metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ2-1,1-(butane-1,4-di­yl)-2,3-di­cyclo­hexyl­guanidinato]bis­­[(tetra­hydro­furan)­lithium](Li—Li)

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn

(Received 17 September 2010; accepted 10 November 2010; online 17 November 2010)

In the dinuclear centrosymmetric title complex, [Li2(C17H30N3)2(C4H8O)2], the Li+ cation is coordinated by three N atoms from two guanidinate ligands and an O atom from tetra­hydro­furan (THF) in a strongly distorted tetrahedral environment. In the guanidinate-bridged THF-stabilized dimer the Li⋯Li separation is short at 2.479 (8) Å.

Related literature

For related guanidinato compounds, see: Chandra et al. (1970[Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550-2558.]); Barker & Kilner (1994[Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219-300.]); Bailey & Pace (2001[Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.]); Coles & Hitchcock (2004[Coles, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem. 13, 2662-2672.]); Corey et al. (2006[Corey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem. 45, 263-268.]); Zhou et al. (2007[Zhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem. 692, 5195-5202.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C17H30N3)2(C4H8O)2]

  • Mr = 710.97

  • Monoclinic, P 21 /c

  • a = 10.446 (6) Å

  • b = 21.454 (15) Å

  • c = 10.491 (6) Å

  • β = 114.13 (4)°

  • V = 2146 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 223 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.987

  • 8457 measured reflections

  • 3688 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.237

  • S = 1.05

  • 3688 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Li—O 1.973 (5)
Li—N2i 1.997 (5)
Li—N1 2.057 (5)
Li—N1i 2.204 (5)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a result of the donor ability of the nitrogen centers and the potential to exploit both the steric and electronic effects induced by the programmed variation of organic substituents,the guanidinate anion has generated significant interest as a ligand (Bailey & Pace, 2001; Barker & Kilner, 1994). Since the first guanidinato complexes have been reported (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in ring-opening polymerisation reactions (Coles & Hitchcock, 2004) in catalysis applications.

In the title complex,[(THF)LiN(C6H11)C(NC4H8)N(C6H11)]2 , the Li cation is coordinated by three N atoms from two guanidinato ligands and an O atom from tetrahydrofuran as a dimer around a planar Li/N1/LiA/N1A ring (Fig. 1). The core of the centrosymmetric molecule has a fused tricyclic ladder motif comprising a central planar Li/N1/LiA/N1A ring flanked by planar N2/C1/N1/LiA and N2A/C1A/N1A/Li rings. The dihedral angle between the latter two rings is 46.4 (9)°. Inside the guanidinato-bridged THF-stabilized dimer the Li···Li separation is short at 2.479 (8) Å. Electronic delocalization throughout the guanidinate moiety is observed as evidenced by the C-N distances [N1—C1: 1.355 (3) Å, N2—C1: 1.314 (3) Å].

Related literature top

For related guanidinato compounds, see: Chandra et al. (1970); Barker et al. (1994); Bailey et al. (2001); Coles et al. (2004); Corey et al. (2006); Zhou et al. (2007).

Experimental top

A solution of N-tetrahydropyrrolyl lithium in diethylether (0.232g, 3mmol) was added dropwise with stirring at 0 C to a solution of N,N'-dicyclohexyl carbodiimide (0.619g, 3mmol) in ether. The mixture was warmed to room temperature and stirred for 2h. The solvent was removed under reduced pressure. The resulting white precipitate was washed with hexane and dried in vacuo. The residue was dissolved in a mixed solvent of THF and hexane, and then filtered. The concentration of the filtrate under reduced pressure gave the colorless crystals suitable for X-ray analysis over several days (yield 0.534g, 50%).

Refinement top

All of the H atoms were contrained to ideal geometry and refined under the riding model with C–H distances of 0.98-0.99 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

As a result of the donor ability of the nitrogen centers and the potential to exploit both the steric and electronic effects induced by the programmed variation of organic substituents,the guanidinate anion has generated significant interest as a ligand (Bailey & Pace, 2001; Barker & Kilner, 1994). Since the first guanidinato complexes have been reported (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in ring-opening polymerisation reactions (Coles & Hitchcock, 2004) in catalysis applications.

In the title complex,[(THF)LiN(C6H11)C(NC4H8)N(C6H11)]2 , the Li cation is coordinated by three N atoms from two guanidinato ligands and an O atom from tetrahydrofuran as a dimer around a planar Li/N1/LiA/N1A ring (Fig. 1). The core of the centrosymmetric molecule has a fused tricyclic ladder motif comprising a central planar Li/N1/LiA/N1A ring flanked by planar N2/C1/N1/LiA and N2A/C1A/N1A/Li rings. The dihedral angle between the latter two rings is 46.4 (9)°. Inside the guanidinato-bridged THF-stabilized dimer the Li···Li separation is short at 2.479 (8) Å. Electronic delocalization throughout the guanidinate moiety is observed as evidenced by the C-N distances [N1—C1: 1.355 (3) Å, N2—C1: 1.314 (3) Å].

For related guanidinato compounds, see: Chandra et al. (1970); Barker et al. (1994); Bailey et al. (2001); Coles et al. (2004); Corey et al. (2006); Zhou et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis[µ2-1,1-(butane-1,4-diyl)-2,3- dicyclohexylguanidinato]bis[(tetrahydrofuran)lithium](Li—Li) top
Crystal data top
[Li2(C17H30N3)2(C4H8O)2]F(000) = 784
Mr = 710.97Dx = 1.100 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1854 reflections
a = 10.446 (6) Åθ = 1.9–25.0°
b = 21.454 (15) ŵ = 0.07 mm1
c = 10.491 (6) ÅT = 223 K
β = 114.13 (4)°Block, colorless
V = 2146 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube2749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.980, Tmax = 0.987k = 2525
8457 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.237H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1491P)2 + 0.6111P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Li2(C17H30N3)2(C4H8O)2]V = 2146 (2) Å3
Mr = 710.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.446 (6) ŵ = 0.07 mm1
b = 21.454 (15) ÅT = 223 K
c = 10.491 (6) Å0.30 × 0.20 × 0.20 mm
β = 114.13 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2749 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.042
8457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.237H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
3688 reflectionsΔρmin = 0.61 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li1.0428 (4)0.04287 (19)0.4484 (4)0.0287 (9)
N10.8388 (2)0.03737 (9)0.4284 (2)0.0258 (5)
N20.7869 (2)0.06576 (9)0.3820 (2)0.0282 (5)
N30.6042 (2)0.00733 (10)0.2715 (2)0.0311 (6)
O1.0417 (2)0.06534 (9)0.26561 (19)0.0396 (5)
C10.7440 (2)0.00756 (11)0.3611 (2)0.0245 (6)
C20.7853 (2)0.09453 (10)0.4653 (3)0.0254 (6)
H20.68220.09520.41210.030*
C30.8457 (3)0.15283 (11)0.4260 (3)0.0316 (6)
H3A0.94800.15270.47640.038*
H3B0.82320.15210.32570.038*
C40.7868 (3)0.21241 (13)0.4613 (3)0.0442 (8)
H4A0.83140.24860.43960.053*
H4B0.68580.21480.40320.053*
C50.8114 (3)0.21468 (13)0.6146 (3)0.0465 (8)
H5A0.91200.21880.67250.056*
H5B0.76390.25120.63110.056*
C60.7565 (4)0.15618 (14)0.6565 (3)0.0476 (8)
H6A0.65390.15530.60830.057*
H6B0.78110.15730.75720.057*
C70.8164 (3)0.09684 (12)0.6211 (3)0.0359 (7)
H7A0.77510.06030.64590.043*
H7B0.91800.09550.67610.043*
C80.7020 (2)0.11505 (11)0.2911 (3)0.0284 (6)
H80.61870.09600.21640.034*
C90.6532 (3)0.16101 (12)0.3720 (3)0.0369 (7)
H9A0.59720.13880.41310.044*
H9B0.73520.17870.44850.044*
C100.5658 (3)0.21360 (14)0.2799 (3)0.0456 (8)
H10A0.53890.24280.33660.055*
H10B0.47990.19640.20770.055*
C110.6480 (4)0.24799 (14)0.2117 (4)0.0545 (9)
H11A0.72790.26930.28370.065*
H11B0.58790.27970.14790.065*
C120.7002 (4)0.20397 (15)0.1320 (4)0.0542 (9)
H12A0.62000.18690.05250.065*
H12B0.75880.22700.09520.065*
C130.7857 (3)0.15020 (13)0.2236 (3)0.0415 (7)
H13A0.81250.12130.16650.050*
H13B0.87180.16680.29680.050*
C140.5631 (3)0.05740 (13)0.1696 (3)0.0355 (7)
H14A0.57200.04460.08390.043*
H14B0.62090.09450.20720.043*
C150.4109 (4)0.0700 (2)0.1417 (5)0.0731 (12)
H15A0.39450.11490.14360.088*
H15B0.34860.05360.04990.088*
C160.3846 (4)0.0377 (2)0.2543 (5)0.0751 (13)
H16A0.40070.06610.33260.090*
H16B0.28790.02240.21910.090*
C170.4850 (3)0.01453 (14)0.2982 (3)0.0431 (7)
H17A0.44390.05210.24360.052*
H17B0.51360.02380.39760.052*
C181.0836 (3)0.12480 (14)0.2329 (3)0.0439 (8)
H18A1.18600.12830.27300.053*
H18B1.04560.15860.26990.053*
C191.0247 (4)0.12776 (17)0.0757 (4)0.0571 (9)
H19A1.00540.17080.04210.069*
H19B1.08840.10850.03980.069*
C200.8910 (4)0.09066 (19)0.0352 (4)0.0636 (10)
H20A0.86030.07380.05950.076*
H20B0.81560.11620.04060.076*
C210.9332 (3)0.03918 (16)0.1427 (3)0.0501 (8)
H21A0.85310.02600.16210.060*
H21B0.96850.00300.10970.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.023 (2)0.028 (2)0.032 (2)0.0009 (17)0.0092 (18)0.0017 (17)
N10.0210 (11)0.0210 (10)0.0326 (12)0.0009 (8)0.0081 (9)0.0012 (8)
N20.0259 (11)0.0206 (11)0.0306 (12)0.0000 (8)0.0039 (9)0.0021 (8)
N30.0183 (11)0.0282 (11)0.0417 (13)0.0008 (8)0.0070 (9)0.0063 (9)
O0.0414 (12)0.0434 (12)0.0326 (11)0.0087 (9)0.0137 (9)0.0035 (8)
C10.0214 (13)0.0262 (13)0.0261 (13)0.0007 (10)0.0099 (10)0.0014 (10)
C20.0208 (12)0.0216 (12)0.0316 (14)0.0022 (9)0.0085 (10)0.0003 (10)
C30.0350 (15)0.0244 (13)0.0347 (15)0.0012 (11)0.0134 (12)0.0015 (10)
C40.0527 (19)0.0236 (14)0.0531 (19)0.0045 (12)0.0185 (15)0.0043 (13)
C50.0525 (19)0.0311 (15)0.0538 (19)0.0050 (13)0.0197 (15)0.0099 (13)
C60.062 (2)0.0454 (18)0.0457 (18)0.0076 (15)0.0319 (16)0.0051 (14)
C70.0409 (16)0.0305 (14)0.0397 (16)0.0016 (12)0.0201 (13)0.0028 (12)
C80.0235 (13)0.0246 (13)0.0307 (14)0.0004 (10)0.0044 (11)0.0011 (10)
C90.0390 (16)0.0295 (14)0.0390 (16)0.0051 (12)0.0128 (13)0.0024 (12)
C100.0472 (18)0.0338 (16)0.0488 (18)0.0121 (13)0.0124 (14)0.0023 (13)
C110.054 (2)0.0286 (16)0.065 (2)0.0043 (14)0.0080 (17)0.0133 (15)
C120.056 (2)0.0511 (19)0.057 (2)0.0076 (16)0.0242 (17)0.0267 (16)
C130.0385 (16)0.0404 (16)0.0456 (18)0.0043 (13)0.0173 (14)0.0121 (13)
C140.0298 (15)0.0366 (15)0.0327 (15)0.0005 (11)0.0052 (12)0.0041 (12)
C150.042 (2)0.083 (3)0.088 (3)0.0260 (19)0.019 (2)0.043 (2)
C160.042 (2)0.067 (2)0.123 (4)0.0193 (18)0.041 (2)0.034 (2)
C170.0260 (15)0.0427 (17)0.060 (2)0.0015 (12)0.0165 (14)0.0078 (14)
C180.0455 (18)0.0397 (16)0.0545 (19)0.0028 (13)0.0285 (15)0.0038 (14)
C190.063 (2)0.060 (2)0.054 (2)0.0105 (17)0.0285 (18)0.0237 (17)
C200.055 (2)0.085 (3)0.043 (2)0.0093 (19)0.0131 (17)0.0083 (18)
C210.052 (2)0.063 (2)0.0344 (16)0.0132 (16)0.0162 (15)0.0061 (15)
Geometric parameters (Å, º) top
Li—O1.973 (5)C8—H80.9900
Li—N2i1.997 (5)C9—C101.522 (4)
Li—N12.057 (5)C9—H9A0.9800
Li—N1i2.204 (5)C9—H9B0.9800
Li—C1i2.427 (5)C10—C111.515 (5)
Li—Lii2.479 (8)C10—H10A0.9800
N1—C11.355 (3)C10—H10B0.9800
N1—C21.464 (3)C11—C121.504 (5)
N1—Lii2.204 (5)C11—H11A0.9800
N2—C11.314 (3)C11—H11B0.9800
N2—C81.457 (3)C12—C131.533 (4)
N2—Lii1.997 (5)C12—H12A0.9800
N3—C11.413 (3)C12—H12B0.9800
N3—C141.451 (3)C13—H13A0.9800
N3—C171.461 (4)C13—H13B0.9800
O—C181.435 (4)C14—C151.518 (4)
O—C211.438 (4)C14—H14A0.9800
C1—Lii2.427 (5)C14—H14B0.9800
C2—C71.532 (4)C15—C161.489 (6)
C2—C31.531 (3)C15—H15A0.9800
C2—H20.9900C15—H15B0.9800
C3—C41.528 (4)C16—C171.475 (5)
C3—H3A0.9800C16—H16A0.9800
C3—H3B0.9800C16—H16B0.9800
C4—C51.523 (5)C17—H17A0.9800
C4—H4A0.9800C17—H17B0.9800
C4—H4B0.9800C18—C191.507 (5)
C5—C61.518 (4)C18—H18A0.9800
C5—H5A0.9800C18—H18B0.9800
C5—H5B0.9800C19—C201.510 (5)
C6—C71.530 (4)C19—H19A0.9800
C6—H6A0.9800C19—H19B0.9800
C6—H6B0.9800C20—C211.510 (5)
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C8—C91.519 (4)C21—H21A0.9800
C8—C131.529 (4)C21—H21B0.9800
O—Li—N2i117.1 (2)C8—C9—C10112.2 (2)
O—Li—N1108.7 (2)C8—C9—H9A109.2
N2i—Li—N1127.9 (2)C10—C9—H9A109.2
O—Li—N1i122.7 (2)C8—C9—H9B109.2
N2i—Li—N1i65.61 (15)C10—C9—H9B109.2
N1—Li—N1i108.94 (18)H9A—C9—H9B107.9
O—Li—C1i121.0 (2)C11—C10—C9110.6 (3)
N2i—Li—C1i32.77 (10)C11—C10—H10A109.5
N1—Li—C1i129.0 (2)C9—C10—H10A109.5
N1i—Li—C1i33.59 (10)C11—C10—H10B109.5
O—Li—Lii138.3 (3)C9—C10—H10B109.5
N2i—Li—Lii98.2 (2)H10A—C10—H10B108.1
N1—Li—Lii57.24 (16)C12—C11—C10111.2 (3)
N1i—Li—Lii51.70 (16)C12—C11—H11A109.4
C1i—Li—Lii77.4 (2)C10—C11—H11A109.4
C1—N1—C2117.2 (2)C12—C11—H11B109.4
C1—N1—Li126.8 (2)C10—C11—H11B109.4
C2—N1—Li114.63 (19)H11A—C11—H11B108.0
C1—N1—Lii82.27 (18)C11—C12—C13112.0 (3)
C2—N1—Lii133.03 (19)C11—C12—H12A109.2
Li—N1—Lii71.06 (18)C13—C12—H12A109.2
C1—N2—C8120.4 (2)C11—C12—H12B109.2
C1—N2—Lii91.93 (19)C13—C12—H12B109.2
C8—N2—Lii147.6 (2)H12A—C12—H12B107.9
C1—N3—C14124.9 (2)C12—C13—C8111.4 (2)
C1—N3—C17122.0 (2)C12—C13—H13A109.3
C14—N3—C17111.1 (2)C8—C13—H13A109.3
C18—O—C21109.8 (2)C12—C13—H13B109.3
C18—O—Li124.6 (2)C8—C13—H13B109.3
C21—O—Li117.7 (2)H13A—C13—H13B108.0
N2—C1—N1117.6 (2)N3—C14—C15104.2 (2)
N2—C1—N3121.0 (2)N3—C14—H14A110.9
N1—C1—N3121.5 (2)C15—C14—H14A110.9
N2—C1—Lii55.31 (16)N3—C14—H14B110.9
N1—C1—Lii64.14 (16)C15—C14—H14B110.9
N3—C1—Lii165.82 (19)H14A—C14—H14B108.9
N1—C2—C7111.85 (19)C16—C15—C14106.5 (3)
N1—C2—C3111.65 (19)C16—C15—H15A110.4
C7—C2—C3109.3 (2)C14—C15—H15A110.4
N1—C2—H2108.0C16—C15—H15B110.4
C7—C2—H2108.0C14—C15—H15B110.4
C3—C2—H2108.0H15A—C15—H15B108.6
C4—C3—C2111.5 (2)C17—C16—C15105.2 (3)
C4—C3—H3A109.3C17—C16—H16A110.7
C2—C3—H3A109.3C15—C16—H16A110.7
C4—C3—H3B109.3C17—C16—H16B110.7
C2—C3—H3B109.3C15—C16—H16B110.7
H3A—C3—H3B108.0H16A—C16—H16B108.8
C5—C4—C3111.8 (2)C16—C17—N3104.4 (3)
C5—C4—H4A109.2C16—C17—H17A110.9
C3—C4—H4A109.2N3—C17—H17A110.9
C5—C4—H4B109.2C16—C17—H17B110.9
C3—C4—H4B109.2N3—C17—H17B110.9
H4A—C4—H4B107.9H17A—C17—H17B108.9
C6—C5—C4111.0 (2)O—C18—C19105.7 (3)
C6—C5—H5A109.4O—C18—H18A110.6
C4—C5—H5A109.4C19—C18—H18A110.6
C6—C5—H5B109.4O—C18—H18B110.6
C4—C5—H5B109.4C19—C18—H18B110.6
H5A—C5—H5B108.0H18A—C18—H18B108.7
C5—C6—C7112.2 (2)C20—C19—C18101.7 (3)
C5—C6—H6A109.2C20—C19—H19A111.4
C7—C6—H6A109.2C18—C19—H19A111.4
C5—C6—H6B109.2C20—C19—H19B111.4
C7—C6—H6B109.2C18—C19—H19B111.4
H6A—C6—H6B107.9H19A—C19—H19B109.3
C6—C7—C2110.9 (2)C19—C20—C21102.8 (3)
C6—C7—H7A109.5C19—C20—H20A111.2
C2—C7—H7A109.5C21—C20—H20A111.2
C6—C7—H7B109.5C19—C20—H20B111.2
C2—C7—H7B109.5C21—C20—H20B111.2
H7A—C7—H7B108.0H20A—C20—H20B109.1
N2—C8—C9111.0 (2)O—C21—C20105.5 (3)
N2—C8—C13110.6 (2)O—C21—H21A110.6
C9—C8—C13109.0 (2)C20—C21—H21A110.6
N2—C8—H8108.8O—C21—H21B110.6
C9—C8—H8108.8C20—C21—H21B110.6
C13—C8—H8108.8H21A—C21—H21B108.8
O—Li—N1—C171.7 (3)C17—N3—C1—Lii9.3 (9)
N2i—Li—N1—C1137.6 (3)C1—N1—C2—C7104.0 (2)
N1i—Li—N1—C164.2 (3)Li—N1—C2—C788.3 (2)
C1i—Li—N1—C195.4 (3)Lii—N1—C2—C71.8 (3)
Lii—Li—N1—C164.2 (3)C1—N1—C2—C3133.2 (2)
O—Li—N1—C294.5 (2)Li—N1—C2—C334.5 (3)
N2i—Li—N1—C256.1 (3)Lii—N1—C2—C3121.0 (2)
N1i—Li—N1—C2129.5 (2)N1—C2—C3—C4178.6 (2)
C1i—Li—N1—C298.3 (3)C7—C2—C3—C457.2 (3)
Lii—Li—N1—C2129.5 (2)C2—C3—C4—C555.9 (3)
O—Li—N1—Lii136.0 (3)C3—C4—C5—C653.3 (4)
N2i—Li—N1—Lii73.4 (3)C4—C5—C6—C753.9 (4)
N1i—Li—N1—Lii0.0C5—C6—C7—C256.6 (3)
C1i—Li—N1—Lii31.19 (16)N1—C2—C7—C6178.7 (2)
N2i—Li—O—C1845.7 (3)C3—C2—C7—C657.2 (3)
N1—Li—O—C18108.6 (3)C1—N2—C8—C9116.5 (3)
N1i—Li—O—C18122.8 (3)Lii—N2—C8—C958.7 (4)
C1i—Li—O—C1883.0 (3)C1—N2—C8—C13122.5 (3)
Lii—Li—O—C18170.0 (4)Lii—N2—C8—C1362.4 (4)
N2i—Li—O—C21168.5 (2)N2—C8—C9—C10179.2 (2)
N1—Li—O—C2137.3 (3)C13—C8—C9—C1057.2 (3)
N1i—Li—O—C2191.4 (3)C8—C9—C10—C1157.5 (3)
C1i—Li—O—C21131.1 (3)C9—C10—C11—C1255.1 (3)
Lii—Li—O—C2124.1 (5)C10—C11—C12—C1354.6 (4)
C8—N2—C1—N1166.2 (2)C11—C12—C13—C855.4 (4)
Lii—N2—C1—N116.4 (2)N2—C8—C13—C12177.7 (2)
C8—N2—C1—N313.7 (3)C9—C8—C13—C1255.5 (3)
Lii—N2—C1—N3163.7 (2)C1—N3—C14—C15159.4 (3)
C8—N2—C1—Lii177.4 (3)C17—N3—C14—C154.6 (3)
C2—N1—C1—N2149.7 (2)N3—C14—C15—C1613.9 (4)
Li—N1—C1—N244.3 (3)C14—C15—C16—C1727.0 (5)
Lii—N1—C1—N214.9 (2)C15—C16—C17—N329.2 (4)
C2—N1—C1—N330.4 (3)C1—N3—C17—C16143.2 (3)
Li—N1—C1—N3135.6 (2)C14—N3—C17—C1621.4 (4)
Lii—N1—C1—N3165.1 (2)C21—O—C18—C1914.8 (3)
C2—N1—C1—Lii134.8 (2)Li—O—C18—C19162.9 (2)
Li—N1—C1—Lii59.3 (3)O—C18—C19—C2032.7 (3)
C14—N3—C1—N2136.5 (3)C18—C19—C20—C2137.6 (3)
C17—N3—C1—N261.1 (3)C18—O—C21—C209.5 (3)
C14—N3—C1—N143.4 (4)Li—O—C21—C20141.2 (3)
C17—N3—C1—N1118.9 (3)C19—C20—C21—O29.7 (3)
C14—N3—C1—Lii153.1 (7)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Li2(C17H30N3)2(C4H8O)2]
Mr710.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.446 (6), 21.454 (15), 10.491 (6)
β (°) 114.13 (4)
V3)2146 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8457, 3688, 2749
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.237, 1.05
No. of reflections3688
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li—O1.973 (5)Li—N12.057 (5)
Li—N2i1.997 (5)Li—N1i2.204 (5)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank Professor Xuehong Wei and the Center of Testing and Analysis, Shanxi University, for support.

References

First citationBailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.  Web of Science CrossRef CAS Google Scholar
First citationBarker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550–2558.  CrossRef Google Scholar
First citationColes, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem. 13, 2662–2672.  Web of Science CSD CrossRef Google Scholar
First citationCorey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem. 45, 263–268.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem. 692, 5195–5202.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds