metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[5-(3-pyrid­yl)tetra­zolido-κN5]zinc(II) tetra­hydrate

aCollege of Mechanical & Material Engineering, China Three Gorges University, Yichang, Hubei 443002, People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 13 November 2010; accepted 21 November 2010; online 27 November 2010)

The title compound, [Zn(C6H4N5)2(H2O)4]·4H2O, was synthesized by the hydro­thermal reaction of Zn(CH3COO)2·2H2O with 3-(2H-tetra­zol-5-yl)pyridine. The ZnII ion is located on an inversion center and is coordinated by two pyridine N atoms from two 5-(3-pyrid­yl)tetra­zolide ligands and four coordinated water mol­ecules in a slightly distorted octa­hedral geometry. The dihedral angle between the pyridine and tetra­zole rings is 9.920 (7)°. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds involving the tetra­zole group N atoms, the aqua ligands and solvent water mol­ecules.

Related literature

For background to 5-(3-pyrid­yl)tetra­zolate complexes, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. Engl. 41, 3800-3803.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For a related structure, see: Zhang et al. (2006[Zhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908-m2909.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4N5)2(H2O)4]·4H2O

  • Mr = 501.78

  • Triclinic, [P \overline 1]

  • a = 8.0930 (13) Å

  • b = 8.5836 (14) Å

  • c = 8.7082 (14) Å

  • α = 85.942 (2)°

  • β = 65.075 (2)°

  • γ = 72.369 (2)°

  • V = 521.69 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.35 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.800

  • 2640 measured reflections

  • 1814 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.00

  • 1814 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.85 2.02 2.848 (2) 165
O1—H1B⋯O3ii 0.85 1.97 2.813 (2) 171
O2—H2A⋯N5iii 0.85 1.89 2.733 (2) 171
O2—H2B⋯O4iv 0.85 1.92 2.768 (2) 177
O3—H3B⋯O4v 0.85 1.97 2.811 (2) 173
O3—H3A⋯N2ii 0.85 1.96 2.792 (2) 167
O4—H4A⋯N4ii 0.85 1.99 2.838 (2) 175
O4—H4B⋯N3vi 0.85 2.02 2.870 (2) 180
Symmetry codes: (i) x+1, y, z-1; (ii) -x+2, -y+1, -z+1; (iii) x, y, z-1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x-1, y-1, z.

Data collection: SMART (Bruker, 2007)[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2007)[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nowadays much attention is focused on the design and synthesis of functional materials based on metal-organic coordination polymers due to their intriguing topological structures and tremendous range of potential applications. Tetrazole compounds are a class of excellent ligands for construction of novel metal-organic frameworks and for the medical applications, because of their various coordination modes (Xiong et al., 2002; Wang et al., 2005; Zhang et al., 2006). We report herein the crystal structure of the title compound. The asymmetric unit contains one half of a ZnII ion, one 5-(3-pyridyl)tetrazolide (3-ptz) ligand, two coordinated water and two solvent water molecules. The ZnII ion is in a slightly distorted octahedral geometry surrounded by two N atoms from two 5-(3-pyridyl)tetrazolide ligands and four coordinated water molecules (Fig. 1). The dihedral angle between the pyridine and tetrazole rings is 9.920 (7)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular O—H···O, O—H···N hydrogen bonds involving the tetrazole group N atoms, the aqua ligands and solvent water molecules (Fig. 2). The hydrogen bond network contains R24(10), R44(10) and R44(22) rings (Bernstein et al., 1995).

Related literature top

For background to 5-(3-pyridyl)tetrazolate complexes, see: Xiong et al. (2002); Wang et al. (2005). For a related structure, see Zhang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-(2H-tetrazol-5-yl)pyridine (0.2 mmol,0.0294 g), Zn(CH3COO)2.2H2O (0.1 mmol, 0.0219 g), methanol (5 ml) and distilled water (10 ml) were sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to 298 K at which time colorless crystals were obtained.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.85 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(O).

Structure description top

Nowadays much attention is focused on the design and synthesis of functional materials based on metal-organic coordination polymers due to their intriguing topological structures and tremendous range of potential applications. Tetrazole compounds are a class of excellent ligands for construction of novel metal-organic frameworks and for the medical applications, because of their various coordination modes (Xiong et al., 2002; Wang et al., 2005; Zhang et al., 2006). We report herein the crystal structure of the title compound. The asymmetric unit contains one half of a ZnII ion, one 5-(3-pyridyl)tetrazolide (3-ptz) ligand, two coordinated water and two solvent water molecules. The ZnII ion is in a slightly distorted octahedral geometry surrounded by two N atoms from two 5-(3-pyridyl)tetrazolide ligands and four coordinated water molecules (Fig. 1). The dihedral angle between the pyridine and tetrazole rings is 9.920 (7)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular O—H···O, O—H···N hydrogen bonds involving the tetrazole group N atoms, the aqua ligands and solvent water molecules (Fig. 2). The hydrogen bond network contains R24(10), R44(10) and R44(22) rings (Bernstein et al., 1995).

For background to 5-(3-pyridyl)tetrazolate complexes, see: Xiong et al. (2002); Wang et al. (2005). For a related structure, see Zhang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (A) 2 - x, 1 - y, -z.].
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Tetraaquabis[5-(3-pyridyl)tetrazolido-κN5]zinc(II) tetrahydrate top
Crystal data top
[Zn(C6H4N5)2(H2O)4]·4H2OZ = 1
Mr = 501.78F(000) = 260
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0930 (13) ÅCell parameters from 2640 reflections
b = 8.5836 (14) Åθ = 2.5–25.0°
c = 8.7082 (14) ŵ = 1.24 mm1
α = 85.942 (2)°T = 296 K
β = 65.075 (2)°Prism, colorless
γ = 72.369 (2)°0.35 × 0.23 × 0.18 mm
V = 521.69 (15) Å3
Data collection top
Bruker SMART CCD
diffractometer
1814 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.717, Tmax = 0.800k = 109
2640 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.038P)2 + 0.3832P]
where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Zn(C6H4N5)2(H2O)4]·4H2Oγ = 72.369 (2)°
Mr = 501.78V = 521.69 (15) Å3
Triclinic, P1Z = 1
a = 8.0930 (13) ÅMo Kα radiation
b = 8.5836 (14) ŵ = 1.24 mm1
c = 8.7082 (14) ÅT = 296 K
α = 85.942 (2)°0.35 × 0.23 × 0.18 mm
β = 65.075 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1788 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.800Rint = 0.018
2640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
1814 reflectionsΔρmin = 0.48 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.50000.00000.02415 (12)
N10.9006 (2)0.5872 (2)0.2605 (2)0.0253 (3)
N21.2471 (2)0.8188 (2)0.3456 (2)0.0295 (4)
N31.3341 (2)0.8789 (2)0.4176 (2)0.0323 (4)
N41.2417 (3)0.8856 (2)0.5824 (2)0.0316 (4)
N51.0910 (2)0.8308 (2)0.6230 (2)0.0277 (4)
O11.2917 (2)0.49525 (18)0.06216 (18)0.0332 (3)
H1A1.36350.41320.03660.050*
H1B1.31820.57860.04380.050*
O20.9302 (2)0.74166 (18)0.05239 (19)0.0431 (4)
H2A0.97490.78020.14880.052*
H2B0.84790.81830.02140.065*
O30.5798 (2)0.25397 (19)1.00465 (19)0.0359 (3)
H3B0.59380.17031.06160.054*
H3A0.63170.21650.90190.054*
O40.6545 (2)0.01658 (18)0.19326 (18)0.0337 (3)
H4A0.69300.02110.25540.051*
H4B0.55980.04800.25930.051*
C11.0065 (3)0.6594 (2)0.2951 (2)0.0280 (4)
H11.11700.66960.20550.034*
C20.9644 (3)0.7203 (2)0.4543 (2)0.0233 (4)
C30.7977 (3)0.7081 (3)0.5869 (2)0.0284 (4)
H30.76300.74740.69650.034*
C40.6849 (3)0.6368 (3)0.5532 (3)0.0332 (5)
H40.57160.62860.64010.040*
C50.7393 (3)0.5773 (2)0.3904 (2)0.0283 (4)
H50.66160.52870.37000.034*
C61.0978 (3)0.7907 (2)0.4753 (2)0.0234 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02550 (18)0.02944 (19)0.01939 (18)0.01032 (13)0.00976 (13)0.00137 (12)
N10.0254 (8)0.0299 (8)0.0232 (8)0.0103 (7)0.0113 (7)0.0027 (6)
N20.0297 (9)0.0378 (9)0.0237 (8)0.0157 (7)0.0099 (7)0.0023 (7)
N30.0321 (9)0.0394 (10)0.0304 (9)0.0173 (8)0.0134 (7)0.0026 (7)
N40.0353 (9)0.0353 (9)0.0318 (9)0.0161 (8)0.0176 (8)0.0031 (7)
N50.0331 (9)0.0313 (9)0.0231 (8)0.0147 (7)0.0127 (7)0.0033 (7)
O10.0273 (7)0.0398 (8)0.0351 (8)0.0100 (6)0.0148 (6)0.0026 (6)
O20.0585 (10)0.0300 (8)0.0218 (7)0.0056 (7)0.0051 (7)0.0046 (6)
O30.0379 (8)0.0388 (8)0.0276 (8)0.0126 (7)0.0099 (6)0.0030 (6)
O40.0364 (8)0.0421 (8)0.0248 (7)0.0187 (7)0.0099 (6)0.0004 (6)
C10.0277 (10)0.0370 (11)0.0201 (9)0.0155 (8)0.0067 (8)0.0013 (8)
C20.0246 (9)0.0236 (9)0.0229 (9)0.0071 (7)0.0115 (7)0.0034 (7)
C30.0274 (10)0.0355 (10)0.0202 (9)0.0096 (8)0.0076 (8)0.0004 (8)
C40.0254 (10)0.0461 (12)0.0258 (10)0.0154 (9)0.0055 (8)0.0021 (9)
C50.0253 (10)0.0357 (11)0.0275 (10)0.0128 (8)0.0123 (8)0.0033 (8)
C60.0260 (9)0.0231 (9)0.0227 (9)0.0086 (7)0.0111 (7)0.0037 (7)
Geometric parameters (Å, º) top
Zn1—O2i2.0503 (15)O2—H2A0.8498
Zn1—O22.0503 (15)O2—H2B0.8498
Zn1—N1i2.1662 (16)O3—H3B0.8499
Zn1—N12.1662 (16)O3—H3A0.8499
Zn1—O1i2.1760 (14)O4—H4A0.8498
Zn1—O12.1760 (14)O4—H4B0.8498
N1—C11.333 (3)C1—C21.381 (3)
N1—C51.341 (2)C1—H10.9300
N2—C61.335 (2)C2—C31.385 (3)
N2—N31.339 (2)C2—C61.463 (3)
N3—N41.305 (3)C3—C41.373 (3)
N4—N51.339 (2)C3—H30.9300
N5—C61.329 (3)C4—C51.380 (3)
O1—H1A0.8499C4—H40.9300
O1—H1B0.8500C5—H50.9300
O2i—Zn1—O2180.0H1A—O1—H1B106.1
O2i—Zn1—N1i86.61 (6)Zn1—O2—H2A126.3
O2—Zn1—N1i93.39 (6)Zn1—O2—H2B123.6
O2i—Zn1—N193.39 (6)H2A—O2—H2B110.0
O2—Zn1—N186.61 (6)H3B—O3—H3A105.1
N1i—Zn1—N1180.0H4A—O4—H4B107.1
O2i—Zn1—O1i91.09 (7)N1—C1—C2124.80 (17)
O2—Zn1—O1i88.91 (7)N1—C1—H1117.6
N1i—Zn1—O1i92.52 (6)C2—C1—H1117.6
N1—Zn1—O1i87.48 (6)C1—C2—C3117.46 (17)
O2i—Zn1—O188.91 (7)C1—C2—C6119.00 (17)
O2—Zn1—O191.09 (7)C3—C2—C6123.53 (17)
N1i—Zn1—O187.48 (6)C4—C3—C2118.58 (18)
N1—Zn1—O192.52 (6)C4—C3—H3120.7
O1i—Zn1—O1180.00 (8)C2—C3—H3120.7
C1—N1—C5116.84 (17)C3—C4—C5120.07 (18)
C1—N1—Zn1117.54 (12)C3—C4—H4120.0
C5—N1—Zn1125.61 (13)C5—C4—H4120.0
C6—N2—N3104.97 (16)N1—C5—C4122.24 (18)
N4—N3—N2109.42 (16)N1—C5—H5118.9
N3—N4—N5109.47 (16)C4—C5—H5118.9
C6—N5—N4105.07 (15)N5—C6—N2111.07 (16)
Zn1—O1—H1A118.6N5—C6—C2125.41 (17)
Zn1—O1—H1B122.1N2—C6—C2123.50 (17)
O2i—Zn1—N1—C1109.54 (15)N1—C1—C2—C6177.49 (18)
O2—Zn1—N1—C170.46 (15)C1—C2—C3—C40.0 (3)
N1i—Zn1—N1—C169 (100)C6—C2—C3—C4178.70 (19)
O1i—Zn1—N1—C1159.52 (15)C2—C3—C4—C50.8 (3)
O1—Zn1—N1—C120.48 (15)C1—N1—C5—C40.7 (3)
O2i—Zn1—N1—C571.60 (16)Zn1—N1—C5—C4179.59 (15)
O2—Zn1—N1—C5108.40 (16)C3—C4—C5—N10.5 (3)
N1i—Zn1—N1—C5110 (100)N4—N5—C6—N20.0 (2)
O1i—Zn1—N1—C519.35 (16)N4—N5—C6—C2178.35 (17)
O1—Zn1—N1—C5160.65 (16)N3—N2—C6—N50.2 (2)
C6—N2—N3—N40.2 (2)N3—N2—C6—C2178.53 (17)
N2—N3—N4—N50.2 (2)C1—C2—C6—N5169.29 (19)
N3—N4—N5—C60.1 (2)C3—C2—C6—N59.4 (3)
C5—N1—C1—C21.6 (3)C1—C2—C6—N28.8 (3)
Zn1—N1—C1—C2179.40 (15)C3—C2—C6—N2172.44 (19)
N1—C1—C2—C31.3 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.852.022.848 (2)165
O1—H1B···O3iii0.851.972.813 (2)171
O2—H2A···N5iv0.851.892.733 (2)171
O2—H2B···O4v0.851.922.768 (2)177
O3—H3B···O4vi0.851.972.811 (2)173
O3—H3A···N2iii0.851.962.792 (2)167
O4—H4A···N4iii0.851.992.838 (2)175
O4—H4B···N3vii0.852.022.870 (2)180
Symmetry codes: (ii) x+1, y, z1; (iii) x+2, y+1, z+1; (iv) x, y, z1; (v) x, y+1, z; (vi) x, y, z+1; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C6H4N5)2(H2O)4]·4H2O
Mr501.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0930 (13), 8.5836 (14), 8.7082 (14)
α, β, γ (°)85.942 (2), 65.075 (2), 72.369 (2)
V3)521.69 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.35 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
2640, 1814, 1788
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.00
No. of reflections1814
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.48

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.852.022.848 (2)165.3
O1—H1B···O3ii0.851.972.813 (2)170.5
O2—H2A···N5iii0.851.892.733 (2)170.8
O2—H2B···O4iv0.851.922.768 (2)177.0
O3—H3B···O4v0.851.972.811 (2)172.7
O3—H3A···N2ii0.851.962.792 (2)166.9
O4—H4A···N4ii0.851.992.838 (2)174.6
O4—H4B···N3vi0.852.022.870 (2)179.5
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x1, y1, z.
 

Acknowledgements

This work was supported financially by the Important Project of Hubei Provincial Education Office (Q20101203).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. Engl. 41, 3800–3803.  CrossRef PubMed CAS Google Scholar
First citationZhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908–m2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds