metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-5-carb­­oxy­benzene-1,3-di­carboxyl­ato)-κ3O1,O1′:O3;κ3O3:O1,O1′-bis­­[(2-phenyl-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene-κ2N7,N8)lead(II)]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: yys@ujs.edu.cn

(Received 25 September 2010; accepted 8 November 2010; online 24 November 2010)

In the title compound, [Pb2(C9H4O6)2(C19H12N4)2], the PbII atom is five-coordinated by two N atoms from a chelating 2-phenyl-1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene (L) ligand and three O atoms from two Hbtc ligands (H3btc is benzene-1,3,5-tricarb­oxy­lic acid), resulting in a distorted PbN2O3 coordination. Two PbII atoms are bridged by the Hbtc ligands, forming a discrete centrosymmetric dinuclear complex. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds and ππ inter­actions between the pyridine and imidazole rings, and between the pyridyl rings of the L ligands [centroid–centroid distances = 3.600 (6) and 3.732 (6) Å] lead to a three-dimensional supra­molecular structure.

Related literature

For general background to the structures and potential applications of supra­molecular architectures, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]). For a related structure, see: Liu et al. (2009[Liu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.]). For the ligand synthesis, see: Steck & Day (1943[Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C9H4O6)2(C19H12N4)2]

  • Mr = 1423.28

  • Triclinic, [P \overline 1]

  • a = 9.2776 (3) Å

  • b = 11.4409 (5) Å

  • c = 12.2764 (6) Å

  • α = 73.820 (4)°

  • β = 72.754 (4)°

  • γ = 68.680 (4)°

  • V = 1137.74 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.47 mm−1

  • T = 292 K

  • 0.30 × 0.26 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini R Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.122, Tmax = 0.179

  • 5399 measured reflections

  • 3979 independent reflections

  • 3547 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.055

  • S = 1.00

  • 3979 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Selected bond lengths (Å)

Pb—N1 2.561 (4)
Pb—N2 2.449 (3)
Pb—O1i 2.342 (3)
Pb—O3 2.530 (3)
Pb—O6i 2.903 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2ii 0.86 1.97 2.815 (5) 169
O4—H4A⋯O6iii 0.82 1.83 2.653 (4) 177
Symmetry codes: (ii) x+1, y, z-1; (iii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of supramolecular architectures have received considerable attention in recent years, mostly motivated by their intriguing structural features and potential applications in catalysis, magnetism, molecular adsorption, non-linear optics and molecular sensing (Che et al., 2008). 2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene (L) as an important phenanthroline derivative possesses fruitful aromatic systems and is a good candidate for the construction of metal–organic supramolecular architectures (Liu et al., 2009). In this paper, we selected benzene-1,3,5-tricarboxylic acid (H3btc) as a linker and L as a secondary ligand, resulting in the title complex.

In the title compound, the PbII atom is surrounded by two N atoms from one L ligand and three O atoms from two Hbtc ligands (Fig. 1). The neighboring two PbII atoms are bridged by the two Hbtc ligands, forming a sixteen-membered ring with a long Pb···Pb distance of 8.3037 (5) Å. Adjacent dimers are further linked through intermolecular N—H···O and O—H···O hydrogen bonds and ππ interactions between the pyridyl and imidazole rings and between the pyridyl rings of the L ligands [centroid–centroid distances = 3.600 (6) and 3.732 (6) Å], leading to a three-dimensional supramolecular structure (Fig. 2).

Related literature top

For general background to the structures and potential applications of supramolecular architectures, see: Che et al. (2008). For a related structure, see: Liu et al. (2009). For the ligand synthesis, see: Steck & Day (1943).

Experimental top

The L ligand was synthesized according to the literature method (Steck & Day, 1943). The title compound was synthesized under hydrothermal conditions. A mixture of L (0.060 g, 0.2 mmol), H3btc (0.042 g, 0.2 mmol), Pb(NO3)2 (0.066 g, 0.2 mmol) and water (10 ml) in a mole ratio of 1:1:1:5000 was placed in a 25 ml Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, washed with H2O and dried in air (yield: 65% based on Pb).

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). H atom of the carboxyl group was located from a difference Fourier map and refined as riding, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

The design and construction of supramolecular architectures have received considerable attention in recent years, mostly motivated by their intriguing structural features and potential applications in catalysis, magnetism, molecular adsorption, non-linear optics and molecular sensing (Che et al., 2008). 2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene (L) as an important phenanthroline derivative possesses fruitful aromatic systems and is a good candidate for the construction of metal–organic supramolecular architectures (Liu et al., 2009). In this paper, we selected benzene-1,3,5-tricarboxylic acid (H3btc) as a linker and L as a secondary ligand, resulting in the title complex.

In the title compound, the PbII atom is surrounded by two N atoms from one L ligand and three O atoms from two Hbtc ligands (Fig. 1). The neighboring two PbII atoms are bridged by the two Hbtc ligands, forming a sixteen-membered ring with a long Pb···Pb distance of 8.3037 (5) Å. Adjacent dimers are further linked through intermolecular N—H···O and O—H···O hydrogen bonds and ππ interactions between the pyridyl and imidazole rings and between the pyridyl rings of the L ligands [centroid–centroid distances = 3.600 (6) and 3.732 (6) Å], leading to a three-dimensional supramolecular structure (Fig. 2).

For general background to the structures and potential applications of supramolecular architectures, see: Che et al. (2008). For a related structure, see: Liu et al. (2009). For the ligand synthesis, see: Steck & Day (1943).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. Crystal packing of the title compound, with hydrogen bonds indicated by dotted lines.
Bis(µ-5-carboxybenzene-1,3-dicarboxylato)-κ3O1,O1': O3;κ3O3:O1,O1'-bis[(2-phenyl- 1,3,7,8-tetraazacyclopenta[l]phenanthrene- κ2N7,N8)lead(II)] top
Crystal data top
[Pb2(C9H4O6)2(C19H12N4)2]Z = 1
Mr = 1423.28F(000) = 684
Triclinic, P1Dx = 2.077 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2776 (3) ÅCell parameters from 6223 reflections
b = 11.4409 (5) Åθ = 4.3–29.1°
c = 12.2764 (6) ŵ = 7.47 mm1
α = 73.820 (4)°T = 292 K
β = 72.754 (4)°Block, yellow
γ = 68.680 (4)°0.30 × 0.26 × 0.23 mm
V = 1137.74 (9) Å3
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
3979 independent reflections
Radiation source: fine-focus sealed tube3547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1111
Tmin = 0.122, Tmax = 0.179k = 1213
5399 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
3979 reflections(Δ/σ)max = 0.006
352 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[Pb2(C9H4O6)2(C19H12N4)2]γ = 68.680 (4)°
Mr = 1423.28V = 1137.74 (9) Å3
Triclinic, P1Z = 1
a = 9.2776 (3) ÅMo Kα radiation
b = 11.4409 (5) ŵ = 7.47 mm1
c = 12.2764 (6) ÅT = 292 K
α = 73.820 (4)°0.30 × 0.26 × 0.23 mm
β = 72.754 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
3979 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3547 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 0.179Rint = 0.021
5399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.00Δρmax = 0.82 e Å3
3979 reflectionsΔρmin = 1.28 e Å3
352 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7189 (5)0.2900 (4)0.0863 (4)0.0311 (11)
H10.62080.35280.08920.037*
C20.8282 (6)0.2868 (5)0.0199 (4)0.0340 (11)
H20.80240.34550.08620.041*
C30.9727 (5)0.1970 (4)0.0252 (4)0.0284 (10)
H31.04730.19400.09520.034*
C41.0091 (5)0.1086 (4)0.0756 (4)0.0230 (9)
C51.1546 (5)0.0094 (4)0.0827 (4)0.0235 (9)
C61.1849 (5)0.0717 (4)0.1856 (4)0.0219 (9)
C71.0700 (4)0.0637 (4)0.2914 (3)0.0183 (8)
C81.0944 (5)0.1447 (4)0.3980 (4)0.0236 (9)
H81.19210.20580.40360.028*
C90.9727 (5)0.1323 (4)0.4929 (4)0.0257 (10)
H90.98710.18480.56430.031*
C100.8272 (5)0.0415 (4)0.4835 (4)0.0239 (9)
H100.74480.03610.54910.029*
C110.9200 (5)0.0296 (4)0.2884 (3)0.0188 (8)
C120.8917 (5)0.1180 (4)0.1795 (3)0.0207 (9)
C131.3926 (5)0.1295 (4)0.0540 (4)0.0251 (9)
C141.5482 (5)0.2019 (4)0.0049 (4)0.0248 (9)
C191.6161 (5)0.1588 (5)0.1198 (4)0.0335 (11)
H191.56310.08150.16140.040*
C181.7622 (6)0.2314 (5)0.1714 (4)0.0407 (13)
H181.80740.20310.24830.049*
C171.8423 (6)0.3458 (6)0.1105 (5)0.0493 (15)
H171.94100.39410.14620.059*
C260.2977 (4)0.2718 (4)0.6601 (3)0.0183 (8)
C240.1360 (5)0.3197 (4)0.6642 (3)0.0219 (9)
H240.07840.26380.67640.026*
C230.0600 (5)0.4498 (4)0.6502 (4)0.0206 (9)
C220.1453 (5)0.5317 (4)0.6363 (4)0.0223 (9)
H220.09480.61940.62550.027*
C210.3059 (4)0.4849 (4)0.6381 (4)0.0203 (9)
C250.3821 (4)0.3546 (4)0.6483 (3)0.0191 (9)
H250.49010.32260.64720.023*
C270.3789 (5)0.1300 (4)0.6694 (4)0.0204 (9)
C280.1124 (5)0.5072 (4)0.6481 (4)0.0230 (9)
C200.3893 (5)0.5775 (4)0.6332 (4)0.0224 (9)
C161.7755 (6)0.3883 (6)0.0038 (5)0.0504 (15)
H161.82980.46510.04520.060*
C151.6285 (6)0.3171 (5)0.0564 (4)0.0380 (12)
H151.58340.34620.13300.046*
N10.7482 (4)0.2074 (3)0.1833 (3)0.0232 (8)
N20.8010 (4)0.0378 (3)0.3847 (3)0.0191 (7)
N41.2883 (4)0.0273 (3)0.0012 (3)0.0244 (8)
H41.30370.00680.07390.029*
N31.3343 (4)0.1584 (4)0.1674 (3)0.0259 (8)
O30.4905 (4)0.0925 (3)0.5863 (3)0.0346 (8)
O20.3312 (4)0.0561 (3)0.7562 (3)0.0312 (7)
O10.3317 (3)0.6937 (3)0.5876 (3)0.0281 (7)
O60.5074 (3)0.5389 (3)0.6780 (3)0.0380 (8)
O50.1757 (3)0.6197 (3)0.6241 (3)0.0371 (8)
O40.1880 (3)0.4204 (3)0.6780 (3)0.0395 (8)
H4A0.28150.45610.67550.059*
Pb0.537207 (17)0.188377 (15)0.371460 (14)0.02330 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.023 (2)0.035 (3)0.0044 (19)0.012 (2)0.000 (2)
C20.042 (3)0.029 (3)0.024 (2)0.007 (2)0.014 (2)0.007 (2)
C30.036 (2)0.028 (2)0.017 (2)0.011 (2)0.0024 (19)0.000 (2)
C40.026 (2)0.023 (2)0.020 (2)0.0090 (18)0.0063 (18)0.0022 (18)
C50.024 (2)0.024 (2)0.023 (2)0.0074 (18)0.0021 (18)0.0083 (19)
C60.022 (2)0.024 (2)0.021 (2)0.0061 (18)0.0059 (18)0.0061 (19)
C70.020 (2)0.021 (2)0.016 (2)0.0078 (16)0.0030 (17)0.0051 (17)
C80.026 (2)0.018 (2)0.022 (2)0.0015 (17)0.0045 (18)0.0030 (18)
C90.031 (2)0.024 (2)0.015 (2)0.0024 (19)0.0059 (19)0.0004 (18)
C100.027 (2)0.024 (2)0.016 (2)0.0069 (18)0.0001 (18)0.0027 (19)
C110.022 (2)0.020 (2)0.017 (2)0.0097 (17)0.0022 (17)0.0051 (17)
C120.028 (2)0.019 (2)0.016 (2)0.0071 (17)0.0076 (18)0.0024 (17)
C130.022 (2)0.029 (2)0.022 (2)0.0086 (18)0.0009 (18)0.007 (2)
C140.023 (2)0.032 (3)0.021 (2)0.0108 (19)0.0004 (18)0.010 (2)
C190.030 (2)0.039 (3)0.027 (2)0.006 (2)0.002 (2)0.009 (2)
C180.031 (3)0.059 (4)0.026 (3)0.010 (2)0.003 (2)0.013 (3)
C170.033 (3)0.056 (4)0.050 (4)0.003 (3)0.003 (3)0.027 (3)
C260.020 (2)0.020 (2)0.013 (2)0.0057 (16)0.0014 (16)0.0024 (17)
C240.023 (2)0.023 (2)0.022 (2)0.0109 (18)0.0027 (18)0.0046 (18)
C230.019 (2)0.022 (2)0.022 (2)0.0048 (17)0.0064 (17)0.0042 (18)
C220.022 (2)0.017 (2)0.024 (2)0.0020 (17)0.0048 (18)0.0033 (18)
C210.018 (2)0.018 (2)0.023 (2)0.0045 (16)0.0051 (17)0.0022 (18)
C250.0150 (19)0.018 (2)0.020 (2)0.0027 (16)0.0007 (16)0.0034 (17)
C270.020 (2)0.019 (2)0.025 (2)0.0054 (17)0.0094 (19)0.0044 (19)
C280.017 (2)0.026 (2)0.024 (2)0.0057 (18)0.0034 (18)0.0049 (19)
C200.017 (2)0.024 (2)0.025 (2)0.0067 (17)0.0019 (18)0.0089 (19)
C160.044 (3)0.046 (3)0.047 (3)0.006 (3)0.010 (3)0.014 (3)
C150.039 (3)0.036 (3)0.027 (3)0.003 (2)0.007 (2)0.008 (2)
N10.0248 (18)0.0207 (19)0.0231 (19)0.0057 (15)0.0088 (15)0.0008 (16)
N20.0187 (16)0.0216 (18)0.0160 (18)0.0080 (14)0.0015 (14)0.0024 (15)
N40.0246 (18)0.027 (2)0.0182 (19)0.0072 (15)0.0006 (15)0.0051 (16)
N30.0224 (18)0.030 (2)0.021 (2)0.0047 (16)0.0026 (15)0.0052 (17)
O30.0308 (17)0.0241 (17)0.0301 (18)0.0034 (14)0.0087 (14)0.0088 (15)
O20.0413 (18)0.0236 (17)0.0254 (17)0.0120 (14)0.0078 (14)0.0033 (14)
O10.0315 (16)0.0210 (16)0.0350 (18)0.0103 (13)0.0128 (14)0.0013 (14)
O60.0233 (16)0.0293 (18)0.067 (2)0.0096 (14)0.0204 (17)0.0045 (17)
O50.0235 (16)0.0238 (18)0.060 (2)0.0008 (13)0.0140 (16)0.0062 (16)
O40.0156 (14)0.0305 (18)0.071 (2)0.0068 (13)0.0128 (16)0.0040 (17)
Pb0.01918 (9)0.02098 (10)0.02834 (11)0.00717 (6)0.00471 (7)0.00173 (7)
Geometric parameters (Å, º) top
C1—N11.328 (6)C18—H180.9300
C1—C21.394 (7)C17—C161.383 (8)
C1—H10.9300C17—H170.9300
C2—C31.357 (6)C26—C251.388 (6)
C2—H20.9300C26—C241.388 (5)
C3—C41.403 (6)C26—C271.508 (5)
C3—H30.9300C24—C231.382 (6)
C4—C121.412 (6)C24—H240.9300
C4—C51.421 (6)C23—C221.379 (6)
C5—N41.371 (5)C23—C281.497 (5)
C5—C61.380 (6)C22—C211.393 (5)
C6—N31.377 (5)C22—H220.9300
C6—C71.416 (6)C21—C251.386 (5)
C7—C81.404 (6)C21—C201.502 (6)
C7—C111.416 (5)C25—H250.9300
C8—C91.359 (6)C27—O21.239 (5)
C8—H80.9300C27—O31.262 (5)
C9—C101.386 (6)C28—O51.196 (5)
C9—H90.9300C28—O41.327 (5)
C10—N21.324 (5)C20—O61.253 (5)
C10—H100.9300C20—O11.269 (5)
C11—N21.356 (5)C16—C151.380 (7)
C11—C121.463 (6)C16—H160.9300
C12—N11.350 (5)C15—H150.9300
C13—N31.330 (6)Pb—N12.561 (4)
C13—N41.374 (5)Pb—N22.449 (3)
C13—C141.462 (6)Pb—O1i2.342 (3)
C14—C151.387 (6)Pb—O32.530 (3)
C14—C191.394 (6)Pb—O6i2.903 (3)
C19—C181.376 (6)O4—H4A0.8200
C19—H190.9300N4—H40.8600
C18—C171.379 (8)
N1—C1—C2123.1 (4)C23—C24—C26120.5 (4)
N1—C1—H1118.5C23—C24—H24119.8
C2—C1—H1118.5C26—C24—H24119.8
C3—C2—C1119.1 (4)C22—C23—C24119.3 (4)
C3—C2—H2120.4C22—C23—C28117.9 (4)
C1—C2—H2120.4C24—C23—C28122.8 (4)
C2—C3—C4119.6 (4)C23—C22—C21121.0 (4)
C2—C3—H3120.2C23—C22—H22119.5
C4—C3—H3120.2C21—C22—H22119.5
C3—C4—C12117.7 (4)C25—C21—C22119.2 (4)
C3—C4—C5125.7 (4)C25—C21—C20122.2 (3)
C12—C4—C5116.5 (4)C22—C21—C20118.6 (4)
N4—C5—C6106.2 (3)C21—C25—C26120.1 (3)
N4—C5—C4131.0 (4)C21—C25—H25119.9
C6—C5—C4122.8 (4)C26—C25—H25119.9
N3—C6—C5110.6 (4)O2—C27—O3123.3 (4)
N3—C6—C7127.5 (4)O2—C27—C26118.9 (4)
C5—C6—C7121.8 (4)O3—C27—C26117.7 (4)
C8—C7—C11118.2 (4)O5—C28—O4123.7 (4)
C8—C7—C6124.0 (4)O5—C28—C23123.3 (4)
C11—C7—C6117.8 (3)O4—C28—C23113.0 (4)
C9—C8—C7118.9 (4)O6—C20—O1122.8 (4)
C9—C8—H8120.6O6—C20—C21119.3 (4)
C7—C8—H8120.6O1—C20—C21117.8 (3)
C8—C9—C10120.1 (4)C17—C16—C15120.1 (5)
C8—C9—H9119.9C17—C16—H16120.0
C10—C9—H9119.9C15—C16—H16120.0
N2—C10—C9122.6 (4)C16—C15—C14120.0 (5)
N2—C10—H10118.7C16—C15—H15120.0
C9—C10—H10118.7C14—C15—H15120.0
N2—C11—C7121.1 (3)C1—N1—C12118.4 (4)
N2—C11—C12119.2 (3)C1—N1—Pb123.8 (3)
C7—C11—C12119.7 (4)C12—N1—Pb117.3 (3)
N1—C12—C4122.0 (4)C10—N2—C11119.1 (3)
N1—C12—C11116.8 (4)C10—N2—Pb120.9 (3)
C4—C12—C11121.2 (3)C11—N2—Pb119.9 (2)
N3—C13—N4112.4 (4)C5—N4—C13106.3 (3)
N3—C13—C14123.3 (4)C5—N4—H4126.9
N4—C13—C14124.3 (4)C13—N4—H4126.9
C15—C14—C19119.8 (4)C13—N3—C6104.5 (3)
C15—C14—C13118.3 (4)C27—O3—Pb130.6 (3)
C19—C14—C13121.9 (4)C20—O1—Pbi107.3 (2)
C18—C19—C14119.5 (5)C28—O4—H4A109.5
C18—C19—H19120.3O1i—Pb—N275.71 (10)
C14—C19—H19120.3O1i—Pb—O386.66 (11)
C19—C18—C17120.8 (5)N2—Pb—O379.48 (10)
C19—C18—H18119.6O1i—Pb—N178.54 (11)
C17—C18—H18119.6N2—Pb—N166.07 (10)
C18—C17—C16119.8 (5)O3—Pb—N1144.85 (10)
C18—C17—H17120.1O6i—Pb—N179.58 (10)
C16—C17—H17120.1O6i—Pb—N2119.29 (10)
C25—C26—C24119.8 (4)O6i—Pb—O1i48.50 (10)
C25—C26—C27121.0 (3)O6i—Pb—O3113.57 (10)
C24—C26—C27119.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2ii0.861.972.815 (5)169
O4—H4A···O6iii0.821.832.653 (4)177
Symmetry codes: (ii) x+1, y, z1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pb2(C9H4O6)2(C19H12N4)2]
Mr1423.28
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)9.2776 (3), 11.4409 (5), 12.2764 (6)
α, β, γ (°)73.820 (4), 72.754 (4), 68.680 (4)
V3)1137.74 (9)
Z1
Radiation typeMo Kα
µ (mm1)7.47
Crystal size (mm)0.30 × 0.26 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini R Ultra CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.122, 0.179
No. of measured, independent and
observed [I > 2σ(I)] reflections
5399, 3979, 3547
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 1.00
No. of reflections3979
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Pb—N12.561 (4)Pb—O32.530 (3)
Pb—N22.449 (3)Pb—O6i2.903 (3)
Pb—O1i2.342 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2ii0.861.972.815 (5)169
O4—H4A···O6iii0.821.832.653 (4)177
Symmetry codes: (ii) x+1, y, z1; (iii) x1, y, z.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452–456.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds