1—C6—C5118.7 (5)
C1—C2—C3119.7 (4)C1—C6—H6120.6
C1—C2—H2120.1C5—C6—H6120.6
C3—C2—H2120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.84 (6)1.82 (4)2.563 (6)146 (7)

Experimental details

Crystal data
Chemical formulaC6H3ClN2O5
Mr218.55
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.4700 (19), 5.8973 (15), 9.952 (2)
β (°) 109.939 (6)
V3)412.13 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.897, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
3209, 1434, 816
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.098, 1.01
No. of reflections1434
No. of parameters131
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24
Absolute structureFlack (1983), 640 Friedel pairs
Absolute structure parameter0.14 (14)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.84 (6)1.82 (4)2.563 (6)146 (7)
 

Acknowledgements

I thank Professor Shan Gao of Heilongjiang University for the diffraction measurements, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDuesler, E. N., Engelmann, J. H., Curtin, D. Y. & Paul, I. C. (1978). Cryst. Struct. Commun. 7, 449–453.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoriano-Garcia, M., Srikrishnan, T. & Parthasarathy, R. (1980). Z. Kristallogr. 151, 317–323.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds