metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[1,1′-(Ethane-1,2-diyldi­nitrilo)­di­ethyl­­idyne]diphenolato}bis­­(pyrrolidine)cobalt(III) perchlorate p-xylene hemisolvate

aDepartment of Chemistry, Faculty of Science, Semnan University, Semnan, Iran, and bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: msalehi@sun.semnan.ac.ir

(Received 2 November 2010; accepted 10 November 2010; online 17 November 2010)

In the mononuclear title complex, [Co(C18H18N2O2)(C4H9N)2]ClO4·0.5C8H10, the CoIII ion has a slightly distorted octa­hedral coordination geometry. In the Me–salen ligand, the benzene rings are almost parallel, making a dihedral angle of 0.48 (13)°, but the torsion angle along the central C—C bond is 41.1 (2)°·The pyrrolidine rings are in slightly distorted chair conformations. The N atoms of the pyrrolidine axial ligands are involved in N—H⋯O hydrogen bonds with the perchlorate anions, and these hydrogen bonds connect the ionic species into infinite chains along the b axis. Some relatively short C—H⋯π inter­actions are also present in the crystal structure and C—H⋯O inter­actions occur. The guest solvent p-xylene mol­ecule lies on a special position at the inversion centre.

Related literature

For the properties of Co(III) complexes with Schiff base ligands, see: Polson et al. (1997[Polson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314-322.]); Yamada et al. (1999[Yamada, S. (1999). Coord. Chem. Rev. 191-192, 537-555.]); Henson et al. (1999[Henson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem. 38, 1618-1626]); Bianchini & Zoeliner (1997[Bianchini, C. & Zoeliner, R. W. (1997). Adv. Inorg. Chem. 44, 263-339.]); Mishra et al. (2008[Mishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189-2196.]); Kumar et al. (2009[Kumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A. & Akbarsha, M. A. (2009). J. Inorg. Biochem. 103, 117-127.]). For related structures, see: Dreos et al. (2003[Dreos, R., Nardin, G., Randaccio, L., Siega, P., Tauzher, G. & Vrdoljak, V. (2003). Inorg. Chim. Acta, 349, 239-248.]). For the preparation of N,N′-bis­(methyl­salicyl­idene)-1,2-ethyl­enediamine, see: Hariharan & Urbach (1969[Hariharan, M. & Urbach, F. L. (1969). Inorg. Chem. 8, 556-559.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H18N2O2)(C4H9N)2]ClO4·0.5C8H10

  • Mr = 648.05

  • Monoclinic, P 21 /n

  • a = 13.118 (2) Å

  • b = 16.551 (3) Å

  • c = 13.784 (2) Å

  • β = 92.87 (2)°

  • V = 2989.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.40 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.422, Tmax = 1.000

  • 23760 measured reflections

  • 7081 independent reflections

  • 4734 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.084

  • S = 0.99

  • 7081 reflections

  • 502 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

CgA, CgB and CgC are the centroids of the C11–C17, C26–C32 and C1A–C3A,C1A′–C3A′ rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4Ai 0.90 (2) 2.32 (2) 3.200 (2) 166.2 (19)
N6—H6⋯O2A 0.89 (2) 2.55 (2) 3.244 (2) 135.9 (18)
N6—H6⋯O3A 0.89 (2) 2.33 (2) 3.181 (3) 160.9 (18)
C2A—H2A⋯O2A 0.88 (2) 2.61 (3) 3.477 (3) 166 (2)
C19—H19BCgAii 0.92 (2) 2.85 (2) 3.438 (2) 122.8 (16)
C14—H14⋯CgBiii 0.94 (2) 2.56 (2) 3.430 (2) 153.8 (17)
C22—H222⋯CgCiv 1.00 (2) 2.92 (2) 3.784 (2) 145.5 (16)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cobalt Schiff base complexes with tetradentate Schiff base ligands have been extensively used to mimic cobalamin (B12) coenzymes (Polson et al., 1997), dioxygen carriers and oxygen activators (Yamada et al., 1999, Henson et al., 1999, Bianchini & Zoeliner, 1997). Co(III) Schiff base complexes with two amines in axial positions have been used as antimicrobial agents as well (Mishra et al., 2008, Kumar et al., 2009). Here we present the structure of Co[Me-salen](bis-pyrrolidine) which crystallizes as the p-xylene solvate, (I, Scheme 1).

Fig. 1 shows the perspective view of the cation. The Co atom is six-coordinated by two N atoms and two O atoms from Schiff base ligand, which are coplanar within 0.048 (1)Å and two N atoms from two pyrrolidine molecules, which are trans to each other (N—Co—N angle is 176.75 (8)°). These two axial ligands, both in half-chair conformations, are rotated by about 90° with respect to each other. The small distortion from the ideal octahedral coordination can be seen in the deviations of the trans angles from the ideal values of 180° as well as in the angle between the least-squares planes through six-membered chelate rings (Co—O—C—C—C—N—Co) of 1.82 (9)°. The Co—O and Co—N bond lengths agree well with those found in analogous cobalt complexes (e.g., Dreos et al., 2003).

In the crystal structure, the N atoms of the pyrrolidine ligands are involved in N—H···O hydrogen bonds with the perchlorate anions. These hydrogen bonds connect molecules into infinite chains along the b axis (Fig. 2). Some C—H···π interactions (Table 2) also may play some role in determining the crystal structure. Especially one of these contacts (C14—H14···CgB (1/2 - x,-1/2 + y,1/2 - z) might be regarded as weak hydrogen bond.

Related literature top

For the properties of Co(III) complexes with Schiff base ligands, see: Polson et al. (1997); Yamada et al. (1999); Henson et al. (1999); Bianchini & Zoeliner (1997); Mishra et al. (2008); Kumar et al. (2009). For related structures, see: Dreos et al. (2003). For the preparation of N,N'-bis(methylsalicylidene)-1,2-ethylenediamine, see: Hariharan & Urbach (1969).

Experimental top

The desired ligand, H2Me-salen, was synthesized according to the literature procedures (Hariharan & Urbach, 1969). To a stirring solution of Co(CH3COO)2.4H2O (0.125 g, 0.5 mmol) in methanol (25 ml) was added an equimolar of H2Me-salen (0.148 g, 0.5 mmol). The red solution turned brown immediately upon the formation of [CoII(Me-salen)] complex. To this solution was added 4 mmol of pyrrolidine, and air was bubbled through the reaction mixture for about 3 h. 0.5 mmol (0.0615 g) of NaClO4 was then added to the resulting brown solution and stirred for 5 minutes. A red microcrystalline solid was produced by slow evaporation of methanol at room temperature. The product was then recrystallized from chloroform-xylene (2:1 v/v) and dark red crystals suitable for X-ray crystallography were obtained. The crystals were filtered off and washed with a small amount of cold methanol and dried under vacuum. Yield: 55%..

Refinement top

The positions of H atoms were freely refined, and their Uiso values were set at 1.2 (1.5 for methyl groups) times Ueq of appropriate carrier atom.

Structure description top

Cobalt Schiff base complexes with tetradentate Schiff base ligands have been extensively used to mimic cobalamin (B12) coenzymes (Polson et al., 1997), dioxygen carriers and oxygen activators (Yamada et al., 1999, Henson et al., 1999, Bianchini & Zoeliner, 1997). Co(III) Schiff base complexes with two amines in axial positions have been used as antimicrobial agents as well (Mishra et al., 2008, Kumar et al., 2009). Here we present the structure of Co[Me-salen](bis-pyrrolidine) which crystallizes as the p-xylene solvate, (I, Scheme 1).

Fig. 1 shows the perspective view of the cation. The Co atom is six-coordinated by two N atoms and two O atoms from Schiff base ligand, which are coplanar within 0.048 (1)Å and two N atoms from two pyrrolidine molecules, which are trans to each other (N—Co—N angle is 176.75 (8)°). These two axial ligands, both in half-chair conformations, are rotated by about 90° with respect to each other. The small distortion from the ideal octahedral coordination can be seen in the deviations of the trans angles from the ideal values of 180° as well as in the angle between the least-squares planes through six-membered chelate rings (Co—O—C—C—C—N—Co) of 1.82 (9)°. The Co—O and Co—N bond lengths agree well with those found in analogous cobalt complexes (e.g., Dreos et al., 2003).

In the crystal structure, the N atoms of the pyrrolidine ligands are involved in N—H···O hydrogen bonds with the perchlorate anions. These hydrogen bonds connect molecules into infinite chains along the b axis (Fig. 2). Some C—H···π interactions (Table 2) also may play some role in determining the crystal structure. Especially one of these contacts (C14—H14···CgB (1/2 - x,-1/2 + y,1/2 - z) might be regarded as weak hydrogen bond.

For the properties of Co(III) complexes with Schiff base ligands, see: Polson et al. (1997); Yamada et al. (1999); Henson et al. (1999); Bianchini & Zoeliner (1997); Mishra et al. (2008); Kumar et al. (2009). For related structures, see: Dreos et al. (2003). For the preparation of N,N'-bis(methylsalicylidene)-1,2-ethylenediamine, see: Hariharan & Urbach (1969).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The perspective view of the cation (I), with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines, prime signs refer to the symmetry code 2 - x,-y,1 - z.
[Figure 2] Fig. 2. The crystal packing of (I).The dashed lines denote hydrogen bonds.
{2,2'-[1,1'-(Ethane-1,2- diyldinitrilo)diethylidyne]diphenolato}bis(pyrrolidine)cobalt(III) perchlorate p-xylene hemisolvate top
Crystal data top
[Co(C18H18N2O2)(C4H9N)2]ClO4·0.5C8H10F(000) = 1364
Mr = 648.05Dx = 1.440 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9456 reflections
a = 13.118 (2) Åθ = 2.9–29.0°
b = 16.551 (3) ŵ = 0.71 mm1
c = 13.784 (2) ÅT = 100 K
β = 92.87 (2)°Prism, dark red
V = 2989.0 (8) Å30.4 × 0.15 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
7081 independent reflections
Radiation source: Enhance (Mo) X-ray Source4734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.1544 pixels mm-1θmax = 29.1°, θmin = 2.9°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2122
Tmin = 0.422, Tmax = 1.000l = 1818
23760 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
7081 reflections(Δ/σ)max = 0.002
502 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Co(C18H18N2O2)(C4H9N)2]ClO4·0.5C8H10V = 2989.0 (8) Å3
Mr = 648.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.118 (2) ŵ = 0.71 mm1
b = 16.551 (3) ÅT = 100 K
c = 13.784 (2) Å0.4 × 0.15 × 0.15 mm
β = 92.87 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
7081 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4734 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 1.000Rint = 0.053
23760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.67 e Å3
7081 reflectionsΔρmin = 0.51 e Å3
502 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43307 (2)0.200878 (17)0.223086 (19)0.01430 (8)
N10.32241 (13)0.26626 (11)0.15288 (13)0.0195 (4)
H10.3269 (16)0.2648 (13)0.0877 (17)0.023*
C20.31534 (19)0.35365 (14)0.17595 (19)0.0280 (6)
H210.3731 (18)0.3871 (15)0.1487 (16)0.034*
H220.3120 (17)0.3579 (14)0.2515 (17)0.034*
C30.21166 (19)0.37890 (16)0.1324 (2)0.0317 (6)
H310.1857 (17)0.4294 (16)0.1617 (17)0.038*
H320.2132 (18)0.3776 (15)0.0624 (18)0.038*
C40.1450 (2)0.30912 (17)0.1558 (3)0.0427 (7)
H410.085 (2)0.3023 (16)0.107 (2)0.051*
H420.121 (2)0.3201 (17)0.218 (2)0.051*
C50.21586 (18)0.23502 (15)0.16164 (19)0.0262 (5)
H510.2149 (17)0.2099 (14)0.2271 (17)0.031*
H520.1983 (18)0.1966 (15)0.1083 (17)0.031*
N60.53743 (14)0.13130 (11)0.29580 (11)0.0160 (4)
H60.5884 (16)0.1644 (14)0.3137 (15)0.019*
C70.50197 (19)0.09102 (14)0.38566 (15)0.0207 (5)
H710.4302 (17)0.0819 (14)0.3787 (15)0.025*
H720.5138 (16)0.1294 (14)0.4397 (15)0.025*
C80.5615 (2)0.01142 (15)0.39679 (17)0.0260 (5)
H810.5990 (17)0.0093 (14)0.4590 (17)0.031*
H820.5160 (17)0.0334 (15)0.3918 (16)0.031*
C90.63361 (18)0.00956 (15)0.31396 (16)0.0211 (5)
H910.6997 (17)0.0345 (13)0.3372 (15)0.025*
H920.6430 (17)0.0387 (14)0.2914 (15)0.025*
C100.58171 (18)0.06470 (14)0.23889 (15)0.0189 (5)
H1010.6284 (16)0.0877 (13)0.1909 (15)0.023*
H1020.5226 (16)0.0385 (13)0.2052 (15)0.023*
C110.33034 (15)0.06975 (12)0.12952 (14)0.0145 (4)
O120.35375 (10)0.10722 (8)0.21165 (9)0.0160 (3)
C130.25165 (17)0.01153 (13)0.13147 (16)0.0188 (5)
H130.2275 (16)0.0008 (14)0.1890 (16)0.023*
C140.21879 (17)0.03030 (13)0.05014 (16)0.0199 (5)
H140.1637 (16)0.0666 (14)0.0540 (15)0.024*
C150.26181 (16)0.01498 (13)0.03840 (15)0.0183 (5)
H150.2360 (15)0.0463 (13)0.0936 (15)0.022*
C160.33976 (16)0.04004 (13)0.04243 (15)0.0163 (5)
H160.3683 (15)0.0523 (13)0.1003 (15)0.020*
C170.37838 (15)0.08255 (12)0.04054 (14)0.0139 (4)
C180.46758 (15)0.13478 (12)0.03271 (13)0.0139 (4)
C190.52757 (18)0.12788 (14)0.05752 (15)0.0181 (5)
H19A0.4929 (17)0.1555 (14)0.1079 (16)0.027*
H19B0.5293 (16)0.0748 (15)0.0782 (15)0.027*
H19C0.5991 (18)0.1489 (14)0.0482 (15)0.027*
N200.49586 (13)0.18431 (10)0.10260 (11)0.0152 (4)
C210.58643 (18)0.23621 (14)0.09577 (16)0.0222 (5)
H2110.5974 (16)0.2496 (13)0.0285 (16)0.027*
H2120.6468 (18)0.2055 (14)0.1226 (16)0.027*
C220.56754 (19)0.31395 (14)0.14930 (16)0.0225 (5)
H2210.6309 (18)0.3398 (14)0.1644 (15)0.027*
H2220.5206 (17)0.3489 (14)0.1087 (16)0.027*
N230.51726 (13)0.29409 (10)0.23916 (12)0.0166 (4)
C240.52723 (16)0.34161 (13)0.31422 (15)0.0188 (5)
C250.5844 (2)0.41992 (15)0.30703 (19)0.0263 (6)
H25A0.652 (2)0.4135 (16)0.3180 (17)0.040*
H25B0.5622 (18)0.4579 (16)0.3546 (18)0.040*
H25C0.5750 (18)0.4459 (16)0.2461 (18)0.040*
C260.48102 (16)0.32171 (13)0.40501 (15)0.0183 (5)
C270.40293 (16)0.26336 (13)0.41079 (14)0.0186 (5)
O280.36521 (10)0.22025 (8)0.33713 (10)0.0181 (3)
C290.35918 (18)0.25124 (14)0.50123 (16)0.0243 (5)
H290.3078 (18)0.2120 (14)0.5022 (16)0.029*
C300.3937 (2)0.29266 (16)0.58313 (17)0.0293 (6)
H300.3643 (18)0.2825 (15)0.6370 (17)0.035*
C310.47268 (19)0.34752 (16)0.57808 (17)0.0295 (6)
H31A0.4954 (18)0.3735 (15)0.6275 (17)0.035*
C320.51534 (19)0.36198 (14)0.49171 (17)0.0253 (5)
H32A0.5689 (18)0.3976 (14)0.4914 (16)0.030*
Cl1A0.79066 (4)0.23619 (3)0.35925 (4)0.02212 (13)
O1A0.80829 (13)0.30755 (10)0.30347 (11)0.0339 (4)
O2A0.78027 (12)0.16794 (9)0.29433 (10)0.0280 (4)
O3A0.69829 (12)0.24462 (11)0.41007 (12)0.0357 (4)
O4A0.87471 (11)0.22283 (9)0.42896 (11)0.0258 (4)
C1A1.0458 (2)0.05050 (15)0.43188 (17)0.0345 (6)
C11A1.0945 (3)0.1044 (2)0.3592 (2)0.0499 (8)
H11A1.171 (2)0.1142 (19)0.381 (2)0.075*
H11B1.062 (2)0.152 (2)0.349 (2)0.075*
H11C1.097 (2)0.080 (2)0.303 (2)0.075*
C2A0.9406 (2)0.03841 (16)0.42930 (18)0.0353 (7)
H2A0.9032 (19)0.0658 (16)0.3855 (18)0.042*
C3A0.8953 (2)0.01037 (16)0.49598 (18)0.0360 (6)
H3A0.821 (2)0.0225 (17)0.4959 (19)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01606 (16)0.01228 (14)0.01440 (14)0.00159 (13)0.00085 (10)0.00040 (12)
N10.0193 (10)0.0172 (9)0.0218 (9)0.0016 (8)0.0013 (8)0.0006 (8)
C20.0290 (15)0.0167 (12)0.0376 (14)0.0002 (11)0.0065 (11)0.0018 (11)
C30.0296 (15)0.0254 (14)0.0390 (15)0.0056 (12)0.0088 (12)0.0012 (12)
C40.0247 (16)0.0319 (16)0.071 (2)0.0057 (13)0.0034 (14)0.0010 (15)
C50.0206 (13)0.0230 (13)0.0345 (14)0.0013 (11)0.0027 (10)0.0011 (11)
N60.0192 (10)0.0148 (9)0.0139 (8)0.0019 (8)0.0011 (7)0.0001 (7)
C70.0265 (13)0.0202 (12)0.0155 (11)0.0007 (10)0.0025 (9)0.0029 (9)
C80.0314 (15)0.0224 (13)0.0244 (12)0.0030 (11)0.0029 (11)0.0035 (10)
C90.0213 (13)0.0178 (12)0.0241 (12)0.0052 (10)0.0005 (9)0.0011 (10)
C100.0207 (13)0.0190 (12)0.0172 (11)0.0033 (10)0.0020 (9)0.0022 (9)
C110.0145 (11)0.0108 (10)0.0180 (10)0.0025 (9)0.0027 (8)0.0010 (8)
O120.0188 (8)0.0143 (7)0.0146 (7)0.0036 (6)0.0005 (6)0.0003 (6)
C130.0217 (13)0.0143 (11)0.0206 (11)0.0019 (10)0.0025 (9)0.0020 (9)
C140.0150 (12)0.0133 (11)0.0308 (12)0.0016 (9)0.0036 (10)0.0000 (9)
C150.0167 (12)0.0163 (11)0.0212 (11)0.0025 (9)0.0076 (9)0.0046 (9)
C160.0183 (12)0.0155 (11)0.0149 (10)0.0052 (9)0.0009 (9)0.0002 (9)
C170.0131 (11)0.0109 (10)0.0175 (10)0.0011 (9)0.0031 (8)0.0014 (8)
C180.0146 (11)0.0135 (10)0.0132 (10)0.0034 (9)0.0028 (8)0.0042 (8)
C190.0176 (13)0.0182 (12)0.0184 (11)0.0011 (10)0.0017 (9)0.0003 (9)
N200.0155 (10)0.0141 (9)0.0158 (8)0.0024 (7)0.0008 (7)0.0034 (7)
C210.0238 (13)0.0233 (12)0.0198 (11)0.0090 (11)0.0030 (9)0.0006 (10)
C220.0234 (13)0.0208 (13)0.0230 (11)0.0091 (10)0.0021 (10)0.0023 (9)
N230.0153 (10)0.0142 (9)0.0201 (9)0.0014 (8)0.0024 (7)0.0007 (8)
C240.0134 (12)0.0159 (11)0.0262 (12)0.0032 (9)0.0089 (9)0.0000 (9)
C250.0278 (15)0.0174 (12)0.0328 (14)0.0028 (11)0.0080 (11)0.0037 (11)
C260.0168 (12)0.0163 (11)0.0211 (11)0.0068 (9)0.0069 (9)0.0041 (9)
C270.0175 (12)0.0192 (11)0.0186 (10)0.0094 (10)0.0040 (9)0.0037 (9)
O280.0168 (8)0.0197 (8)0.0182 (7)0.0001 (6)0.0032 (6)0.0042 (6)
C290.0229 (13)0.0258 (14)0.0245 (12)0.0059 (11)0.0023 (10)0.0006 (10)
C300.0327 (15)0.0355 (15)0.0197 (11)0.0161 (13)0.0018 (10)0.0028 (11)
C310.0308 (15)0.0316 (15)0.0250 (13)0.0136 (12)0.0109 (11)0.0123 (11)
C320.0253 (14)0.0215 (13)0.0279 (12)0.0085 (11)0.0110 (10)0.0060 (10)
Cl1A0.0213 (3)0.0208 (3)0.0241 (3)0.0017 (2)0.0004 (2)0.0035 (2)
O1A0.0455 (11)0.0222 (9)0.0339 (9)0.0021 (8)0.0005 (8)0.0039 (8)
O2A0.0351 (10)0.0232 (9)0.0255 (8)0.0091 (8)0.0027 (7)0.0060 (7)
O3A0.0208 (9)0.0498 (12)0.0366 (10)0.0078 (9)0.0044 (7)0.0034 (9)
O4A0.0199 (9)0.0268 (9)0.0300 (9)0.0000 (7)0.0069 (7)0.0057 (7)
C1A0.0544 (19)0.0251 (14)0.0238 (12)0.0132 (13)0.0004 (12)0.0075 (11)
C11A0.072 (2)0.0429 (19)0.0357 (16)0.0097 (17)0.0069 (16)0.0021 (14)
C2A0.050 (2)0.0306 (15)0.0241 (13)0.0174 (13)0.0091 (12)0.0067 (11)
C3A0.0466 (17)0.0316 (15)0.0293 (14)0.0122 (14)0.0020 (12)0.0100 (12)
Geometric parameters (Å, º) top
Co1—O121.8692 (14)C17—C181.463 (3)
Co1—O281.8725 (14)C18—N201.305 (2)
Co1—N231.9038 (17)C18—C191.509 (3)
Co1—N201.9102 (17)C19—H19A0.93 (2)
Co1—N62.0168 (17)C19—H19B0.92 (2)
Co1—N12.0184 (18)C19—H19C1.00 (2)
N1—C21.485 (3)N20—C211.473 (3)
N1—C51.501 (3)C21—C221.510 (3)
N1—H10.90 (2)C21—H2110.97 (2)
C2—C31.518 (3)C21—H2121.00 (2)
C2—H211.02 (2)C22—N231.469 (3)
C2—H221.05 (2)C22—H2210.95 (2)
C3—C41.494 (4)C22—H2221.00 (2)
C3—H311.00 (3)N23—C241.301 (3)
C3—H320.97 (2)C24—C261.455 (3)
C4—C51.538 (4)C24—C251.503 (3)
C4—H411.01 (3)C25—H25A0.89 (3)
C4—H420.94 (3)C25—H25B0.96 (3)
C5—H510.99 (2)C25—H25C0.95 (3)
C5—H520.99 (2)C26—C271.413 (3)
N6—C101.488 (3)C26—C321.422 (3)
N6—C71.501 (3)C27—O281.317 (2)
N6—H60.89 (2)C27—C291.413 (3)
C7—C81.535 (3)C29—C301.378 (3)
C7—H710.95 (2)C29—H290.94 (2)
C7—H720.99 (2)C30—C311.382 (4)
C8—C91.519 (3)C30—H300.87 (2)
C8—H810.97 (2)C31—C321.362 (3)
C8—H820.95 (2)C31—H31A0.85 (2)
C9—C101.515 (3)C32—H32A0.92 (2)
C9—H911.00 (2)Cl1A—O1A1.4343 (16)
C9—H920.87 (2)Cl1A—O3A1.4365 (16)
C10—H1011.00 (2)Cl1A—O4A1.4428 (15)
C10—H1020.98 (2)Cl1A—O2A1.4433 (15)
C11—O121.314 (2)C1A—C2A1.393 (4)
C11—C131.413 (3)C1A—C3Ai1.396 (3)
C11—C171.423 (3)C1A—C11A1.507 (4)
C13—C141.369 (3)C11A—H11A1.05 (3)
C13—H130.89 (2)C11A—H11B0.90 (3)
C14—C151.393 (3)C11A—H11C0.88 (3)
C14—H140.94 (2)C2A—C3A1.379 (4)
C15—C161.372 (3)C2A—H2A0.88 (2)
C15—H150.97 (2)C3A—C1Ai1.396 (3)
C16—C171.415 (3)C3A—H3A1.00 (3)
C16—H160.92 (2)
O12—Co1—O2885.80 (6)C16—C15—C14119.4 (2)
O12—Co1—N23177.53 (7)C16—C15—H15123.8 (13)
O28—Co1—N2393.50 (7)C14—C15—H15116.7 (13)
O12—Co1—N2094.02 (7)C15—C16—C17122.3 (2)
O28—Co1—N20176.62 (7)C15—C16—H16121.2 (13)
N23—Co1—N2086.82 (7)C17—C16—H16116.5 (13)
O12—Co1—N685.96 (7)C16—C17—C11117.82 (18)
O28—Co1—N691.14 (6)C16—C17—C18119.31 (18)
N23—Co1—N691.69 (7)C11—C17—C18122.82 (17)
N20—Co1—N692.21 (7)N20—C18—C17121.05 (18)
O12—Co1—N191.16 (7)N20—C18—C19121.02 (19)
O28—Co1—N187.13 (7)C17—C18—C19117.91 (18)
N23—Co1—N191.17 (7)C18—C19—H19A108.8 (14)
N20—Co1—N189.50 (7)C18—C19—H19B110.4 (14)
N6—Co1—N1176.75 (8)H19A—C19—H19B104.8 (18)
C2—N1—C5104.47 (18)C18—C19—H19C113.0 (12)
C2—N1—Co1118.08 (14)H19A—C19—H19C110.1 (19)
C5—N1—Co1115.28 (14)H19B—C19—H19C109.4 (19)
C2—N1—H1104.3 (15)C18—N20—C21121.32 (17)
C5—N1—H1100.2 (14)C18—N20—Co1127.82 (14)
Co1—N1—H1112.4 (14)C21—N20—Co1110.86 (13)
N1—C2—C3104.35 (19)N20—C21—C22108.25 (19)
N1—C2—H21113.1 (13)N20—C21—H211110.6 (13)
C3—C2—H21111.7 (13)C22—C21—H211107.9 (13)
N1—C2—H22106.5 (13)N20—C21—H212107.9 (13)
C3—C2—H22107.1 (12)C22—C21—H212113.6 (13)
H21—C2—H22113.4 (18)H211—C21—H212108.5 (18)
C4—C3—C2102.9 (2)N23—C22—C21108.23 (18)
C4—C3—H31110.2 (14)N23—C22—H221110.0 (13)
C2—C3—H31112.9 (13)C21—C22—H221109.1 (14)
C4—C3—H32103.9 (15)N23—C22—H222108.2 (13)
C2—C3—H32109.1 (14)C21—C22—H222109.3 (13)
H31—C3—H32117 (2)H221—C22—H222111.9 (19)
C3—C4—C5105.6 (2)C24—N23—C22120.24 (18)
C3—C4—H41112.7 (16)C24—N23—Co1128.10 (15)
C5—C4—H41113.1 (16)C22—N23—Co1111.44 (13)
C3—C4—H42105.7 (18)N23—C24—C26121.16 (19)
C5—C4—H42109.4 (18)N23—C24—C25120.0 (2)
H41—C4—H42110 (2)C26—C24—C25118.8 (2)
N1—C5—C4106.5 (2)C24—C25—H25A112.2 (17)
N1—C5—H51105.7 (13)C24—C25—H25B110.4 (15)
C4—C5—H51110.2 (14)H25A—C25—H25B107 (2)
N1—C5—H52110.1 (14)C24—C25—H25C114.0 (15)
C4—C5—H52110.9 (14)H25A—C25—H25C107 (2)
H51—C5—H52113.1 (19)H25B—C25—H25C106 (2)
C10—N6—C7104.56 (16)C27—C26—C32118.2 (2)
C10—N6—Co1115.74 (12)C27—C26—C24122.51 (18)
C7—N6—Co1115.66 (14)C32—C26—C24119.3 (2)
C10—N6—H6107.1 (14)O28—C27—C29116.7 (2)
C7—N6—H6107.8 (14)O28—C27—C26124.91 (19)
Co1—N6—H6105.5 (14)C29—C27—C26118.33 (19)
N6—C7—C8106.65 (18)C27—O28—Co1124.32 (13)
N6—C7—H71109.4 (13)C30—C29—C27121.4 (2)
C8—C7—H71111.7 (14)C30—C29—H29122.7 (14)
N6—C7—H72107.1 (13)C27—C29—H29115.9 (14)
C8—C7—H72114.7 (12)C29—C30—C31120.1 (2)
H71—C7—H72107.2 (18)C29—C30—H30117.5 (17)
C9—C8—C7105.97 (19)C31—C30—H30122.4 (17)
C9—C8—H81110.9 (14)C32—C31—C30120.1 (2)
C7—C8—H81110.7 (14)C32—C31—H31A118.0 (17)
C9—C8—H82110.0 (14)C30—C31—H31A121.9 (17)
C7—C8—H82110.3 (14)C31—C32—C26121.7 (2)
H81—C8—H82108.9 (19)C31—C32—H32A117.7 (14)
C10—C9—C8103.04 (18)C26—C32—H32A120.5 (14)
C10—C9—H91108.8 (13)O1A—Cl1A—O3A110.12 (11)
C8—C9—H91108.3 (12)O1A—Cl1A—O4A110.17 (10)
C10—C9—H92112.1 (15)O3A—Cl1A—O4A108.98 (9)
C8—C9—H92113.1 (15)O1A—Cl1A—O2A108.95 (9)
H91—C9—H92111.1 (19)O3A—Cl1A—O2A108.82 (10)
N6—C10—C9105.08 (16)O4A—Cl1A—O2A109.78 (10)
N6—C10—H101109.6 (13)C2A—C1A—C3Ai117.5 (2)
C9—C10—H101114.3 (12)C2A—C1A—C11A121.3 (2)
N6—C10—H102104.8 (13)C3Ai—C1A—C11A121.1 (3)
C9—C10—H102111.9 (13)C1A—C11A—H11A109.4 (17)
H101—C10—H102110.5 (17)C1A—C11A—H11B114 (2)
O12—C11—C13116.42 (18)H11A—C11A—H11B111 (3)
O12—C11—C17125.31 (18)C1A—C11A—H11C111 (2)
C13—C11—C17118.26 (18)H11A—C11A—H11C104 (3)
C11—O12—Co1124.71 (12)H11B—C11A—H11C107 (3)
C14—C13—C11122.0 (2)C3A—C2A—C1A121.7 (2)
C14—C13—H13121.3 (14)C3A—C2A—H2A120.9 (17)
C11—C13—H13116.6 (14)C1A—C2A—H2A117.3 (17)
C13—C14—C15120.0 (2)C2A—C3A—C1Ai120.8 (3)
C13—C14—H14119.1 (13)C2A—C3A—H3A124.8 (16)
C15—C14—H14120.7 (13)C1Ai—C3A—H3A114.3 (16)
O12—Co1—N1—C2151.59 (17)C19—C18—N20—C210.9 (3)
O28—Co1—N1—C265.85 (17)C17—C18—N20—Co10.4 (3)
N23—Co1—N1—C227.59 (17)C19—C18—N20—Co1178.70 (14)
N20—Co1—N1—C2114.40 (17)O12—Co1—N20—C1814.51 (17)
O12—Co1—N1—C527.17 (16)N23—Co1—N20—C18167.82 (18)
O28—Co1—N1—C558.57 (16)N6—Co1—N20—C18100.61 (17)
N23—Co1—N1—C5152.01 (16)N1—Co1—N20—C1876.62 (17)
N20—Co1—N1—C5121.18 (16)O12—Co1—N20—C21165.07 (14)
C5—N1—C2—C336.4 (2)N23—Co1—N20—C2112.60 (15)
Co1—N1—C2—C3166.02 (16)N6—Co1—N20—C2178.97 (15)
N1—C2—C3—C440.4 (3)N1—Co1—N20—C21103.80 (15)
C2—C3—C4—C528.2 (3)C18—N20—C21—C22147.73 (19)
C2—N1—C5—C418.5 (3)Co1—N20—C21—C2232.7 (2)
Co1—N1—C5—C4149.80 (18)N20—C21—C22—N2341.1 (2)
C3—C4—C5—N16.4 (3)C21—C22—N23—C24153.4 (2)
O12—Co1—N6—C1063.71 (15)C21—C22—N23—Co131.6 (2)
O28—Co1—N6—C10149.42 (15)O28—Co1—N23—C249.06 (18)
N23—Co1—N6—C10117.05 (15)N20—Co1—N23—C24174.31 (18)
N20—Co1—N6—C1030.16 (16)N6—Co1—N23—C2482.19 (18)
O12—Co1—N6—C759.05 (15)N1—Co1—N23—C2496.26 (18)
O28—Co1—N6—C726.66 (15)O28—Co1—N23—C22165.47 (14)
N23—Co1—N6—C7120.19 (15)N20—Co1—N23—C2211.16 (15)
N20—Co1—N6—C7152.92 (15)N6—Co1—N23—C22103.28 (15)
C10—N6—C7—C821.1 (2)N1—Co1—N23—C2278.27 (15)
Co1—N6—C7—C8149.59 (15)C22—N23—C24—C26177.86 (19)
N6—C7—C8—C92.1 (3)Co1—N23—C24—C268.0 (3)
C7—C8—C9—C1024.0 (3)C22—N23—C24—C254.1 (3)
C7—N6—C10—C936.7 (2)Co1—N23—C24—C25169.96 (16)
Co1—N6—C10—C9165.17 (14)N23—C24—C26—C2716.8 (3)
C8—C9—C10—N637.7 (2)C25—C24—C26—C27161.2 (2)
C13—C11—O12—Co1166.03 (14)N23—C24—C26—C32163.0 (2)
C17—C11—O12—Co114.8 (3)C25—C24—C26—C3219.0 (3)
O28—Co1—O12—C11155.40 (15)C32—C26—C27—O28178.51 (19)
N20—Co1—O12—C1121.22 (16)C24—C26—C27—O281.3 (3)
N6—Co1—O12—C11113.16 (15)C32—C26—C27—C293.4 (3)
N1—Co1—O12—C1168.36 (16)C24—C26—C27—C29176.76 (19)
O12—C11—C13—C14178.56 (19)C29—C27—O28—Co1160.24 (14)
C17—C11—C13—C142.2 (3)C26—C27—O28—Co121.7 (3)
C11—C13—C14—C151.2 (3)O12—Co1—O28—C27154.22 (16)
C13—C14—C15—C162.4 (3)N23—Co1—O28—C2723.40 (16)
C14—C15—C16—C170.3 (3)N6—Co1—O28—C2768.36 (16)
C15—C16—C17—C113.1 (3)N1—Co1—O28—C27114.40 (16)
C15—C16—C17—C18174.49 (19)O28—C27—C29—C30179.3 (2)
O12—C11—C17—C16176.63 (18)C26—C27—C29—C302.4 (3)
C13—C11—C17—C164.2 (3)C27—C29—C30—C310.0 (4)
O12—C11—C17—C185.9 (3)C29—C30—C31—C321.3 (4)
C13—C11—C17—C18173.29 (18)C30—C31—C32—C260.2 (4)
C16—C17—C18—N20169.29 (18)C27—C26—C32—C312.2 (3)
C11—C17—C18—N2013.3 (3)C24—C26—C32—C31178.0 (2)
C16—C17—C18—C1912.4 (3)C3Ai—C1A—C2A—C3A0.9 (4)
C11—C17—C18—C19165.03 (18)C11A—C1A—C2A—C3A179.5 (2)
C17—C18—N20—C21179.12 (18)C1A—C2A—C3A—C1Ai0.9 (4)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
CgA, CgB and CgC are the centroids of the C11-C17, C26–C32 and C1A–C3A,C1A'–C3A' rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Aii0.90 (2)2.32 (2)3.200 (2)166.2 (19)
N6—H6···O2A0.89 (2)2.55 (2)3.244 (2)135.9 (18)
N6—H6···O3A0.89 (2)2.33 (2)3.181 (3)160.9 (18)
C2A—H2A···O2A0.88 (2)2.61 (3)3.477 (3)166 (2)
C19—H19B···CgAiii0.92 (2)2.85 (2)3.438 (2)122.8 (16)
C14—H14···CgBiv0.94 (2)2.56 (2)3.430 (2)153.8 (17)
C22—H222···CgCv1.00 (2)2.92 (2)3.784 (2)145.5 (16)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+1/2; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C18H18N2O2)(C4H9N)2]ClO4·0.5C8H10
Mr648.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.118 (2), 16.551 (3), 13.784 (2)
β (°) 92.87 (2)
V3)2989.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.4 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.422, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23760, 7081, 4734
Rint0.053
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.084, 0.99
No. of reflections7081
No. of parameters502
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
CgA, CgB and CgC are the centroids of the C11-C17, C26–C32 and C1A–C3A,C1A'–C3A' rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Ai0.90 (2)2.32 (2)3.200 (2)166.2 (19)
N6—H6···O2A0.89 (2)2.55 (2)3.244 (2)135.9 (18)
N6—H6···O3A0.89 (2)2.33 (2)3.181 (3)160.9 (18)
C2A—H2A···O2A0.88 (2)2.61 (3)3.477 (3)166 (2)
C19—H19B···CgAii0.92 (2)2.85 (2)3.438 (2)122.8 (16)
C14—H14···CgBiii0.94 (2)2.56 (2)3.430 (2)153.8 (17)
C22—H222···CgCiv1.00 (2)2.92 (2)3.784 (2)145.5 (16)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

MS thanks Semnan University for supporting this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBianchini, C. & Zoeliner, R. W. (1997). Adv. Inorg. Chem. 44, 263–339.  CrossRef CAS Google Scholar
First citationDreos, R., Nardin, G., Randaccio, L., Siega, P., Tauzher, G. & Vrdoljak, V. (2003). Inorg. Chim. Acta, 349, 239–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationHariharan, M. & Urbach, F. L. (1969). Inorg. Chem. 8, 556–559.  CrossRef CAS Web of Science Google Scholar
First citationHenson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem. 38, 1618–1626  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A. & Akbarsha, M. A. (2009). J. Inorg. Biochem. 103, 117–127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189–2196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPolson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314–322.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 191–192, 537–555.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds