metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,3-Bis(3,5-di­methyl-1H-pyrazol-1-yl-κN2)propan-2-olato-κ2O:O]bis­­[(ethanol-κO)zinc(II)] bis­­(perchlorate)

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China, and bZhongzhou University, Zhongzhou 450044, People's Republic of China
*Correspondence e-mail: tiandamin2009@163.com

(Received 22 October 2010; accepted 2 November 2010; online 6 November 2010)

In the centrosymmetric dinuclear title complex, [Zn2(C13H19N4O)2(C2H5OH)2](ClO4)2, the ZnII atom is in a distorted trigonal-bipyramidal coordination geometry. The equatorial plane is constructed by one N atom and one O atom from two 1,3-bis­(3,5-dimethyl­pyrazol-1-yl)propan-2-olate (bppo) ligands and one O atom from an ethanol mol­ecule. One N atom and one O atom from the two bppo ligands occupy the axial positions. Inter­molecular O—H⋯O hydrogen bonds between the ethanol mol­ecules and perchlorate anions, and O⋯π inter­actions between the perchlorate anions and pyrazole rings [O⋯centroid distances = 3.494 (3) and 3.413 (3) Å], lead to a chain structure along [010].

Related literature

For related structures, see: Montoya et al. (2007[Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625-637.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C13H19N4O)2(C2H6O)2](ClO4)2

  • Mr = 916.42

  • Triclinic, [P \overline 1]

  • a = 8.8570 (18) Å

  • b = 11.148 (2) Å

  • c = 11.300 (2) Å

  • α = 111.13 (3)°

  • β = 100.40 (3)°

  • γ = 100.11 (3)°

  • V = 987.8 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.765

  • 7788 measured reflections

  • 3482 independent reflections

  • 3172 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 3482 reflections

  • 249 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.076 (2)
Zn1—N3i 2.042 (2)
Zn1—O6 1.9908 (16)
Zn1—O6i 2.0428 (16)
Zn1—O7 2.1292 (18)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3 0.85 2.03 2.860 (3) 165

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazole-derived ligands have been extensively studied in recent years. These ligands are known as anionic or neutral groups to coordinate to metal centers through N atoms in monodentate and exobidentate modes. It is essential to study the syntheses and crystal structures of the complexes formed by pyrazole systematically, and to inquire into the factors that influence the formation and structure of such complexes. Such studies may lead to the design and synthesis of functional materials, and also provide a theoretical foundation for supramolecular chemistry and crystal engineering (Montoya et al., 2007). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the ZnII atom is five-coordinated by two O atoms and two N atoms from two 1,3-bis(3,5-dimethyl-pyrazol-1-yl)propan-2-olate (bppo) ligands and one O atom from an ethanol molecule in a distorted trigonal–bipyramidal geometry (Table 1). The equatorial plane is constructed by N3i and O6 from the two bppo ligands and O7 from the ethanol molecule. The N1 and O6i atoms occupy the axial positions [symmetry code: (i) 1 - x, -y, -z]. Two hydroxyl O atoms bridge the Zn atoms, forming a dinuclear complex. Intermolecular O—H···O hydrogen bonds between the ethanol molecules and perchlorate anions (Table 2) and O···π interactions between the perchlorate anions and pyrazole rings, O2···Cg1ii and O3···Cg2, [Cg1 and Cg2 are the centroids of C2/C3/C4/N3/N4 ring and C6/C7/C8/N1/N2 ring; symmetry code: (ii) x, -1 + y, z; O—centroid distances = 3.494 (3) and 3.413 (3) Å, respectively], lead to a chain structure along [010] (Fig. 2).

Related literature top

For related structures, see: Montoya et al. (2007).

Experimental top

1,3-Bis(3,5-dimethyl-pyrazol-1-yl)propan-2-ol and ZnCl2.6H2O were available commercially and were used without further purification. 1,3-Bis(3,5-dimethyl-pyrazol-1-yl)propan-2-ol (124 mg, 0.5 mmol) were dissolved in anhydrous alcohol (15 ml). To this solution was added ZuCl2.6H2O (122 mg, 0.5 mmol) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvent, blue prismatic crystals of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (yield: 75%). Analysis, calculated for C30H50Cl2N8O12Zn2: C 39.32, H 5.50, N, 12.23%; found: C 39.42, H 5.28, N 12.35%.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Hydroxy H atom was located in a difference Fourier map and refined as a riding atom, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Pyrazole-derived ligands have been extensively studied in recent years. These ligands are known as anionic or neutral groups to coordinate to metal centers through N atoms in monodentate and exobidentate modes. It is essential to study the syntheses and crystal structures of the complexes formed by pyrazole systematically, and to inquire into the factors that influence the formation and structure of such complexes. Such studies may lead to the design and synthesis of functional materials, and also provide a theoretical foundation for supramolecular chemistry and crystal engineering (Montoya et al., 2007). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the ZnII atom is five-coordinated by two O atoms and two N atoms from two 1,3-bis(3,5-dimethyl-pyrazol-1-yl)propan-2-olate (bppo) ligands and one O atom from an ethanol molecule in a distorted trigonal–bipyramidal geometry (Table 1). The equatorial plane is constructed by N3i and O6 from the two bppo ligands and O7 from the ethanol molecule. The N1 and O6i atoms occupy the axial positions [symmetry code: (i) 1 - x, -y, -z]. Two hydroxyl O atoms bridge the Zn atoms, forming a dinuclear complex. Intermolecular O—H···O hydrogen bonds between the ethanol molecules and perchlorate anions (Table 2) and O···π interactions between the perchlorate anions and pyrazole rings, O2···Cg1ii and O3···Cg2, [Cg1 and Cg2 are the centroids of C2/C3/C4/N3/N4 ring and C6/C7/C8/N1/N2 ring; symmetry code: (ii) x, -1 + y, z; O—centroid distances = 3.494 (3) and 3.413 (3) Å, respectively], lead to a chain structure along [010] (Fig. 2).

For related structures, see: Montoya et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 1 - x, -y, -z.]
[Figure 2] Fig. 2. The chain structure in the title compound. Dashed lines denote O···π interactions.
[µ-1,3-Bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2)propan- 2-olato-κ2O:O]bis[(ethanol-κO)zinc(II)] bis(perchlorate) top
Crystal data top
[Zn2(C13H19N4O)2(C2H6O)2](ClO4)2Z = 1
Mr = 916.42F(000) = 476
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8570 (18) ÅCell parameters from 2230 reflections
b = 11.148 (2) Åθ = 2.3–25.7°
c = 11.300 (2) ŵ = 1.42 mm1
α = 111.13 (3)°T = 293 K
β = 100.40 (3)°Block, colourless
γ = 100.11 (3)°0.22 × 0.20 × 0.20 mm
V = 987.8 (5) Å3
Data collection top
Bruker APEX CCD
diffractometer
3482 independent reflections
Radiation source: fine-focus sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.765, Tmax = 0.765k = 1313
7788 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4173P]
where P = (Fo2 + 2Fc2)/3
3482 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn2(C13H19N4O)2(C2H6O)2](ClO4)2γ = 100.11 (3)°
Mr = 916.42V = 987.8 (5) Å3
Triclinic, P1Z = 1
a = 8.8570 (18) ÅMo Kα radiation
b = 11.148 (2) ŵ = 1.42 mm1
c = 11.300 (2) ÅT = 293 K
α = 111.13 (3)°0.22 × 0.20 × 0.20 mm
β = 100.40 (3)°
Data collection top
Bruker APEX CCD
diffractometer
3482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3172 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.765Rint = 0.017
7788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
3482 reflectionsΔρmin = 0.22 e Å3
249 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44360 (3)0.13668 (2)0.00434 (2)0.03250 (11)
N10.3373 (2)0.18995 (19)0.13387 (19)0.0385 (4)
N20.3198 (2)0.09350 (19)0.24246 (19)0.0364 (4)
O60.40890 (17)0.04471 (14)0.07488 (15)0.0331 (3)
O70.6260 (2)0.21497 (19)0.07459 (19)0.0528 (5)
H7A0.62080.23590.13930.079*
C50.2447 (4)0.4353 (3)0.0179 (3)0.0597 (7)
H5A0.27560.42020.05380.089*
H5B0.13970.49410.01350.089*
H5C0.31820.47480.05440.089*
C60.2460 (3)0.3054 (2)0.1218 (2)0.0413 (5)
C70.1694 (3)0.2813 (3)0.2213 (3)0.0453 (6)
H70.09700.34420.23340.054*
C80.2202 (3)0.1478 (3)0.2983 (2)0.0413 (5)
C90.1855 (4)0.0683 (3)0.4239 (3)0.0606 (8)
H9A0.27730.04310.49610.091*
H9B0.09710.12100.43680.091*
H9C0.15990.01040.41930.091*
C100.4166 (3)0.0433 (2)0.2899 (2)0.0381 (5)
H10A0.52790.04350.30300.046*
H10B0.40160.09570.37430.046*
C110.3753 (3)0.1084 (2)0.1951 (2)0.0331 (5)
H110.26050.09970.17700.040*
C130.7924 (3)0.1751 (4)0.0899 (3)0.0641 (8)
H13A0.81080.17600.00760.077*
H13B0.84230.23830.11100.077*
C140.8653 (5)0.0412 (4)0.1945 (6)0.1128 (18)
H14A0.80590.01900.18080.169*
H14B0.97290.01130.19260.169*
H14C0.86470.04390.27830.169*
C120.4601 (3)0.2576 (2)0.2567 (2)0.0367 (5)
H12A0.42220.29760.19770.044*
H12B0.43280.29980.33850.044*
N30.7009 (2)0.25422 (18)0.17989 (19)0.0366 (4)
N40.6328 (2)0.28347 (18)0.28297 (18)0.0359 (4)
C10.7043 (4)0.3867 (3)0.5278 (3)0.0630 (8)
H1A0.64390.45060.52950.094*
H1B0.80070.42830.59770.094*
H1C0.64280.31360.53890.094*
C20.7442 (3)0.3366 (2)0.3990 (2)0.0437 (6)
C30.8885 (3)0.3381 (3)0.3704 (3)0.0501 (6)
H30.98770.36740.43060.060*
C150.9736 (3)0.2689 (3)0.1524 (3)0.0614 (8)
H15A0.92410.19440.06960.092*
H15B1.06530.25250.19740.092*
H15C1.00550.34790.13730.092*
C40.8579 (3)0.2875 (2)0.2346 (3)0.0433 (6)
O10.7169 (4)0.2927 (3)0.4897 (3)0.1003 (9)
O20.5741 (4)0.4532 (3)0.2842 (4)0.1233 (12)
O30.6271 (4)0.2330 (3)0.3209 (3)0.0955 (9)
O40.8318 (4)0.3383 (4)0.3177 (3)0.1242 (12)
Cl10.68858 (8)0.33052 (6)0.35237 (7)0.05214 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03703 (16)0.02905 (16)0.03013 (16)0.00679 (10)0.01162 (11)0.01013 (11)
N10.0468 (11)0.0325 (10)0.0367 (11)0.0091 (8)0.0174 (9)0.0121 (8)
N20.0422 (10)0.0341 (10)0.0325 (10)0.0070 (8)0.0130 (8)0.0131 (8)
O60.0396 (8)0.0292 (8)0.0296 (8)0.0076 (6)0.0132 (6)0.0099 (6)
O70.0477 (10)0.0682 (12)0.0590 (12)0.0215 (9)0.0158 (9)0.0403 (10)
C50.078 (2)0.0344 (14)0.0638 (19)0.0087 (13)0.0274 (16)0.0154 (13)
C60.0462 (13)0.0354 (13)0.0418 (14)0.0060 (10)0.0114 (11)0.0175 (11)
C70.0459 (13)0.0442 (14)0.0467 (15)0.0021 (11)0.0137 (11)0.0231 (12)
C80.0449 (13)0.0474 (14)0.0365 (13)0.0088 (10)0.0155 (10)0.0218 (11)
C90.0747 (19)0.0637 (18)0.0458 (16)0.0113 (15)0.0313 (15)0.0207 (14)
C100.0417 (12)0.0356 (12)0.0318 (12)0.0043 (9)0.0096 (10)0.0104 (10)
C110.0325 (11)0.0335 (11)0.0330 (12)0.0086 (9)0.0139 (9)0.0105 (9)
C130.0497 (16)0.099 (3)0.066 (2)0.0353 (16)0.0243 (15)0.0470 (19)
C140.068 (2)0.086 (3)0.177 (5)0.002 (2)0.007 (3)0.072 (3)
C120.0416 (12)0.0318 (12)0.0366 (13)0.0108 (9)0.0159 (10)0.0107 (10)
N30.0364 (10)0.0339 (10)0.0340 (10)0.0066 (8)0.0112 (8)0.0079 (8)
N40.0401 (10)0.0319 (10)0.0304 (10)0.0054 (8)0.0095 (8)0.0082 (8)
C10.080 (2)0.0609 (18)0.0336 (15)0.0046 (15)0.0084 (14)0.0131 (13)
C20.0550 (15)0.0314 (12)0.0344 (13)0.0021 (10)0.0037 (11)0.0098 (10)
C30.0450 (14)0.0431 (14)0.0467 (16)0.0014 (11)0.0047 (12)0.0134 (12)
C150.0406 (14)0.0656 (19)0.075 (2)0.0121 (13)0.0207 (14)0.0229 (16)
C40.0392 (12)0.0352 (13)0.0489 (15)0.0062 (10)0.0078 (11)0.0133 (11)
O10.135 (2)0.135 (3)0.0666 (17)0.065 (2)0.0451 (17)0.0586 (18)
O20.125 (2)0.0526 (16)0.163 (3)0.0057 (15)0.031 (2)0.0271 (18)
O30.140 (2)0.0671 (16)0.0824 (18)0.0311 (16)0.0106 (17)0.0403 (14)
O40.088 (2)0.178 (3)0.116 (3)0.040 (2)0.0609 (19)0.051 (2)
Cl10.0664 (4)0.0457 (4)0.0509 (4)0.0129 (3)0.0249 (3)0.0234 (3)
Geometric parameters (Å, º) top
Zn1—N12.076 (2)C11—H110.9800
Zn1—N3i2.042 (2)C13—C141.468 (6)
Zn1—O61.9908 (16)C13—H13A0.9700
Zn1—O6i2.0428 (16)C13—H13B0.9700
Zn1—O72.1292 (18)C14—H14A0.9600
Zn1—Zn1i3.0784 (9)C14—H14B0.9600
N1—C61.340 (3)C14—H14C0.9600
N1—N21.364 (3)C12—N41.460 (3)
N2—C81.353 (3)C12—H12A0.9700
N2—C101.461 (3)C12—H12B0.9700
O6—C111.401 (3)N3—C41.341 (3)
O6—Zn1i2.0428 (16)N3—N41.370 (3)
O7—C131.422 (3)N3—Zn1i2.042 (2)
O7—H7A0.8500N4—C21.346 (3)
C5—C61.496 (4)C1—C21.491 (4)
C5—H5A0.9600C1—H1A0.9600
C5—H5B0.9600C1—H1B0.9600
C5—H5C0.9600C1—H1C0.9600
C6—C71.385 (4)C2—C31.372 (4)
C7—C81.366 (4)C3—C41.385 (4)
C7—H70.9300C3—H30.9300
C8—C91.497 (4)C15—C41.495 (4)
C9—H9A0.9600C15—H15A0.9600
C9—H9B0.9600C15—H15B0.9600
C9—H9C0.9600C15—H15C0.9600
C10—C111.522 (3)O1—Cl11.414 (3)
C10—H10A0.9700O2—Cl11.401 (3)
C10—H10B0.9700O3—Cl11.422 (3)
C11—C121.534 (3)O4—Cl11.402 (3)
O6—Zn1—N3i112.71 (8)C10—C11—C12111.32 (19)
O6—Zn1—O6i80.52 (7)O6—C11—H11107.6
N3i—Zn1—O6i89.87 (7)C10—C11—H11107.6
O6—Zn1—N191.69 (7)C12—C11—H11107.6
N3i—Zn1—N1106.21 (8)O7—C13—C14111.5 (3)
O6i—Zn1—N1163.86 (7)O7—C13—H13A109.3
O6—Zn1—O7130.72 (8)C14—C13—H13A109.3
N3i—Zn1—O7115.77 (8)O7—C13—H13B109.3
O6i—Zn1—O791.14 (7)C14—C13—H13B109.3
N1—Zn1—O783.23 (8)H13A—C13—H13B108.0
O6—Zn1—Zn1i40.88 (4)C13—C14—H14A109.5
N3i—Zn1—Zn1i104.37 (6)C13—C14—H14B109.5
O6i—Zn1—Zn1i39.63 (4)H14A—C14—H14B109.5
N1—Zn1—Zn1i131.04 (6)C13—C14—H14C109.5
O7—Zn1—Zn1i115.79 (6)H14A—C14—H14C109.5
C6—N1—N2106.23 (19)H14B—C14—H14C109.5
C6—N1—Zn1132.19 (16)N4—C12—C11112.81 (18)
N2—N1—Zn1119.85 (14)N4—C12—H12A109.0
C8—N2—N1110.49 (19)C11—C12—H12A109.0
C8—N2—C10129.5 (2)N4—C12—H12B109.0
N1—N2—C10119.68 (18)C11—C12—H12B109.0
C11—O6—Zn1126.98 (13)H12A—C12—H12B107.8
C11—O6—Zn1i124.67 (13)C4—N3—N4105.54 (19)
Zn1—O6—Zn1i99.48 (7)C4—N3—Zn1i134.36 (17)
C13—O7—Zn1128.78 (17)N4—N3—Zn1i117.88 (14)
C13—O7—H7A103.2C2—N4—N3111.10 (19)
Zn1—O7—H7A118.4C2—N4—C12129.4 (2)
C6—C5—H5A109.5N3—N4—C12119.52 (18)
C6—C5—H5B109.5C2—C1—H1A109.5
H5A—C5—H5B109.5C2—C1—H1B109.5
C6—C5—H5C109.5H1A—C1—H1B109.5
H5A—C5—H5C109.5C2—C1—H1C109.5
H5B—C5—H5C109.5H1A—C1—H1C109.5
N1—C6—C7109.4 (2)H1B—C1—H1C109.5
N1—C6—C5121.1 (2)N4—C2—C3106.6 (2)
C7—C6—C5129.4 (2)N4—C2—C1122.5 (2)
C8—C7—C6107.2 (2)C3—C2—C1130.8 (2)
C8—C7—H7126.4C2—C3—C4106.8 (2)
C6—C7—H7126.4C2—C3—H3126.6
N2—C8—C7106.7 (2)C4—C3—H3126.6
N2—C8—C9123.0 (2)C4—C15—H15A109.5
C7—C8—C9130.2 (2)C4—C15—H15B109.5
C8—C9—H9A109.5H15A—C15—H15B109.5
C8—C9—H9B109.5C4—C15—H15C109.5
H9A—C9—H9B109.5H15A—C15—H15C109.5
C8—C9—H9C109.5H15B—C15—H15C109.5
H9A—C9—H9C109.5N3—C4—C3109.9 (2)
H9B—C9—H9C109.5N3—C4—C15121.5 (2)
N2—C10—C11112.67 (19)C3—C4—C15128.6 (2)
N2—C10—H10A109.1O2—Cl1—O4110.6 (2)
C11—C10—H10A109.1O2—Cl1—O1110.3 (2)
N2—C10—H10B109.1O4—Cl1—O1109.0 (2)
C11—C10—H10B109.1O2—Cl1—O3107.9 (2)
H10A—C10—H10B107.8O4—Cl1—O3110.9 (2)
O6—C11—C10111.91 (18)O1—Cl1—O3108.07 (18)
O6—C11—C12110.58 (18)
O6—Zn1—N1—C6144.8 (2)C10—N2—C8—C7174.6 (2)
N3i—Zn1—N1—C630.5 (2)N1—N2—C8—C9176.0 (2)
O6i—Zn1—N1—C6154.6 (2)C10—N2—C8—C93.1 (4)
O7—Zn1—N1—C684.4 (2)C6—C7—C8—N22.3 (3)
Zn1i—Zn1—N1—C6157.08 (19)C6—C7—C8—C9175.3 (3)
O6—Zn1—N1—N218.00 (17)C8—N2—C10—C11120.3 (3)
N3i—Zn1—N1—N2132.25 (17)N1—N2—C10—C1167.4 (3)
O6i—Zn1—N1—N242.6 (3)Zn1—O6—C11—C1017.7 (2)
O7—Zn1—N1—N2112.83 (18)Zn1i—O6—C11—C10122.81 (16)
Zn1i—Zn1—N1—N25.7 (2)Zn1—O6—C11—C12142.41 (15)
C6—N1—N2—C80.5 (3)Zn1i—O6—C11—C121.9 (2)
Zn1—N1—N2—C8167.30 (16)N2—C10—C11—O664.4 (2)
C6—N1—N2—C10174.2 (2)N2—C10—C11—C12171.27 (17)
Zn1—N1—N2—C1019.0 (3)Zn1—O7—C13—C1467.8 (4)
N3i—Zn1—O6—C11126.18 (16)O6—C11—C12—N460.2 (2)
O6i—Zn1—O6—C11147.97 (19)C10—C11—C12—N464.9 (2)
N1—Zn1—O6—C1117.82 (17)C4—N3—N4—C21.5 (2)
O7—Zn1—O6—C1164.70 (18)Zn1i—N3—N4—C2166.94 (15)
Zn1i—Zn1—O6—C11147.97 (19)C4—N3—N4—C12179.55 (19)
N3i—Zn1—O6—Zn1i85.85 (8)Zn1i—N3—N4—C1214.1 (2)
O6i—Zn1—O6—Zn1i0.0C11—C12—N4—C2111.0 (3)
N1—Zn1—O6—Zn1i165.79 (8)C11—C12—N4—N370.2 (3)
O7—Zn1—O6—Zn1i83.27 (10)N3—N4—C2—C31.9 (3)
O6—Zn1—O7—C1362.0 (3)C12—N4—C2—C3179.3 (2)
N3i—Zn1—O7—C13106.8 (2)N3—N4—C2—C1175.6 (2)
O6i—Zn1—O7—C1316.4 (2)C12—N4—C2—C13.3 (4)
N1—Zn1—O7—C13148.4 (2)N4—C2—C3—C41.5 (3)
Zn1i—Zn1—O7—C1315.8 (2)C1—C2—C3—C4175.6 (3)
N2—N1—C6—C71.0 (3)N4—N3—C4—C30.5 (3)
Zn1—N1—C6—C7163.53 (18)Zn1i—N3—C4—C3162.39 (18)
N2—N1—C6—C5175.6 (2)N4—N3—C4—C15179.5 (2)
Zn1—N1—C6—C520.0 (4)Zn1i—N3—C4—C1517.6 (4)
N1—C6—C7—C82.0 (3)C2—C3—C4—N30.7 (3)
C5—C6—C7—C8174.1 (3)C2—C3—C4—C15179.4 (3)
N1—N2—C8—C71.8 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.852.032.860 (3)165

Experimental details

Crystal data
Chemical formula[Zn2(C13H19N4O)2(C2H6O)2](ClO4)2
Mr916.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8570 (18), 11.148 (2), 11.300 (2)
α, β, γ (°)111.13 (3), 100.40 (3), 100.11 (3)
V3)987.8 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
7788, 3482, 3172
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections3482
No. of parameters249
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.076 (2)Zn1—O6i2.0428 (16)
Zn1—N3i2.042 (2)Zn1—O72.1292 (18)
Zn1—O61.9908 (16)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.852.032.860 (3)165
 

Acknowledgements

We are grateful for support from Henan University of Urban Construction.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMontoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625–637.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds