organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl 3,5-di-tert-butyl-2-hy­dr­oxy­benzoate

aPrograma de Doctorado, Fisico-Química Molecular, Universidad Andres Bello, Avenida República 275 Segundo Piso, Santiago, Chile, bDepartamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica, Santiago, Chile, cCasilla 306 Correo 22, Santiago, Chile, dDepartamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Avenida República 275 3er Piso, Santiago, Chile, and eCentro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile
*Correspondence e-mail: ichavez@uc.cl

(Received 12 October 2010; accepted 27 October 2010; online 24 November 2010)

The title mol­ecule, C21H26O3, has a six-membered planar carbon ring as the central core, substituted at position 1 with phen­oxy­carbonyl, at position 2 with hy­droxy and at positions 3 and 5 with tert-butyl groups. The structure shows two independent but very similar mol­ecules within the asymmetric unit. For both independent mol­ecules, the ester carboxyl­ate group is coplanar with the central core, as reflected by the small C—C—O—C torsion angles [179.95 (17) and 173.70 (17)°]. In contrast, the phenyl substituent is almost perpendicular to the carboxyl­ate –CO2 fragment, as reflected by C—O—C—C torsion angles, ranging from 74 to 80°. The coplanarity between the central aromatic ring and the ester carboxyl­ate –CO2– group allows the formation of an intra­molecular hydrogen bond, with O⋯O distances of 2.563 (2) and 2.604 (2) Å.

Related literature

For the synthesis of the title compound, see: Moore et al. (2008[Moore, G. F., Hambourger, M., Gervaldo, M., Poluektov, O. G., Rajh, T., Gust, D., Moore, T. A. & Moore, A. L. (2008). J. Am. Chem. Soc. 130, 10466-10467.]); Benisvy et al. (2004[Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Woloska, J. (2004). Dalton Trans. pp. 3647-3653.]). For similar mol­ecules, see: Baptista (1966[Baptista, A. (1966). An. Acad. Bras. Cienc. 38, 415.]); Bilgram et al. (1982[Bilgram, J. H., Durig, U., Wachter, M. & Seiler, P. (1982). J. Cryst. Growth, 57, 1-5.]); Hammond et al. (2002[Hammond, R. B., Jones, M. J., Roberts, K. J., Kutzke, H. & Klapper, H. (2002). Z. Kristallogr. 217, 484-485.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26O3

  • Mr = 326.42

  • Triclinic, [P \overline 1]

  • a = 10.5691 (11) Å

  • b = 12.2590 (13) Å

  • c = 15.0534 (16) Å

  • α = 96.400 (2)°

  • β = 93.813 (2)°

  • γ = 92.728 (2)°

  • V = 1931.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 297 K

  • 0.50 × 0.21 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.985

  • 12058 measured reflections

  • 6736 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.01

  • 6736 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.83 2.563 (2) 148
O4—H4⋯O5 0.82 1.88 2.604 (2) 147

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

Benzoate phenyl esters have been described to be precursors of benzimidazole molecules by reaction with 1,2-phenylenediamine (Moore et al., 2008). The crystal shows two independent but very similar molecules within the asymmetric unit. For both independent molecules, the carboxylic acid group from ester is coplanar with the central core, as reflected by the small C—C—O—C torsion angles (C1—C7—O3—C16, 179.95 (17)°; C22—C28—O6—C37 173.70 (17)°), while the phenyl substituent is almost perpendicular to the carboxylate CO2 fragment (C7—O3—C16—C21 110.4 (2)°; C7—O3—C16—C17 - 74.1 (3)° and C28—O6—C37—C38 - 69.2 (3)°; C28—O6—C37—C42 117.4 (2)°). The co-planarity between the central aromatic ring and the carboxylate CO2 group from ester allows the definition of a intramolecular hydrogen bond, with O···O 2.563 (2) and 2.604 (2) Å.

The structure is closely related to that of the unsubstituted 2-hydroxybenzoic acid phenyl ester (Baptista, 1966; Bilgram et al. 1982; Hammond et al., 2002), where the carboxylate group is almost coplanar to the phenyl ring where is attached (C—C—O—C less than 2° deviated from 180°) and the benzoate phenyl almost perpendicular to the carboxylate (C—O—C—C 75.8° and -100.5°).

The phenyl rings from the benzoate from each of the two molecules within the asymmetric unit defines a weak π···π interaction with Cg1(C16, C17, C18, C19, C20, C21)···Cg2(C37, C38, C39, C40, C41, C41) 3.903 (2) Å].

Related literature top

For the synthesis of the title compound, see: Moore et al. (2008); Benisvy et al. (2004). For similar molecules, see: Baptista (1966); Bilgram et al. (1982); Hammond et al. (2002).

Experimental top

The compound was prepared by methods described in literature (Benisvy et al., 2004) slighty modified by using CHCl3 for crystallization instead of pentane. The title compound was prepared in a 40% yield.

Refinement top

The H-atoms positions were calculated after each cycle of refinement using a riding model for each structure, with C—H distances in the range 0.93 to 0.96 Å. Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and 1.2Ueq for the others. The hydroxyl hydrogen atoms were located in the difference Fourier map, but were subsequentely refined with constraints, O—H 0.82 Å and Uiso(H) 1.5Ueq of the parent oxygen atom.

Structure description top

Benzoate phenyl esters have been described to be precursors of benzimidazole molecules by reaction with 1,2-phenylenediamine (Moore et al., 2008). The crystal shows two independent but very similar molecules within the asymmetric unit. For both independent molecules, the carboxylic acid group from ester is coplanar with the central core, as reflected by the small C—C—O—C torsion angles (C1—C7—O3—C16, 179.95 (17)°; C22—C28—O6—C37 173.70 (17)°), while the phenyl substituent is almost perpendicular to the carboxylate CO2 fragment (C7—O3—C16—C21 110.4 (2)°; C7—O3—C16—C17 - 74.1 (3)° and C28—O6—C37—C38 - 69.2 (3)°; C28—O6—C37—C42 117.4 (2)°). The co-planarity between the central aromatic ring and the carboxylate CO2 group from ester allows the definition of a intramolecular hydrogen bond, with O···O 2.563 (2) and 2.604 (2) Å.

The structure is closely related to that of the unsubstituted 2-hydroxybenzoic acid phenyl ester (Baptista, 1966; Bilgram et al. 1982; Hammond et al., 2002), where the carboxylate group is almost coplanar to the phenyl ring where is attached (C—C—O—C less than 2° deviated from 180°) and the benzoate phenyl almost perpendicular to the carboxylate (C—O—C—C 75.8° and -100.5°).

The phenyl rings from the benzoate from each of the two molecules within the asymmetric unit defines a weak π···π interaction with Cg1(C16, C17, C18, C19, C20, C21)···Cg2(C37, C38, C39, C40, C41, C41) 3.903 (2) Å].

For the synthesis of the title compound, see: Moore et al. (2008); Benisvy et al. (2004). For similar molecules, see: Baptista (1966); Bilgram et al. (1982); Hammond et al. (2002).

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure diagram showing the two independent molecules of I within the crystal, with atom numbering scheme. Displacement ellipsoids are at 25% probability level and H atoms are shown as spheres of arbitrary radii. Intramolecular hydrogen bonds are shown using a dotted line.
Phenyl 3,5-di-tert-butyl-2-hydroxybenzoate top
Crystal data top
C21H26O3Z = 4
Mr = 326.42F(000) = 704
Triclinic, P1Dx = 1.123 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5691 (11) ÅCell parameters from 2560 reflections
b = 12.2590 (13) Åθ = 2.3–22.7°
c = 15.0534 (16) ŵ = 0.07 mm1
α = 96.400 (2)°T = 297 K
β = 93.813 (2)°Colourless, block
γ = 92.728 (2)°0.50 × 0.21 × 0.20 mm
V = 1931.0 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
6736 independent reflections
Radiation source: fine-focus sealed tube4140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.964, Tmax = 0.985k = 1414
12058 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
6736 reflections(Δ/σ)max < 0.001
445 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C21H26O3γ = 92.728 (2)°
Mr = 326.42V = 1931.0 (4) Å3
Triclinic, P1Z = 4
a = 10.5691 (11) ÅMo Kα radiation
b = 12.2590 (13) ŵ = 0.07 mm1
c = 15.0534 (16) ÅT = 297 K
α = 96.400 (2)°0.50 × 0.21 × 0.20 mm
β = 93.813 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4140 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.985Rint = 0.023
12058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
6736 reflectionsΔρmin = 0.12 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28649 (18)0.60650 (15)0.14800 (13)0.0465 (5)
C20.39947 (18)0.55813 (15)0.17139 (13)0.0477 (5)
C30.43181 (18)0.54106 (16)0.26117 (13)0.0492 (5)
C40.34696 (19)0.57713 (16)0.32313 (13)0.0520 (5)
H4A0.36660.56720.38270.062*
C50.23390 (18)0.62743 (15)0.30273 (13)0.0489 (5)
C60.20550 (18)0.64095 (16)0.21424 (13)0.0497 (5)
H60.13100.67360.19810.060*
C70.2566 (2)0.62093 (16)0.05325 (14)0.0524 (5)
C80.5538 (2)0.48601 (18)0.28850 (14)0.0587 (6)
C90.5530 (3)0.3694 (2)0.23936 (18)0.0877 (8)
H9A0.55130.37310.17590.131*
H9B0.47930.32740.25290.131*
H9C0.62810.33480.25850.131*
C100.6714 (2)0.5544 (3)0.26778 (19)0.0925 (9)
H10A0.66880.56060.20470.139*
H10B0.74670.51900.28540.139*
H10C0.67230.62640.30030.139*
C110.5654 (2)0.4759 (2)0.38918 (15)0.0798 (7)
H11A0.64250.44160.40410.120*
H11B0.49410.43210.40450.120*
H11C0.56680.54780.42210.120*
C120.1488 (2)0.66550 (18)0.37777 (14)0.0579 (6)
C130.0264 (3)0.7094 (3)0.34080 (18)0.0984 (10)
H13A0.04610.77050.30840.148*
H13B0.02400.73310.38940.148*
H13C0.02040.65240.30130.148*
C140.1143 (3)0.5700 (2)0.42967 (18)0.0903 (8)
H14A0.06610.51360.39040.135*
H14B0.06450.59530.47810.135*
H14C0.19050.54070.45330.135*
C150.2221 (3)0.7569 (2)0.4411 (2)0.1051 (10)
H15A0.29820.72900.46630.158*
H15B0.17010.78180.48840.158*
H15C0.24390.81710.40830.158*
C160.1065 (2)0.67878 (19)0.05259 (14)0.0563 (5)
C170.1612 (2)0.7639 (2)0.08992 (16)0.0721 (7)
H170.22600.80940.05840.086*
C180.1182 (3)0.7812 (2)0.17584 (17)0.0811 (7)
H180.15490.83850.20270.097*
C190.0230 (3)0.7153 (2)0.22116 (17)0.0859 (8)
H190.00480.72690.27910.103*
C200.0319 (3)0.6321 (2)0.18181 (18)0.0956 (9)
H200.09860.58810.21240.115*
C210.0109 (2)0.6127 (2)0.09681 (17)0.0801 (7)
H210.02540.55510.07020.096*
C220.12793 (17)0.97781 (16)0.23838 (13)0.0473 (5)
C230.13758 (18)1.04161 (16)0.32194 (13)0.0496 (5)
C240.25789 (19)1.07809 (16)0.36367 (13)0.0505 (5)
C250.36198 (19)1.04615 (16)0.31783 (13)0.0519 (5)
H250.44211.06890.34470.062*
C260.35629 (18)0.98219 (15)0.23419 (13)0.0490 (5)
C270.23656 (18)0.94917 (16)0.19592 (13)0.0485 (5)
H270.22820.90680.14040.058*
C280.00075 (19)0.93956 (16)0.19638 (14)0.0514 (5)
C290.2727 (2)1.14813 (18)0.45578 (14)0.0600 (6)
C300.2086 (2)1.25680 (19)0.44900 (17)0.0786 (7)
H30A0.24641.29510.40430.118*
H30B0.21961.30140.50590.118*
H30C0.11961.24190.43260.118*
C310.2142 (2)1.0855 (2)0.52725 (15)0.0811 (7)
H31A0.12571.06800.51050.122*
H31B0.22331.13050.58400.122*
H31C0.25701.01880.53200.122*
C320.4136 (2)1.1771 (2)0.48629 (16)0.0781 (7)
H32A0.45661.11070.49190.117*
H32B0.41961.22160.54320.117*
H32C0.45231.21690.44280.117*
C330.47866 (18)0.94936 (17)0.19175 (14)0.0564 (6)
C340.5428 (2)0.8673 (2)0.24641 (18)0.0914 (9)
H34A0.56880.90240.30540.137*
H34B0.61580.84150.21760.137*
H34C0.48410.80610.25070.137*
C350.5688 (2)1.0500 (2)0.1888 (2)0.0921 (9)
H35A0.52791.10120.15410.138*
H35B0.64451.02760.16180.138*
H35C0.59051.08450.24870.138*
C360.4521 (2)0.8948 (2)0.09531 (16)0.0810 (7)
H36A0.40050.82820.09510.122*
H36B0.53090.87810.07010.122*
H36C0.40820.94400.06030.122*
C370.10673 (18)0.83525 (18)0.06791 (14)0.0545 (5)
C380.1617 (2)0.74454 (19)0.09664 (15)0.0671 (6)
H380.13170.71980.14990.081*
C390.2638 (2)0.6893 (2)0.04492 (17)0.0752 (7)
H390.30310.62710.06350.090*
C400.3064 (2)0.7267 (2)0.03333 (17)0.0750 (7)
H400.37490.69000.06790.090*
C410.2489 (2)0.8176 (2)0.06085 (17)0.0782 (7)
H410.27790.84210.11440.094*
C420.1484 (2)0.87318 (19)0.01006 (16)0.0678 (6)
H420.10930.93560.02850.081*
O10.48062 (13)0.52679 (12)0.10891 (9)0.0666 (4)
H10.45160.53990.05960.100*
O20.32547 (15)0.59790 (14)0.00665 (10)0.0731 (5)
O30.14275 (14)0.66219 (13)0.03719 (9)0.0661 (4)
O40.03285 (13)1.06905 (12)0.36496 (10)0.0678 (4)
H40.03061.03900.33640.102*
O50.09842 (14)0.95344 (13)0.23141 (10)0.0669 (4)
O60.00567 (13)0.88675 (13)0.11387 (10)0.0666 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (12)0.0432 (11)0.0472 (12)0.0004 (9)0.0068 (9)0.0040 (9)
C20.0475 (12)0.0450 (12)0.0509 (12)0.0014 (9)0.0123 (10)0.0015 (9)
C30.0493 (12)0.0464 (12)0.0512 (12)0.0012 (9)0.0036 (10)0.0034 (9)
C40.0572 (13)0.0521 (13)0.0464 (12)0.0001 (10)0.0019 (10)0.0069 (10)
C50.0543 (13)0.0459 (12)0.0473 (12)0.0017 (10)0.0080 (9)0.0068 (9)
C60.0458 (11)0.0493 (12)0.0552 (13)0.0050 (9)0.0053 (9)0.0090 (10)
C70.0574 (13)0.0492 (13)0.0507 (13)0.0018 (10)0.0068 (11)0.0049 (10)
C80.0543 (13)0.0634 (14)0.0575 (13)0.0105 (11)0.0014 (10)0.0038 (11)
C90.0928 (19)0.0795 (18)0.0883 (19)0.0381 (15)0.0122 (15)0.0038 (15)
C100.0503 (15)0.123 (2)0.106 (2)0.0012 (14)0.0013 (13)0.0260 (18)
C110.0799 (17)0.0903 (19)0.0696 (17)0.0216 (14)0.0084 (13)0.0117 (14)
C120.0620 (14)0.0644 (14)0.0506 (12)0.0107 (11)0.0144 (10)0.0115 (11)
C130.090 (2)0.138 (3)0.0796 (18)0.0518 (19)0.0366 (15)0.0316 (17)
C140.100 (2)0.100 (2)0.0811 (18)0.0157 (16)0.0397 (15)0.0321 (16)
C150.111 (2)0.101 (2)0.096 (2)0.0011 (18)0.0316 (18)0.0324 (17)
C160.0592 (13)0.0633 (14)0.0469 (12)0.0070 (11)0.0015 (10)0.0093 (11)
C170.0699 (16)0.0745 (17)0.0712 (16)0.0074 (13)0.0078 (12)0.0183 (13)
C180.0847 (18)0.0844 (18)0.0784 (18)0.0052 (15)0.0023 (15)0.0365 (15)
C190.102 (2)0.092 (2)0.0635 (16)0.0005 (17)0.0178 (15)0.0251 (15)
C200.117 (2)0.088 (2)0.0746 (18)0.0269 (17)0.0302 (16)0.0170 (16)
C210.0974 (19)0.0727 (17)0.0687 (16)0.0194 (14)0.0103 (14)0.0219 (13)
C220.0419 (11)0.0487 (12)0.0511 (12)0.0020 (9)0.0008 (9)0.0079 (9)
C230.0445 (12)0.0524 (12)0.0528 (12)0.0011 (9)0.0067 (10)0.0082 (10)
C240.0491 (12)0.0516 (12)0.0499 (12)0.0010 (10)0.0004 (10)0.0051 (10)
C250.0458 (12)0.0541 (13)0.0534 (12)0.0059 (9)0.0044 (10)0.0040 (10)
C260.0465 (12)0.0471 (12)0.0531 (12)0.0034 (9)0.0026 (9)0.0083 (10)
C270.0481 (12)0.0497 (12)0.0464 (11)0.0018 (9)0.0022 (9)0.0035 (9)
C280.0473 (13)0.0517 (13)0.0554 (13)0.0019 (10)0.0039 (10)0.0080 (10)
C290.0639 (14)0.0613 (14)0.0524 (13)0.0021 (11)0.0011 (10)0.0007 (11)
C300.0900 (18)0.0670 (16)0.0741 (16)0.0089 (13)0.0019 (14)0.0093 (13)
C310.0917 (19)0.097 (2)0.0540 (14)0.0001 (15)0.0044 (13)0.0074 (13)
C320.0756 (17)0.0820 (17)0.0690 (16)0.0014 (13)0.0111 (13)0.0137 (13)
C330.0455 (12)0.0562 (13)0.0666 (14)0.0007 (10)0.0067 (10)0.0030 (11)
C340.0792 (18)0.103 (2)0.097 (2)0.0371 (16)0.0107 (15)0.0182 (17)
C350.0641 (16)0.0845 (19)0.125 (2)0.0144 (14)0.0310 (15)0.0090 (17)
C360.0643 (16)0.103 (2)0.0730 (17)0.0057 (14)0.0162 (12)0.0098 (14)
C370.0394 (11)0.0659 (14)0.0553 (13)0.0075 (10)0.0004 (10)0.0003 (11)
C380.0653 (15)0.0770 (17)0.0575 (14)0.0098 (13)0.0042 (11)0.0129 (12)
C390.0727 (16)0.0735 (17)0.0770 (17)0.0200 (13)0.0010 (14)0.0104 (13)
C400.0592 (15)0.0844 (19)0.0752 (17)0.0148 (13)0.0154 (12)0.0018 (14)
C410.0771 (17)0.0809 (18)0.0742 (16)0.0055 (14)0.0209 (13)0.0182 (14)
C420.0648 (15)0.0634 (15)0.0736 (16)0.0117 (12)0.0096 (12)0.0165 (12)
O10.0627 (9)0.0829 (11)0.0561 (9)0.0173 (8)0.0136 (7)0.0047 (8)
O20.0808 (11)0.0938 (12)0.0486 (9)0.0266 (9)0.0174 (8)0.0093 (8)
O30.0598 (9)0.0918 (11)0.0493 (9)0.0173 (8)0.0047 (7)0.0145 (8)
O40.0505 (9)0.0833 (11)0.0667 (10)0.0006 (8)0.0095 (7)0.0061 (8)
O50.0442 (9)0.0794 (11)0.0739 (10)0.0023 (7)0.0051 (7)0.0037 (8)
O60.0474 (9)0.0892 (11)0.0579 (9)0.0118 (8)0.0004 (7)0.0066 (8)
Geometric parameters (Å, º) top
C1—C61.400 (3)C22—C271.391 (3)
C1—C21.400 (3)C22—C231.400 (3)
C1—C71.472 (3)C22—C281.479 (3)
C2—O11.351 (2)C23—O41.356 (2)
C2—C31.413 (3)C23—C241.410 (3)
O1—H10.8200O4—H40.8200
C3—C41.388 (3)C24—C251.386 (3)
C3—C81.537 (3)C24—C291.542 (3)
C8—C91.534 (3)C28—O51.215 (2)
C8—C111.532 (3)C28—O61.340 (2)
C8—C101.535 (3)C29—C301.533 (3)
C9—H9A0.9600C29—C311.535 (3)
C9—H9B0.9600C29—C321.542 (3)
C9—H9C0.9600C30—H30A0.9600
C10—H10A0.9600C30—H30B0.9600
C10—H10B0.9600C30—H30C0.9600
C10—H10C0.9600C31—H31A0.9600
C11—H11A0.9600C31—H31B0.9600
C11—H11B0.9600C31—H31C0.9600
C11—H11C0.9600C25—C261.403 (3)
C4—C51.402 (3)C25—H250.9300
C4—H4A0.9300C26—C271.378 (3)
C5—C61.376 (3)C26—C331.531 (3)
C5—C121.536 (3)C27—H270.9300
C12—C131.520 (3)C32—H32A0.9600
C12—C141.522 (3)C32—H32B0.9600
C12—C151.531 (3)C32—H32C0.9600
C13—H13A0.9600C33—C341.525 (3)
C13—H13B0.9600C33—C351.529 (3)
C13—H13C0.9600C33—C361.531 (3)
C14—H14A0.9600C34—H34A0.9600
C14—H14B0.9600C34—H34B0.9600
C14—H14C0.9600C34—H34C0.9600
C15—H15A0.9600C35—H35A0.9600
C15—H15B0.9600C35—H35B0.9600
C15—H15C0.9600C35—H35C0.9600
C6—H60.9300O6—C371.418 (2)
C7—O21.213 (2)C36—H36A0.9600
C7—O31.345 (2)C36—H36B0.9600
O3—C161.419 (2)C36—H36C0.9600
C16—C211.354 (3)C37—C381.357 (3)
C16—C171.362 (3)C37—C421.364 (3)
C17—C181.384 (3)C38—C391.389 (3)
C17—H170.9300C38—H380.9300
C18—C191.357 (3)C39—C401.368 (3)
C18—H180.9300C39—H390.9300
C19—C201.361 (3)C40—C411.361 (3)
C19—H190.9300C40—H400.9300
C20—C211.378 (3)C41—C421.373 (3)
C20—H200.9300C41—H410.9300
C21—H210.9300C42—H420.9300
C6—C1—C2119.99 (18)C27—C22—C23120.52 (18)
C6—C1—C7121.49 (18)C27—C22—C28120.31 (18)
C2—C1—C7118.51 (17)C23—C22—C28119.17 (18)
O1—C2—C1121.01 (18)O4—C23—C22121.38 (18)
O1—C2—C3118.21 (17)O4—C23—C24118.46 (18)
C1—C2—C3120.78 (17)C22—C23—C24120.16 (18)
C2—O1—H1109.5C23—O4—H4109.5
C4—C3—C2116.01 (18)C25—C24—C23116.26 (18)
C4—C3—C8122.06 (18)C25—C24—C29121.95 (18)
C2—C3—C8121.93 (17)C23—C24—C29121.78 (18)
C9—C8—C11107.30 (19)O5—C28—O6122.67 (18)
C9—C8—C10110.2 (2)O5—C28—C22124.8 (2)
C11—C8—C10107.08 (19)O6—C28—C22112.52 (18)
C9—C8—C3110.12 (18)C30—C29—C31110.5 (2)
C11—C8—C3111.52 (17)C30—C29—C24109.31 (17)
C10—C8—C3110.54 (19)C31—C29—C24110.49 (18)
C8—C9—H9A109.5C30—C29—C32107.23 (19)
C8—C9—H9B109.5C31—C29—C32107.82 (18)
H9A—C9—H9B109.5C24—C29—C32111.45 (18)
C8—C9—H9C109.5C29—C30—H30A109.5
H9A—C9—H9C109.5C29—C30—H30B109.5
H9B—C9—H9C109.5H30A—C30—H30B109.5
C8—C10—H10A109.5C29—C30—H30C109.5
C8—C10—H10B109.5H30A—C30—H30C109.5
H10A—C10—H10B109.5H30B—C30—H30C109.5
C8—C10—H10C109.5C29—C31—H31A109.5
H10A—C10—H10C109.5C29—C31—H31B109.5
H10B—C10—H10C109.5H31A—C31—H31B109.5
C8—C11—H11A109.5C29—C31—H31C109.5
C8—C11—H11B109.5H31A—C31—H31C109.5
H11A—C11—H11B109.5H31B—C31—H31C109.5
C8—C11—H11C109.5C24—C25—C26125.29 (18)
H11A—C11—H11C109.5C24—C25—H25117.4
H11B—C11—H11C109.5C26—C25—H25117.4
C3—C4—C5124.99 (18)C27—C26—C25116.23 (18)
C3—C4—H4A117.5C27—C26—C33123.47 (18)
C5—C4—H4A117.5C25—C26—C33120.26 (18)
C6—C5—C4116.93 (18)C26—C27—C22121.53 (19)
C6—C5—C12123.04 (18)C26—C27—H27119.2
C4—C5—C12120.03 (17)C22—C27—H27119.2
C13—C12—C14108.2 (2)C29—C32—H32A109.5
C13—C12—C15109.0 (2)C29—C32—H32B109.5
C14—C12—C15109.5 (2)H32A—C32—H32B109.5
C13—C12—C5111.69 (18)C29—C32—H32C109.5
C14—C12—C5110.08 (18)H32A—C32—H32C109.5
C15—C12—C5108.38 (18)H32B—C32—H32C109.5
C12—C13—H13A109.5C34—C33—C35110.0 (2)
C12—C13—H13B109.5C34—C33—C36108.1 (2)
H13A—C13—H13B109.5C35—C33—C36107.2 (2)
C12—C13—H13C109.5C34—C33—C26108.84 (18)
H13A—C13—H13C109.5C35—C33—C26110.91 (17)
H13B—C13—H13C109.5C36—C33—C26111.75 (17)
C12—C14—H14A109.5C33—C34—H34A109.5
C12—C14—H14B109.5C33—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C12—C14—H14C109.5C33—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C12—C15—H15A109.5C33—C35—H35A109.5
C12—C15—H15B109.5C33—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C12—C15—H15C109.5C33—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
C5—C6—C1121.29 (18)C28—O6—C37119.58 (16)
C5—C6—H6119.4C33—C36—H36A109.5
C1—C6—H6119.4C33—C36—H36B109.5
O2—C7—O3121.45 (19)H36A—C36—H36B109.5
O2—C7—C1124.78 (19)C33—C36—H36C109.5
O3—C7—C1113.76 (18)H36A—C36—H36C109.5
C7—O3—C16117.41 (15)H36B—C36—H36C109.5
C21—C16—C17121.7 (2)C38—C37—C42122.0 (2)
C21—C16—O3118.0 (2)C38—C37—O6120.11 (19)
C17—C16—O3120.1 (2)C42—C37—O6117.56 (19)
C16—C17—C18118.4 (2)C37—C38—C39118.7 (2)
C16—C17—H17120.8C37—C38—H38120.7
C18—C17—H17120.8C39—C38—H38120.7
C19—C18—C17120.5 (2)C40—C39—C38119.8 (2)
C19—C18—H18119.7C40—C39—H39120.1
C17—C18—H18119.7C38—C39—H39120.1
C18—C19—C20120.0 (2)C41—C40—C39120.3 (2)
C18—C19—H19120.0C41—C40—H40119.9
C20—C19—H19120.0C39—C40—H40119.9
C19—C20—C21120.3 (2)C40—C41—C42120.4 (2)
C19—C20—H20119.9C40—C41—H41119.8
C21—C20—H20119.9C42—C41—H41119.8
C16—C21—C20119.1 (2)C37—C42—C41118.8 (2)
C16—C21—H21120.5C37—C42—H42120.6
C20—C21—H21120.5C41—C42—H42120.6
C6—C1—C2—O1178.32 (17)C27—C22—C23—O4179.05 (17)
C7—C1—C2—O11.0 (3)C28—C22—C23—O40.1 (3)
C6—C1—C2—C31.5 (3)C27—C22—C23—C240.4 (3)
C7—C1—C2—C3179.15 (17)C28—C22—C23—C24179.38 (17)
O1—C2—C3—C4178.44 (17)O4—C23—C24—C25178.80 (17)
C1—C2—C3—C41.4 (3)C22—C23—C24—C250.7 (3)
O1—C2—C3—C81.4 (3)O4—C23—C24—C290.3 (3)
C1—C2—C3—C8178.72 (18)C22—C23—C24—C29179.78 (18)
C4—C3—C8—C9119.9 (2)C27—C22—C28—O5174.2 (2)
C2—C3—C8—C960.2 (3)C23—C22—C28—O54.8 (3)
C4—C3—C8—C110.9 (3)C27—C22—C28—O65.8 (3)
C2—C3—C8—C11179.18 (19)C23—C22—C28—O6175.22 (17)
C4—C3—C8—C10118.1 (2)C25—C24—C29—C30119.3 (2)
C2—C3—C8—C1061.8 (3)C23—C24—C29—C3061.6 (3)
C2—C3—C4—C50.4 (3)C25—C24—C29—C31118.9 (2)
C8—C3—C4—C5179.69 (18)C23—C24—C29—C3160.2 (3)
C3—C4—C5—C60.5 (3)C25—C24—C29—C320.9 (3)
C3—C4—C5—C12179.01 (18)C23—C24—C29—C32179.98 (19)
C6—C5—C12—C135.1 (3)C23—C24—C25—C260.6 (3)
C4—C5—C12—C13175.5 (2)C29—C24—C25—C26179.70 (18)
C6—C5—C12—C14125.3 (2)C24—C25—C26—C270.2 (3)
C4—C5—C12—C1455.3 (3)C24—C25—C26—C33178.11 (18)
C6—C5—C12—C15115.0 (2)C25—C26—C27—C220.1 (3)
C4—C5—C12—C1564.4 (3)C33—C26—C27—C22177.72 (18)
C4—C5—C6—C10.4 (3)C23—C22—C27—C260.0 (3)
C12—C5—C6—C1179.08 (18)C28—C22—C27—C26178.95 (18)
C2—C1—C6—C50.6 (3)C27—C26—C33—C34108.6 (2)
C7—C1—C6—C5179.91 (18)C25—C26—C33—C3469.1 (2)
C6—C1—C7—O2176.21 (19)C27—C26—C33—C35130.3 (2)
C2—C1—C7—O23.1 (3)C25—C26—C33—C3552.0 (3)
C6—C1—C7—O34.3 (3)C27—C26—C33—C3610.7 (3)
C2—C1—C7—O3176.35 (17)C25—C26—C33—C36171.57 (19)
O2—C7—O3—C160.6 (3)O5—C28—O6—C376.3 (3)
C1—C7—O3—C16179.95 (17)C22—C28—O6—C37173.70 (17)
C7—O3—C16—C21110.4 (2)C28—O6—C37—C3869.2 (3)
C7—O3—C16—C1774.1 (3)C28—O6—C37—C42117.4 (2)
C21—C16—C17—C181.0 (4)C42—C37—C38—C390.3 (3)
O3—C16—C17—C18176.3 (2)O6—C37—C38—C39173.3 (2)
C16—C17—C18—C190.6 (4)C37—C38—C39—C400.2 (4)
C17—C18—C19—C200.7 (4)C38—C39—C40—C410.2 (4)
C18—C19—C20—C211.6 (5)C39—C40—C41—C420.6 (4)
C17—C16—C21—C200.1 (4)C38—C37—C42—C410.1 (4)
O3—C16—C21—C20175.6 (2)O6—C37—C42—C41173.2 (2)
C19—C20—C21—C161.2 (4)C40—C41—C42—C370.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.832.563 (2)148
O4—H4···O50.821.882.604 (2)147

Experimental details

Crystal data
Chemical formulaC21H26O3
Mr326.42
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.5691 (11), 12.2590 (13), 15.0534 (16)
α, β, γ (°)96.400 (2), 93.813 (2), 92.728 (2)
V3)1931.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.21 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.964, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12058, 6736, 4140
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.01
No. of reflections6736
No. of parameters445
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.12

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXTL-NT (Sheldrick, 2008).

Selected torsion angles (º) top
C1—C7—O3—C16179.95 (17)C22—C28—O6—C37173.70 (17)
C7—O3—C16—C21110.4 (2)C28—O6—C37—C3869.2 (3)
C7—O3—C16—C1774.1 (3)C28—O6—C37—C42117.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.832.563 (2)148.2
O4—H4···O50.821.882.604 (2)147.3
 

Acknowledgements

The authors acknowledge financial support from UNAB-DI-28-10/I and Millenium Project No. P07-006-F. AV is a member of Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia FB0807. AC acknowledges Universidad Andres Bello for a Doctoral Fellowship.

References

First citationBaptista, A. (1966). An. Acad. Bras. Cienc. 38, 415.  Google Scholar
First citationBenisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Woloska, J. (2004). Dalton Trans. pp. 3647–3653.  Web of Science CSD CrossRef Google Scholar
First citationBilgram, J. H., Durig, U., Wachter, M. & Seiler, P. (1982). J. Cryst. Growth, 57, 1–5.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHammond, R. B., Jones, M. J., Roberts, K. J., Kutzke, H. & Klapper, H. (2002). Z. Kristallogr. 217, 484–485.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoore, G. F., Hambourger, M., Gervaldo, M., Poluektov, O. G., Rajh, T., Gust, D., Moore, T. A. & Moore, A. L. (2008). J. Am. Chem. Soc. 130, 10466–10467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds