organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-(4-hy­dr­oxy­phen­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 8 October 2010; accepted 8 November 2010; online 13 November 2010)

In the title compound, C14H12N2O2S, the amino­phenol and the benzoyl groups adopt a syn–anti configuration with respect to the thiono C=S group across the thio­urea C—N. The dihedral angle between the mean planes of the benzoyl and hy­droxy­phenyl rings is 36.77 (8)°. The mol­ecules are stabilized by intra­molecular N—H⋯O hydrogen bonds. In the crystal, weak inter­molecular C—H⋯O, O—H⋯S and N—H⋯O hydrogen bonds link the mol­ecules into a chain along the c axis.

Related literature

For the preparation and chemical properties of related compounds, see: Zhang et al. (2001[Zhang, Y.-M., Wei, T.-B. & Gao, L.-M. (2001). Synth. Commun. 31 3099-3105.]). For related structures, see: Abosadiya et al. (2007[Abosadiya, H. M., Yamin, B. M. & Ngah, N. (2007). Acta Cryst. E63, o2403-o2404.]); Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o340-o341.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2S

  • Mr = 272.33

  • Orthorhombic, P 21 21 21

  • a = 5.5865 (10) Å

  • b = 14.451 (2) Å

  • c = 16.462 (3) Å

  • V = 1329.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.919

  • 7608 measured reflections

  • 2351 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.05

  • 2351 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 958 Friedel pairs

  • Flack parameter: 0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1 0.86 1.95 2.631 (2) 135
N1—H1B⋯O2i 0.86 2.29 3.109 (2) 158
O2—H2C⋯S1ii 0.82 2.53 3.1533 (18) 134
C1—H1A⋯O2i 0.93 2.51 3.429 (3) 172
C11—H11A⋯O1iii 0.93 2.43 3.262 (2) 149
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, I, is closely related to the previously reported N-benzoyl-N'-(3-hydroxyphenyl)thiourea (II) (Abosadiya et al., 2007) compound. As in most benzoylthiourea derivatives of the type R1C(O)NHC(S)NHR2, the title compound has a syn–anti configuration for the hydroxyphenyl and benzoyl groups with respect to the thiono C=S bond across the thiourea C—N bond (Fig 1). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable to those in (II). All C—N bond lengths are shorter than the normal value for C—N single bond, and the bond lengths C7—O1 and C8—S1 become longer than normal values for a double bond, which suggests the presence of delocalized π-electrons. For example, the C=S bond (1.671 (2) Å) and C—N bond lengths (C8—N1 = 1.388 (2) Å, C8—N2 = 1.328 (2) Å and C9—N2 = 1.428 (2) Å) in the title compound are longer than that observed in an unsubsituted phenyl ring (III - Yamin et al., 2003) in which the C=S bond length (1.6567 (15) Å) and C—N bond lengths are 1.393 (2), 1.326 (2) and 1.408 (2) Å, respectively. This is due to donating effect of OH group in the para position, which contributes to an increase in the bond length.

The benzoyl ring [C1/C2/C3/C4/C5/C6/C7/O1] (A), hydroxyphenyl ring [N2/C9/C10/C11/C12/C13/C14/O2] (B) and thiourea [(S1/N1/N2/C8/] (C) fragments are essentially planar with maximum deviations from their mean planes of 0.045 (2) Å for atom O1 (A), 0.010 (2) Å for atom C10 (B) and 0.008 (2)Å for atom C8 (C), respectively. The dihedral angle between the mean planes of A and B is 36.77 (8)°. The crytal structure is stabilized by an intramolecular N2—H2B···O1 hydrogen bond which forms a six-membered ring (N2/H2B/O1/C7/N1/C8) commonly observed in this class of ligands. In addition, the molecules are linked by weak intermolecular C11—H···O1, C1—H···O2, O2—H···S1 and N1—H···O2 hydrogen bonds (Table 2), resulting in a one-dimensional chain along the c-axis (Fig 2).

Related literature top

For the preparation, see: Zhang et al. (2001). For related compounds, structural parameters and chemical properties, see: Abosadiya et al. 2007); Hung et al. (2010); Yamin & Yusof (2003); For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was first synthesized by (Zhang et al., 2001) under the condition of solid-liquid phase transfer catalysis using polyethylene glycol as catalyst, however, a much simpler method was used to synthesize the title compound. The reaction scheme involved a reaction of benzoyl chloride (10 mmol) with ammonium thiocyanate (10 mmol) in dry acetone. The product, benzoyl isothiocyanate was reacted with 4-hydroxy aniline (10 mmol) to give the title compound with a 56% yield. A slow evaporation of ethanolic solution of the compound gave light brawn crystals suitable for X-ray diffraction.

Refinement top

All the non hydrogen atom were refined anisotropically. the hydrogen positions were calculated to give an idealized geometry fixed to ride on their respective atoms, with Uiso=1.2Ueq (C) for aromatic (CH = 0.93 Å), Uiso=1.2Ueq (N) for N (NH = 0.86 Å) and Uiso=1.5Ueq (O) for OH (OH = 0.82 Å).

Structure description top

The title compound, I, is closely related to the previously reported N-benzoyl-N'-(3-hydroxyphenyl)thiourea (II) (Abosadiya et al., 2007) compound. As in most benzoylthiourea derivatives of the type R1C(O)NHC(S)NHR2, the title compound has a syn–anti configuration for the hydroxyphenyl and benzoyl groups with respect to the thiono C=S bond across the thiourea C—N bond (Fig 1). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable to those in (II). All C—N bond lengths are shorter than the normal value for C—N single bond, and the bond lengths C7—O1 and C8—S1 become longer than normal values for a double bond, which suggests the presence of delocalized π-electrons. For example, the C=S bond (1.671 (2) Å) and C—N bond lengths (C8—N1 = 1.388 (2) Å, C8—N2 = 1.328 (2) Å and C9—N2 = 1.428 (2) Å) in the title compound are longer than that observed in an unsubsituted phenyl ring (III - Yamin et al., 2003) in which the C=S bond length (1.6567 (15) Å) and C—N bond lengths are 1.393 (2), 1.326 (2) and 1.408 (2) Å, respectively. This is due to donating effect of OH group in the para position, which contributes to an increase in the bond length.

The benzoyl ring [C1/C2/C3/C4/C5/C6/C7/O1] (A), hydroxyphenyl ring [N2/C9/C10/C11/C12/C13/C14/O2] (B) and thiourea [(S1/N1/N2/C8/] (C) fragments are essentially planar with maximum deviations from their mean planes of 0.045 (2) Å for atom O1 (A), 0.010 (2) Å for atom C10 (B) and 0.008 (2)Å for atom C8 (C), respectively. The dihedral angle between the mean planes of A and B is 36.77 (8)°. The crytal structure is stabilized by an intramolecular N2—H2B···O1 hydrogen bond which forms a six-membered ring (N2/H2B/O1/C7/N1/C8) commonly observed in this class of ligands. In addition, the molecules are linked by weak intermolecular C11—H···O1, C1—H···O2, O2—H···S1 and N1—H···O2 hydrogen bonds (Table 2), resulting in a one-dimensional chain along the c-axis (Fig 2).

For the preparation, see: Zhang et al. (2001). For related compounds, structural parameters and chemical properties, see: Abosadiya et al. 2007); Hung et al. (2010); Yamin & Yusof (2003); For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. Dashed lines indicate intramolecular N—H···O hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the a axis. Dashed lines indicate weak C—H···O, C—H···O, O—H···S and N—H···O hydrogen bonds.
1-Benzoyl-3-(4-hydroxyphenyl)thiourea top
Crystal data top
C14H12N2O2SF(000) = 568
Mr = 272.33Dx = 1.361 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1024 reflections
a = 5.5865 (10) Åθ = 1.9–25.0°
b = 14.451 (2) ŵ = 0.24 mm1
c = 16.462 (3) ÅT = 298 K
V = 1329.0 (4) Å3Block, brown
Z = 40.50 × 0.48 × 0.35 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.886, Tmax = 0.919k = 1517
7608 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1346P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2351 reflectionsΔρmax = 0.13 e Å3
173 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), 958 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C14H12N2O2SV = 1329.0 (4) Å3
Mr = 272.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5865 (10) ŵ = 0.24 mm1
b = 14.451 (2) ÅT = 298 K
c = 16.462 (3) Å0.50 × 0.48 × 0.35 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2143 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.919Rint = 0.018
7608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.14 e Å3
2351 reflectionsAbsolute structure: Flack (1983), 958 Friedel pairs
173 parametersAbsolute structure parameter: 0.09 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.13932 (14)0.04354 (4)0.71251 (4)0.0812 (2)
O10.7785 (3)0.23667 (10)0.72476 (9)0.0719 (4)
N10.8692 (3)0.09206 (10)0.76731 (8)0.0518 (4)
H1B0.84290.05300.80570.062*
N21.0996 (3)0.12902 (11)0.65596 (9)0.0565 (4)
H2B1.04690.18410.66460.068*
C10.5090 (4)0.10914 (14)0.89160 (13)0.0632 (5)
H1A0.60770.05730.89280.076*
C20.3268 (5)0.11715 (16)0.94751 (14)0.0712 (6)
H2A0.30320.07120.98620.085*
C30.1812 (4)0.19276 (18)0.94584 (14)0.0726 (6)
H3A0.05810.19830.98360.087*
C40.2149 (4)0.26068 (17)0.88890 (14)0.0734 (6)
H4A0.11400.31190.88790.088*
C50.3978 (4)0.25336 (14)0.83317 (12)0.0632 (5)
H5A0.42080.30000.79500.076*
C60.5475 (3)0.17701 (12)0.83367 (10)0.0487 (4)
C70.7395 (4)0.17240 (12)0.77127 (10)0.0512 (4)
C81.0373 (4)0.06508 (13)0.70994 (11)0.0527 (4)
C91.2439 (4)0.11670 (13)0.58521 (11)0.0504 (4)
C101.1577 (4)0.15191 (12)0.51275 (11)0.0520 (5)
H10A1.01180.18290.51190.062*
C111.2858 (4)0.14146 (12)0.44198 (11)0.0518 (5)
H11A1.22570.16430.39330.062*
C121.5042 (3)0.09692 (12)0.44377 (12)0.0515 (5)
C131.5928 (4)0.06247 (16)0.51603 (11)0.0596 (5)
H13A1.73990.03230.51700.072*
C141.4626 (4)0.07290 (16)0.58682 (12)0.0594 (5)
H14A1.52290.05030.63560.071*
O21.6406 (3)0.08472 (10)0.37487 (9)0.0682 (4)
H2C1.57170.10790.33590.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1110 (5)0.0497 (3)0.0828 (4)0.0182 (3)0.0277 (4)0.0010 (3)
O10.1018 (11)0.0536 (8)0.0603 (8)0.0184 (8)0.0223 (8)0.0179 (6)
N10.0712 (10)0.0432 (8)0.0410 (7)0.0061 (8)0.0053 (7)0.0030 (6)
N20.0712 (10)0.0480 (8)0.0504 (8)0.0014 (8)0.0101 (8)0.0027 (7)
C10.0732 (14)0.0513 (11)0.0649 (12)0.0051 (10)0.0142 (10)0.0055 (9)
C20.0783 (15)0.0630 (13)0.0723 (13)0.0108 (12)0.0191 (12)0.0028 (11)
C30.0575 (13)0.0890 (17)0.0713 (13)0.0058 (12)0.0105 (11)0.0166 (13)
C40.0649 (14)0.0824 (16)0.0728 (14)0.0219 (12)0.0005 (12)0.0090 (12)
C50.0755 (14)0.0596 (12)0.0546 (11)0.0119 (11)0.0026 (11)0.0023 (9)
C60.0573 (11)0.0472 (10)0.0416 (8)0.0009 (8)0.0045 (8)0.0040 (7)
C70.0669 (11)0.0461 (10)0.0406 (9)0.0026 (9)0.0032 (8)0.0018 (7)
C80.0627 (11)0.0508 (10)0.0446 (9)0.0008 (8)0.0022 (8)0.0056 (8)
C90.0560 (11)0.0481 (9)0.0471 (9)0.0079 (9)0.0045 (8)0.0071 (8)
C100.0548 (11)0.0411 (9)0.0600 (11)0.0009 (9)0.0083 (9)0.0050 (8)
C110.0618 (12)0.0426 (10)0.0509 (10)0.0032 (8)0.0049 (9)0.0051 (8)
C120.0543 (11)0.0470 (10)0.0531 (10)0.0119 (9)0.0061 (8)0.0105 (8)
C130.0464 (10)0.0724 (13)0.0602 (11)0.0001 (10)0.0044 (9)0.0115 (10)
C140.0522 (11)0.0780 (13)0.0480 (10)0.0026 (10)0.0083 (8)0.0081 (9)
O20.0727 (10)0.0735 (9)0.0583 (8)0.0002 (8)0.0169 (7)0.0080 (7)
Geometric parameters (Å, º) top
S1—C81.670 (2)C4—H4A0.9300
O1—C71.223 (2)C5—C61.385 (3)
N1—C71.370 (2)C5—H5A0.9300
N1—C81.388 (2)C6—C71.486 (3)
N1—H1B0.8600C9—C141.376 (3)
N2—C81.328 (2)C9—C101.384 (3)
N2—C91.428 (2)C10—C111.376 (3)
N2—H2B0.8600C10—H10A0.9300
C1—C21.377 (3)C11—C121.379 (3)
C1—C61.385 (3)C11—H11A0.9300
C1—H1A0.9300C12—O21.378 (2)
C2—C31.362 (3)C12—C131.381 (3)
C2—H2A0.9300C13—C141.382 (3)
C3—C41.370 (3)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9300
C4—C51.377 (3)O2—H2C0.8200
C7—N1—C8128.94 (15)O1—C7—C6121.81 (17)
C7—N1—H1B115.5N1—C7—C6116.91 (15)
C8—N1—H1B115.5N2—C8—N1115.91 (16)
C8—N2—C9127.36 (16)N2—C8—S1125.54 (15)
C8—N2—H2B116.3N1—C8—S1118.53 (13)
C9—N2—H2B116.3C14—C9—C10119.66 (17)
C2—C1—C6121.0 (2)C14—C9—N2122.90 (17)
C2—C1—H1A119.5C10—C9—N2117.43 (17)
C6—C1—H1A119.5C11—C10—C9120.56 (18)
C3—C2—C1119.7 (2)C11—C10—H10A119.7
C3—C2—H2A120.2C9—C10—H10A119.7
C1—C2—H2A120.2C10—C11—C12119.57 (18)
C2—C3—C4120.4 (2)C10—C11—H11A120.2
C2—C3—H3A119.8C12—C11—H11A120.2
C4—C3—H3A119.8O2—C12—C11122.08 (18)
C3—C4—C5120.2 (2)O2—C12—C13117.68 (18)
C3—C4—H4A119.9C11—C12—C13120.24 (18)
C5—C4—H4A119.9C12—C13—C14119.87 (19)
C4—C5—C6120.4 (2)C12—C13—H13A120.1
C4—C5—H5A119.8C14—C13—H13A120.1
C6—C5—H5A119.8C9—C14—C13120.08 (19)
C1—C6—C5118.32 (18)C9—C14—H14A120.0
C1—C6—C7123.80 (17)C13—C14—H14A120.0
C5—C6—C7117.87 (17)C12—O2—H2C109.5
O1—C7—N1121.28 (18)
C6—C1—C2—C30.2 (3)C9—N2—C8—S17.0 (3)
C1—C2—C3—C40.1 (4)C7—N1—C8—N27.5 (3)
C2—C3—C4—C50.5 (4)C7—N1—C8—S1171.15 (16)
C3—C4—C5—C60.6 (3)C8—N2—C9—C1449.9 (3)
C2—C1—C6—C50.1 (3)C8—N2—C9—C10130.9 (2)
C2—C1—C6—C7179.5 (2)C14—C9—C10—C111.6 (3)
C4—C5—C6—C10.3 (3)N2—C9—C10—C11179.13 (16)
C4—C5—C6—C7179.15 (19)C9—C10—C11—C121.2 (3)
C8—N1—C7—O17.2 (3)C10—C11—C12—O2179.80 (17)
C8—N1—C7—C6171.87 (17)C10—C11—C12—C130.4 (3)
C1—C6—C7—O1174.8 (2)O2—C12—C13—C14179.95 (18)
C5—C6—C7—O15.8 (3)C11—C12—C13—C140.2 (3)
C1—C6—C7—N16.1 (3)C10—C9—C14—C131.4 (3)
C5—C6—C7—N1173.29 (17)N2—C9—C14—C13179.44 (19)
C9—N2—C8—N1171.58 (17)C12—C13—C14—C90.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.861.952.631 (2)135
N1—H1B···O2i0.862.293.109 (2)158
O2—H2C···S1ii0.822.533.1533 (18)134
C1—H1A···O2i0.932.513.429 (3)172
C11—H11A···O1iii0.932.433.262 (2)149
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x+5/2, y, z1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N2O2S
Mr272.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.5865 (10), 14.451 (2), 16.462 (3)
V3)1329.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.48 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.886, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
7608, 2351, 2143
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.05
No. of reflections2351
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureFlack (1983), 958 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.861.952.631 (2)135
N1—H1B···O2i0.862.293.109 (2)158
O2—H2C···S1ii0.822.533.1533 (18)134
C1—H1A···O2i0.932.513.429 (3)172
C11—H11A···O1iii0.932.433.262 (2)149
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x+5/2, y, z1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010, the Libyan Government for providing a scholarship for AA and J.-C. Daran for his advice.

References

First citationAbosadiya, H. M., Yamin, B. M. & Ngah, N. (2007). Acta Cryst. E63, o2403–o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o340–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-M., Wei, T.-B. & Gao, L.-M. (2001). Synth. Commun. 31 3099–3105.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds