organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Dodeca­fluorosubphthalocyaninato)(4-methylphenolato)boron(III)

aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Rm. 225, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St George St, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca

(Received 6 October 2010; accepted 20 October 2010; online 6 November 2010)

In the title compound, C31H7BF12N6O, mol­ecules are arranged into one-dimensional columns with an inter­molecular B⋯B distance of 5.3176 (8) Å. Bowl-shaped mol­ecules are arranged within the columns in a concave bowl-to-ligand arrangement separated by a ring centroid distance of 3.532 (2) Å between the benzene ring of the 4-methyl­phen­oxy ligand and one of the three five-membered rings of a symmetry-related mol­ecule.

Related literature

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002[Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835-853.]). For the application of BsubPcs in organic light-emitting diodes, see: Morse et al. (2010a[Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010a). Appl. Mater. Inter. 2, 1934-1944.]) and references cited therein. For applications of BsubPcs in organic solar cells, see: Gommans et al. (2009[Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435-3439.]). For the first reported synthesis, characterization and crystal structure of PhO-F12BsubPc, see: Claessens & Torres (2002[Claessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed. 41, 2561-2565.]). For a synthetic process to obtain the precursor compound, Br-F12BsubPc, see: Sharman & van Lier (2005[Sharman, W. M. & van Lier, J. E. (2005). Bioconj. Chem. 16, 1166-1175.]); Morse et al. (2010b[Morse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010b). Acta Cryst. E66, o3057-o3058.]).

[Scheme 1]

Experimental

Crystal data
  • C31H7BF12N6O

  • Mr = 718.24

  • Monoclinic, P 21 /n

  • a = 14.6522 (5) Å

  • b = 10.5510 (6) Å

  • c = 18.0010 (7) Å

  • β = 96.663 (3)°

  • V = 2764.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 150 K

  • 0.46 × 0.42 × 0.34 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.764, Tmax = 0.959

  • 16887 measured reflections

  • 6256 independent reflections

  • 3481 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.172

  • S = 1.03

  • 6256 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Boronsubphthalocyanine (BsubPc) is unique amongst all phthalocyanines (Pcs) as only boron templates the formation of its cone-shaped macrocyclic aromatic ligand (Claessens et al., 2002). Recently, BsubPcs have been shown to be useful as functional solid state materials in organic solar cells (Gommans et al., 2009) and organic light emitting diodes (Morse et al., 2010a). Two subclasses of BsubPcs are commonly used – dodecahydrogenated and dodecafluorinated – and they are generally applied as either their halo or phenoxy derivatives. However, little is known about their arrangement in the solid state, which is of interest to those who want to engineer functional devices containing BsubPcs.

We have synthesized 4-methylphenoxydodecafluoroboronsubphthalocyanine (4-MePhO-F12BsubPc) and obtained single crystals using a solvent diffusion method. The molecular structure of the title compound is shown in Fig. 1. In the crystal structure molecules are arranged into one-dimensional columns aligned approximately with the B—O bonds. (Fig. 2 b) with an intermolecular B···B distance of 5.3176 (8) Å (-x + 3/2, y + 1/2, -z + 1/2). Bowl-shaped molecules are arranged within the columns in a concave bowl to ligand arrangement separated by a ring centroid distance of 3.532 (2)Å between the benzene ring of the 4-methylphenoxy ligand (C25—C30) and one of the three five membered rings (N1/C1/C2/C7/C8) of a molecule at 3/2 - x,1/2 + y,1/2 - z (see Fig. 2).

A closely related compound, phenoxydodecafluoroboronsubphthalocyanine (PhO-F12BsubPc) has been previously synthesized (Claessens & Torres et al., 2002; Morse et al. 2010a) and its crystal structures reported. In each case, with crystals grown under different conditions. As in the title compound, in the crystal structure of PhO-F12BsubPc, molecules arrange into one-dimensional columns again approximately aligned with the B—O bond regardless of the method of growth. The crystal structure of PhO-F12BsubPc (Morse et al., 2010a) is re-illustrated for reference (Fig. 3). The intermolecular B···B distance in PhO-F12BsubPc is 5.3379 (7) Å (-x + 2, y + 1/2, -z + 3/2). a

The crystal structure of the title compound in addition to those of PhO-F12BsubPc suggest the arrangement of phenoxy-F12BsubPcs in the solid state may be predominant. In an effort to confirm or refute this, and to test the dependence on the nature of the alkyl substituent on the phenoxy group, we attempted to grow single crystals of 4 - t-butylphenoxydodecafluoroboronsubphthalocyanine. Unfortunately we found this derivative very soluble in organic solvents and were not able obtain single crystals as of yet.

Related literature top

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For an application of BsubPcs in organic light-emitting diodes, see: Morse et al. (2010a) and references cited therein. For applications of BsubPcs in organic solar cells, see: Gommans et al. (2009). For the first reported synthesis, characterization and crystal structure of PhO-F12BsubPc, see: Claessens & Torres (2002). For a synthetic process to obtain the precursor compound, Br-F12BsubPc, see: Sharman & van Lier (2005); Morse et al. (2010b).

Experimental top

Br-F12BsubPc was synthesized according to Morse et al. (2010a) which is an adaptation of the method of Sharman et al. (2005). For its crystal structure see Morse et al. (2010b).

4-MePhO-F12BsubPc. A solution of 1.00 g of (Br-F12BsubPc) in 5 ml of toluene was mixed with 0.78 g of 4-methylphenol. The mixture was stirred and heated to reflux under argon for 8 h. Reaction was determined complete via HPLC (RP-18 column, acetonitrile mobile phase 1.2 ml/min). The crude product was purified first by dissolving the product in toluene (300 ml) and extracting with 3.0 M KOH solution in distilled water (3 x 300 ml). The solvent was evaporated under vacuum and the product purified on a Kauffman column of alumina (absorbent) and dichloromethane (eluent). The Kauffman column was run overnight and subsequently the dichloromethane was removed under reduced pressure leaving a dark pink powder (0.52 g, 0.00072 mol, 44% yield). Crystals of the title compound were grown by slow diffusion of heptane into a solution of the title compound in benzene.

Structure description top

Boronsubphthalocyanine (BsubPc) is unique amongst all phthalocyanines (Pcs) as only boron templates the formation of its cone-shaped macrocyclic aromatic ligand (Claessens et al., 2002). Recently, BsubPcs have been shown to be useful as functional solid state materials in organic solar cells (Gommans et al., 2009) and organic light emitting diodes (Morse et al., 2010a). Two subclasses of BsubPcs are commonly used – dodecahydrogenated and dodecafluorinated – and they are generally applied as either their halo or phenoxy derivatives. However, little is known about their arrangement in the solid state, which is of interest to those who want to engineer functional devices containing BsubPcs.

We have synthesized 4-methylphenoxydodecafluoroboronsubphthalocyanine (4-MePhO-F12BsubPc) and obtained single crystals using a solvent diffusion method. The molecular structure of the title compound is shown in Fig. 1. In the crystal structure molecules are arranged into one-dimensional columns aligned approximately with the B—O bonds. (Fig. 2 b) with an intermolecular B···B distance of 5.3176 (8) Å (-x + 3/2, y + 1/2, -z + 1/2). Bowl-shaped molecules are arranged within the columns in a concave bowl to ligand arrangement separated by a ring centroid distance of 3.532 (2)Å between the benzene ring of the 4-methylphenoxy ligand (C25—C30) and one of the three five membered rings (N1/C1/C2/C7/C8) of a molecule at 3/2 - x,1/2 + y,1/2 - z (see Fig. 2).

A closely related compound, phenoxydodecafluoroboronsubphthalocyanine (PhO-F12BsubPc) has been previously synthesized (Claessens & Torres et al., 2002; Morse et al. 2010a) and its crystal structures reported. In each case, with crystals grown under different conditions. As in the title compound, in the crystal structure of PhO-F12BsubPc, molecules arrange into one-dimensional columns again approximately aligned with the B—O bond regardless of the method of growth. The crystal structure of PhO-F12BsubPc (Morse et al., 2010a) is re-illustrated for reference (Fig. 3). The intermolecular B···B distance in PhO-F12BsubPc is 5.3379 (7) Å (-x + 2, y + 1/2, -z + 3/2). a

The crystal structure of the title compound in addition to those of PhO-F12BsubPc suggest the arrangement of phenoxy-F12BsubPcs in the solid state may be predominant. In an effort to confirm or refute this, and to test the dependence on the nature of the alkyl substituent on the phenoxy group, we attempted to grow single crystals of 4 - t-butylphenoxydodecafluoroboronsubphthalocyanine. Unfortunately we found this derivative very soluble in organic solvents and were not able obtain single crystals as of yet.

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For an application of BsubPcs in organic light-emitting diodes, see: Morse et al. (2010a) and references cited therein. For applications of BsubPcs in organic solar cells, see: Gommans et al. (2009). For the first reported synthesis, characterization and crystal structure of PhO-F12BsubPc, see: Claessens & Torres (2002). For a synthetic process to obtain the precursor compound, Br-F12BsubPc, see: Sharman & van Lier (2005); Morse et al. (2010b).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound.
[Figure 3] Fig. 3. Part of the crystal structure of PhO-F12BsubPc (Morse et al, 2010a).
(1,2,3,4,8,9,10,11,15,16,17,18-dodecafluoro-7,12:14,19-diimino- 21,5-nitrilo-5H-tribenzo[c,h,m][1,6,11]triazacyclopentadecinato)(4- methylphenolato)boron(III) top
Crystal data top
C31H7BF12N6OF(000) = 1424
Mr = 718.24Dx = 1.726 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16887 reflections
a = 14.6522 (5) Åθ = 2.6–27.5°
b = 10.5510 (6) ŵ = 0.16 mm1
c = 18.0010 (7) ÅT = 150 K
β = 96.663 (3)°Block, purple
V = 2764.1 (2) Å30.46 × 0.42 × 0.34 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6256 independent reflections
Radiation source: fine-focus sealed tube3481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ scans and ω scans with κ offsetsh = 1818
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.764, Tmax = 0.959l = 2323
16887 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.2514P]
where P = (Fo2 + 2Fc2)/3
6256 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C31H7BF12N6OV = 2764.1 (2) Å3
Mr = 718.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6522 (5) ŵ = 0.16 mm1
b = 10.5510 (6) ÅT = 150 K
c = 18.0010 (7) Å0.46 × 0.42 × 0.34 mm
β = 96.663 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6256 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3481 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.959Rint = 0.053
16887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
6256 reflectionsΔρmin = 0.30 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.53576 (13)0.27010 (17)0.50181 (10)0.0538 (5)
F20.62959 (14)0.29013 (18)0.63991 (10)0.0619 (5)
F30.81470 (14)0.29484 (19)0.65863 (9)0.0643 (6)
F40.91201 (12)0.28163 (17)0.54072 (9)0.0516 (5)
F51.08623 (11)0.37830 (19)0.33494 (9)0.0536 (5)
F61.17681 (11)0.5008 (2)0.23366 (10)0.0627 (6)
F71.09226 (12)0.56366 (19)0.09845 (10)0.0577 (5)
F80.91311 (11)0.50438 (15)0.05849 (8)0.0425 (4)
F90.57526 (10)0.56024 (14)0.03931 (8)0.0364 (4)
F100.40881 (11)0.66504 (17)0.05162 (9)0.0476 (4)
F110.31482 (11)0.60452 (19)0.16583 (11)0.0588 (5)
F120.38054 (11)0.43226 (18)0.27000 (9)0.0506 (5)
O10.72879 (13)0.09082 (16)0.22748 (10)0.0338 (5)
N10.72624 (15)0.2315 (2)0.33623 (12)0.0306 (5)
N20.88549 (16)0.2812 (2)0.36128 (12)0.0346 (6)
N30.80863 (14)0.2979 (2)0.23845 (11)0.0287 (5)
N40.73305 (14)0.4059 (2)0.13397 (11)0.0297 (5)
N50.64793 (14)0.2999 (2)0.22105 (11)0.0294 (5)
N60.56821 (15)0.2881 (2)0.32889 (12)0.0348 (6)
C10.64781 (19)0.2520 (2)0.36801 (15)0.0319 (6)
C20.67586 (19)0.2593 (3)0.44816 (15)0.0344 (7)
C30.6281 (2)0.2706 (3)0.50962 (16)0.0407 (7)
C40.6750 (2)0.2810 (3)0.57947 (16)0.0470 (8)
C50.7710 (3)0.2829 (3)0.58906 (15)0.0469 (8)
C60.8201 (2)0.2749 (3)0.52897 (16)0.0410 (7)
C70.7738 (2)0.2598 (3)0.45805 (15)0.0353 (7)
C80.80436 (19)0.2517 (3)0.38416 (14)0.0323 (6)
C90.88473 (18)0.3097 (3)0.28843 (14)0.0319 (6)
C100.95087 (18)0.3763 (3)0.24878 (15)0.0341 (6)
C111.04161 (19)0.4099 (3)0.26770 (16)0.0399 (7)
C121.08789 (19)0.4732 (3)0.21697 (17)0.0435 (7)
C131.0438 (2)0.5054 (3)0.14710 (16)0.0414 (7)
C140.95285 (19)0.4748 (3)0.12730 (15)0.0350 (6)
C150.90513 (17)0.4115 (2)0.17733 (14)0.0299 (6)
C160.81024 (17)0.3691 (2)0.17553 (14)0.0298 (6)
C170.65355 (17)0.3781 (2)0.16128 (14)0.0303 (6)
C180.56452 (17)0.4394 (2)0.14843 (14)0.0298 (6)
C190.52869 (18)0.5275 (3)0.09645 (14)0.0317 (6)
C200.44506 (18)0.5812 (3)0.10268 (16)0.0363 (7)
C210.39572 (18)0.5493 (3)0.16124 (17)0.0405 (7)
C220.42956 (18)0.4611 (3)0.21442 (16)0.0386 (7)
C230.51408 (18)0.4049 (2)0.20818 (15)0.0323 (6)
C240.57225 (18)0.3200 (3)0.25680 (14)0.0319 (6)
C250.74723 (19)0.0818 (2)0.15342 (15)0.0330 (6)
C260.8368 (2)0.0748 (3)0.13729 (16)0.0368 (7)
H26A0.88550.06690.17670.044*
C270.8561 (2)0.0793 (3)0.06386 (16)0.0404 (7)
H27A0.91810.07520.05350.048*
C280.7860 (2)0.0899 (3)0.00501 (16)0.0421 (7)
C290.6966 (2)0.0895 (3)0.02170 (16)0.0396 (7)
H29A0.64780.09170.01800.048*
C300.6757 (2)0.0858 (3)0.09520 (16)0.0366 (7)
H30A0.61360.08600.10550.044*
C310.8089 (3)0.1065 (3)0.07462 (17)0.0565 (9)
H31A0.75180.11190.10880.085*
H31B0.84500.03370.08840.085*
H31C0.84450.18440.07800.085*
B10.7282 (2)0.2205 (3)0.25372 (17)0.0310 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0586 (12)0.0578 (12)0.0494 (11)0.0048 (9)0.0245 (9)0.0038 (9)
F20.0932 (14)0.0602 (13)0.0372 (10)0.0038 (11)0.0279 (10)0.0013 (9)
F30.0989 (15)0.0645 (13)0.0276 (9)0.0151 (11)0.0004 (9)0.0035 (8)
F40.0577 (12)0.0556 (12)0.0390 (10)0.0108 (9)0.0050 (8)0.0072 (8)
F50.0401 (10)0.0752 (13)0.0436 (10)0.0023 (9)0.0037 (8)0.0029 (9)
F60.0362 (10)0.0909 (16)0.0612 (12)0.0162 (10)0.0067 (9)0.0018 (11)
F70.0476 (10)0.0745 (14)0.0540 (11)0.0162 (9)0.0186 (9)0.0036 (10)
F80.0486 (10)0.0449 (10)0.0351 (9)0.0025 (8)0.0099 (7)0.0056 (8)
F90.0389 (9)0.0381 (9)0.0318 (8)0.0049 (7)0.0019 (7)0.0055 (7)
F100.0438 (9)0.0486 (11)0.0490 (10)0.0067 (8)0.0001 (8)0.0148 (9)
F110.0384 (10)0.0699 (13)0.0693 (13)0.0131 (9)0.0124 (9)0.0191 (10)
F120.0383 (9)0.0670 (12)0.0489 (10)0.0020 (8)0.0157 (8)0.0106 (9)
O10.0487 (12)0.0254 (10)0.0288 (10)0.0013 (8)0.0106 (9)0.0009 (8)
N10.0390 (13)0.0257 (12)0.0278 (12)0.0014 (10)0.0063 (10)0.0030 (9)
N20.0429 (14)0.0325 (13)0.0285 (12)0.0076 (11)0.0042 (10)0.0002 (10)
N30.0342 (12)0.0260 (12)0.0259 (11)0.0017 (10)0.0034 (9)0.0004 (9)
N40.0328 (12)0.0297 (12)0.0268 (11)0.0015 (10)0.0035 (10)0.0022 (10)
N50.0345 (12)0.0274 (12)0.0264 (11)0.0019 (10)0.0048 (10)0.0025 (10)
N60.0394 (13)0.0303 (13)0.0358 (13)0.0041 (11)0.0093 (11)0.0037 (10)
C10.0423 (16)0.0252 (14)0.0301 (14)0.0004 (12)0.0120 (13)0.0027 (11)
C20.0470 (17)0.0252 (14)0.0327 (15)0.0050 (12)0.0123 (13)0.0046 (12)
C30.0513 (19)0.0336 (16)0.0393 (17)0.0032 (14)0.0137 (15)0.0049 (13)
C40.077 (2)0.0359 (17)0.0316 (16)0.0048 (16)0.0229 (16)0.0015 (13)
C50.079 (2)0.0369 (17)0.0247 (15)0.0089 (16)0.0047 (15)0.0004 (13)
C60.055 (2)0.0323 (16)0.0348 (16)0.0096 (14)0.0015 (14)0.0001 (13)
C70.0508 (18)0.0271 (14)0.0278 (15)0.0045 (13)0.0046 (13)0.0001 (12)
C80.0420 (17)0.0262 (14)0.0287 (15)0.0048 (12)0.0048 (13)0.0022 (11)
C90.0361 (15)0.0295 (15)0.0300 (14)0.0075 (12)0.0031 (12)0.0003 (12)
C100.0351 (15)0.0313 (15)0.0364 (15)0.0041 (12)0.0058 (12)0.0057 (13)
C110.0390 (17)0.0438 (18)0.0368 (16)0.0030 (14)0.0039 (14)0.0047 (14)
C120.0295 (15)0.0519 (19)0.0499 (18)0.0036 (14)0.0087 (14)0.0064 (16)
C130.0413 (17)0.0409 (18)0.0449 (17)0.0050 (14)0.0177 (14)0.0026 (14)
C140.0415 (16)0.0318 (15)0.0334 (15)0.0030 (13)0.0119 (13)0.0027 (13)
C150.0326 (14)0.0270 (14)0.0308 (14)0.0035 (11)0.0070 (12)0.0020 (11)
C160.0361 (15)0.0259 (14)0.0283 (13)0.0015 (12)0.0068 (12)0.0000 (12)
C170.0343 (15)0.0289 (15)0.0279 (14)0.0005 (12)0.0048 (11)0.0002 (12)
C180.0321 (14)0.0274 (14)0.0289 (14)0.0048 (12)0.0003 (12)0.0009 (11)
C190.0322 (15)0.0343 (15)0.0286 (14)0.0090 (12)0.0044 (12)0.0007 (12)
C200.0315 (15)0.0361 (16)0.0399 (16)0.0036 (12)0.0024 (13)0.0054 (13)
C210.0266 (15)0.0473 (18)0.0480 (18)0.0026 (13)0.0060 (13)0.0060 (15)
C220.0314 (15)0.0451 (17)0.0409 (16)0.0057 (13)0.0107 (13)0.0018 (14)
C230.0322 (14)0.0318 (15)0.0321 (15)0.0040 (12)0.0002 (12)0.0006 (12)
C240.0326 (14)0.0311 (15)0.0323 (14)0.0055 (12)0.0055 (12)0.0000 (12)
C250.0468 (17)0.0227 (14)0.0309 (15)0.0022 (12)0.0100 (13)0.0010 (11)
C260.0440 (17)0.0296 (15)0.0369 (16)0.0037 (13)0.0046 (13)0.0011 (12)
C270.0435 (17)0.0340 (16)0.0460 (18)0.0012 (13)0.0150 (15)0.0014 (14)
C280.060 (2)0.0288 (16)0.0379 (17)0.0007 (14)0.0098 (15)0.0015 (13)
C290.0547 (19)0.0323 (16)0.0309 (15)0.0002 (14)0.0007 (14)0.0005 (12)
C300.0402 (16)0.0286 (15)0.0412 (17)0.0039 (12)0.0054 (13)0.0037 (12)
C310.085 (3)0.049 (2)0.0384 (18)0.0006 (18)0.0210 (17)0.0022 (15)
B10.0375 (18)0.0295 (17)0.0263 (15)0.0006 (14)0.0045 (14)0.0015 (13)
Geometric parameters (Å, º) top
F1—C31.343 (3)C5—C61.370 (4)
F2—C41.343 (3)C6—C71.383 (4)
F3—C51.345 (3)C7—C81.454 (4)
F4—C61.341 (3)C9—C101.450 (4)
F5—C111.349 (3)C10—C111.380 (4)
F6—C121.335 (3)C10—C151.429 (4)
F7—C131.339 (3)C11—C121.373 (4)
F8—C141.343 (3)C12—C131.388 (4)
F9—C191.344 (3)C13—C141.377 (4)
F10—C201.340 (3)C14—C151.375 (4)
F11—C211.332 (3)C15—C161.457 (4)
F12—C221.333 (3)C17—C181.450 (4)
O1—C251.394 (3)C18—C191.379 (4)
O1—B11.448 (4)C18—C231.421 (4)
N1—C11.359 (3)C19—C201.367 (4)
N1—C81.368 (3)C20—C211.387 (4)
N1—B11.493 (4)C21—C221.385 (4)
N2—C81.339 (4)C22—C231.389 (4)
N2—C91.344 (3)C23—C241.457 (4)
N3—C91.355 (3)C25—C261.379 (4)
N3—C161.361 (3)C25—C301.394 (4)
N3—B11.485 (4)C26—C271.384 (4)
N4—C161.339 (3)C26—H26A0.9500
N4—C171.348 (3)C27—C281.392 (4)
N5—C241.362 (3)C27—H27A0.9500
N5—C171.366 (3)C28—C291.378 (4)
N5—B11.507 (4)C28—C311.519 (4)
N6—C11.345 (3)C29—C301.393 (4)
N6—C241.349 (3)C29—H29A0.9500
C1—C21.456 (4)C30—H30A0.9500
C2—C31.381 (4)C31—H31A0.9800
C2—C71.426 (4)C31—H31B0.9800
C3—C41.366 (4)C31—H31C0.9800
C4—C51.397 (5)
C25—O1—B1112.7 (2)N4—C16—N3122.0 (2)
C1—N1—C8113.3 (2)N4—C16—C15131.7 (2)
C1—N1—B1123.1 (2)N3—C16—C15105.0 (2)
C8—N1—B1121.9 (2)N4—C17—N5123.5 (2)
C8—N2—C9116.4 (2)N4—C17—C18130.1 (2)
C9—N3—C16114.2 (2)N5—C17—C18105.0 (2)
C9—N3—B1122.5 (2)C19—C18—C23119.7 (2)
C16—N3—B1123.2 (2)C19—C18—C17132.3 (2)
C16—N4—C17116.3 (2)C23—C18—C17107.6 (2)
C24—N5—C17113.9 (2)F9—C19—C20119.7 (2)
C24—N5—B1122.9 (2)F9—C19—C18120.4 (2)
C17—N5—B1121.8 (2)C20—C19—C18119.9 (2)
C1—N6—C24116.2 (2)F10—C20—C19120.4 (3)
N6—C1—N1123.3 (2)F10—C20—C21118.8 (2)
N6—C1—C2129.2 (2)C19—C20—C21120.9 (3)
N1—C1—C2105.7 (2)F11—C21—C22120.1 (3)
C3—C2—C7119.8 (3)F11—C21—C20119.2 (3)
C3—C2—C1133.4 (3)C22—C21—C20120.8 (3)
C7—C2—C1106.8 (2)F12—C22—C21119.4 (3)
F1—C3—C4119.3 (3)F12—C22—C23121.8 (3)
F1—C3—C2120.9 (3)C21—C22—C23118.8 (3)
C4—C3—C2119.8 (3)C22—C23—C18119.9 (2)
F2—C4—C3120.5 (3)C22—C23—C24132.7 (3)
F2—C4—C5119.0 (3)C18—C23—C24107.0 (2)
C3—C4—C5120.5 (3)N6—C24—N5123.0 (2)
F3—C5—C6120.3 (3)N6—C24—C23130.1 (2)
F3—C5—C4118.7 (3)N5—C24—C23105.3 (2)
C6—C5—C4121.0 (3)C26—C25—O1120.0 (2)
F4—C6—C5118.8 (3)C26—C25—C30119.6 (3)
F4—C6—C7121.8 (3)O1—C25—C30120.3 (2)
C5—C6—C7119.4 (3)C25—C26—C27120.2 (3)
C6—C7—C2119.6 (3)C25—C26—H26A119.9
C6—C7—C8133.0 (3)C27—C26—H26A119.9
C2—C7—C8107.3 (2)C26—C27—C28121.0 (3)
N2—C8—N1123.4 (2)C26—C27—H27A119.5
N2—C8—C7130.2 (3)C28—C27—H27A119.5
N1—C8—C7105.2 (2)C29—C28—C27118.0 (3)
N2—C9—N3122.7 (2)C29—C28—C31121.7 (3)
N2—C9—C10131.2 (2)C27—C28—C31120.2 (3)
N3—C9—C10105.3 (2)C28—C29—C30121.8 (3)
C11—C10—C15119.6 (3)C28—C29—H29A119.1
C11—C10—C9133.0 (3)C30—C29—H29A119.1
C15—C10—C9107.4 (2)C29—C30—C25119.1 (3)
F5—C11—C12119.5 (3)C29—C30—H30A120.4
F5—C11—C10120.7 (3)C25—C30—H30A120.4
C12—C11—C10119.8 (3)C28—C31—H31A109.5
F6—C12—C11120.1 (3)C28—C31—H31B109.5
F6—C12—C13119.4 (3)H31A—C31—H31B109.5
C11—C12—C13120.5 (3)C28—C31—H31C109.5
F7—C13—C14120.6 (3)H31A—C31—H31C109.5
F7—C13—C12118.6 (3)H31B—C31—H31C109.5
C14—C13—C12120.8 (3)O1—B1—N3115.1 (2)
F8—C14—C15121.2 (2)O1—B1—N1113.5 (2)
F8—C14—C13119.1 (2)N3—B1—N1104.4 (2)
C15—C14—C13119.6 (3)O1—B1—N5115.6 (2)
C14—C15—C10119.6 (2)N3—B1—N5102.8 (2)
C14—C15—C16133.7 (2)N1—B1—N5103.9 (2)
C10—C15—C16106.7 (2)

Experimental details

Crystal data
Chemical formulaC31H7BF12N6O
Mr718.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.6522 (5), 10.5510 (6), 18.0010 (7)
β (°) 96.663 (3)
V3)2764.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.46 × 0.42 × 0.34
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.764, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
16887, 6256, 3481
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 1.03
No. of reflections6256
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding this research in the form of a Discovery Grant (TPB), a Canada Graduate Scholarship (GEM) and a Post Graduate Scholarship (ASP).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClaessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClaessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed. 41, 2561–2565.  CrossRef CAS Google Scholar
First citationGommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435–3439.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010a). Appl. Mater. Inter. 2, 1934–1944.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010b). Acta Cryst. E66, o3057–o3058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSharman, W. M. & van Lier, J. E. (2005). Bioconj. Chem. 16, 1166–1175.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds