inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Kôzulite, an Mn-rich alkali amphibole

aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
*Correspondence e-mail: barkleym@email.arizona.edu

(Received 2 September 2010; accepted 8 November 2010; online 17 November 2010)

The crystal structure of kôzulite, an Mn-rich alkali amphibole with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, tris­odium tetra­manganese iron/aluminium octa­silicate dihydroxide, was refined from a natural specimen with composition (K0.20Na0.80)(Na1.60Ca0.18Mn2+0.22)(Mn2+2.14Mn3+0.25Mg2.20Fe3+0.27Al0.14)(Si7.92Al0.06Ti0.02)O22[(OH)1.86F0.14]. The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn+Fe) and (Mg+Al), respectively. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively, indicating the preference of large Mn2+ for the M2 site. Four partially occupied amphibole A sites were revealed from the refinement, with A(m) = 0.101 (4) K, A(m)′ = 0.187 (14) Na, A(2) = 0.073 (6) Na, and A(1) = 0.056 (18) Na, in accord with the result derived from microprobe analysis (0.20 K + 0.80 Na), considering experimental uncertainties.

Related literature

For more information on the geologic occurrence of kôzulite, see: Ashley (1986[Ashley, P. M. (1986). Aust. J. Earth Sci. 33, 441-456.]); Banno (1997[Banno, Y. (1997). J. Miner. Petrol. Econ. Geol. 92, 189-194.]); Hirtopanu (2006[Hirtopanu, P. (2006). Acta Miner. Petrog. Abstr. Ser. 5, 38.]); Kawachi & Coombs (1993[Kawachi, Y. & Coombs, D. S. (1993). Mineral. Mag. 57, 533-538.]); Matsubara et al. (2002[Matsubara, S., Miyawaki, R., Kurosawa, M. & Suzuki, Y. (2002). J. Miner. Petrol. Sci. 97, 177-184.]); Nambu et al. (1969[Nambu M. K., Tanida K., Kitamura, T. (1969). J. Jpn Assoc. Miner. Petrol. Econ. Geol. 62, 311-328.], 1970[Nambu, M., Tanida, K. & Kitamura, T. (1970). Am. Mineral. 55, 1815-1816.], 1981[Nambu, M., Tanida, K. & Kitamura, T. (1981). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 37, 205-212.]); Watanabe et al. (1976[Watanabe, T., Kato, A., Nambu, M., Tanida, K. & Kitamura, T. (1976). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 31, 2-13.]). For the initial structural refinement of kôzulite, see: Fleischer & Nickel (1970[Fleischer, M. & Nickel, E. H. (1970). Am. Mineral. 55, 1810-1818.]); Kitamura & Morimoto (1972[Kitamura, M. & Morimoto, N. (1972). Acta Cryst. A28, S71.]). For general background to the amphibole group, see: Hawthorne (1983[Hawthorne, F. C. (1983). Can. Mineral. 21, 173-480.]); Hawthorne et al. (1995[Hawthorne, F. C., Oberti, R., Cannilo, E., Sardone, N. & Zanetti, A. (1995). Am. Mineral. 80, 165-172.], 1996[Hawthorne, F. C., Oberti, R., Ungaretti, L. & Grice, J. D. (1996). Am. Mineral. 81, 995-1002.]); Hawthorne & Harlow (2008[Hawthorne, F. C. & Harlow, G. E. (2008). Can. Mineral. 46, 151-162.]). For background information on the amphibole group and nomenclature, see: Leake (1978[Leake, B. E. (1978). Am. Mineral. 63, 1023-1052.]); Leake et al. (1997[Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J. & Mandarino, J. (1997). Mineral. Mag. 61, 295-321.], 2003[Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. & Whittaker, E. J. W. (2003). Can. Mineral. 41, 1355-1362.]); Mogessie et al. (2004[Mogessie, A., Ettinger, K. & Leake, B. E. (2004). Mineral. Mag. 68, 825-830.]).

Experimental

Crystal data
  • Na3[Mn4(FeAl)]Si8O22(OH)2

  • Mr = 897.29

  • Monoclinic, C 2/m

  • a = 9.9024 (7) Å

  • b = 18.1117 (12) Å

  • c = 5.2992 (4) Å

  • β = 104.034 (4)°

  • V = 922.04 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 293 K

  • 0.06 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.847, Tmax = 0.894

  • 7829 measured reflections

  • 1977 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.067

  • S = 1.08

  • 1977 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure refinement of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).

The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.

Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The refinement shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).

Related literature top

For more information on the geologic occurrence of kôzulite, see: Ashley (1986); Banno (1997); Hirtopanu (2006); Kawachi & Coombs (1993); Matsubara et al. (2002); Nambu et al. (1969, 1970, 1981); Watanabe et al. (1976). For the initial structural refinement of kôzulite, see: Fleischer & Nickel (1970); Kitamura & Morimoto (1972). For general background to the amphibole group, see: Hawthorne (1983); Hawthorne et al. (1995, 1996); Hawthorne & Harlow (2008).For background information on the amphibole group and nomenclature, see: Leake (1978); Leake et al. (1997, 2003); Mogessie et al. (2004).

Experimental top

The kôzulite specimen used in this study is from the type locality Tanohata Mine, Iwate Prefecture, Tohoku Region, Honshu Island, Japan and is in the collection of the RRUFF project (deposition No. R070122; http://rruff.info). The crystal chemistry was determined with a CAMECA SX50 electron microprobe (http://rruff.info) on the same single-crystal used for the collection of X-ray intensity data. The average composition (10 point analyses) yielded a chemical formula (normalized on the basis of 23 oxygen): (K0.20Na0.80)(Na1.60Ca0.18Mn2+0.22)˘Mn2+2.14Mn3+0.25Mg2.20Fe3+0.27Al0.14)˘Si7.92Al0.06Ti0.02)O22[(OH)1.86F0.14].

Refinement top

The chemical analysis and crystal-chemical considerations show that the C-group cations consist of Mn2+, Mn3+, Fe3+, Mg, and Al3+. Because of similar X-ray scattering powers, Fe and Mn were grouped together (represented by the scattering factor for Mn) and Mg and Al together (represented by Mg) throughout the structure refinements. No refinement was made for the cations in the M4 site (= Na0.80Ca0.09Mn2+0.11); they were assigned based on crystal-chemical considerations and previous studies on amphiboles (Hawthorne 1983). The total Mn and Mg in the M1 + M2 + M3 sites were fixed to those from the chemical analysis. To dampen the extreme correlations that would otherwise occur among the refined A-site variables, the isotropic displacement factors of these A sites were constrained to be equal (Hawthorne & Harlow 2008).

Structure description top

Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure refinement of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).

The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.

Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The refinement shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).

For more information on the geologic occurrence of kôzulite, see: Ashley (1986); Banno (1997); Hirtopanu (2006); Kawachi & Coombs (1993); Matsubara et al. (2002); Nambu et al. (1969, 1970, 1981); Watanabe et al. (1976). For the initial structural refinement of kôzulite, see: Fleischer & Nickel (1970); Kitamura & Morimoto (1972). For general background to the amphibole group, see: Hawthorne (1983); Hawthorne et al. (1995, 1996); Hawthorne & Harlow (2008).For background information on the amphibole group and nomenclature, see: Leake (1978); Leake et al. (1997, 2003); Mogessie et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The crystal structure of kôzulite. Green and yellow tetrahedra represent [Si1O4] and [Si2O4] groups, respectively. Purple, blue, and red octahedra represent the M1, M2, and M3 octahedra, respectively. The small blue and large pink spheres represent the M4 and A cations, respectively.
trisodium tetramanganese iron/aluminium octasilicate dihydroxide top
Crystal data top
Na3[Mn4(Fe)]Si8O22(OH)2F(000) = 954
Mr = 897.29Dx = 3.232 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2537 reflections
a = 9.9024 (7) Åθ = 4.0–34.7°
b = 18.1117 (12) ŵ = 2.87 mm1
c = 5.2992 (4) ÅT = 293 K
β = 104.034 (4)°Euhedral, brown
V = 922.04 (11) Å30.06 × 0.05 × 0.04 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1977 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 34.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1515
Tmin = 0.847, Tmax = 0.894k = 2828
7829 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H-atom parameters not refined
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.2008P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1977 reflectionsΔρmax = 0.58 e Å3
111 parametersΔρmin = 0.59 e Å3
1 restraint
Crystal data top
Na3[Mn4(Fe)]Si8O22(OH)2V = 922.04 (11) Å3
Mr = 897.29Z = 2
Monoclinic, C2/mMo Kα radiation
a = 9.9024 (7) ŵ = 2.87 mm1
b = 18.1117 (12) ÅT = 293 K
c = 5.2992 (4) Å0.06 × 0.05 × 0.04 mm
β = 104.034 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1977 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1656 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.894Rint = 0.019
7829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231 restraint
wR(F2) = 0.067H-atom parameters not refined
S = 1.08Δρmax = 0.58 e Å3
1977 reflectionsΔρmin = 0.59 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
M10.00000.08447 (2)0.50000.00933 (11)0.4529 (19)
M1A0.00000.08447 (2)0.50000.00933 (11)0.5471 (19)
M20.00000.182241 (18)0.00000.00935 (9)0.766 (2)
M2A0.00000.182241 (18)0.00000.00935 (9)0.234 (2)
M30.00000.00000.00000.00682 (19)0.256 (4)
M3A0.00000.00000.00000.00682 (19)0.744 (4)
M4A0.00000.27152 (4)0.50000.02191 (15)0.79
M4B0.00000.27152 (4)0.50000.02191 (15)0.09
M4C0.00000.27152 (4)0.50000.02191 (15)0.11
Si10.28233 (4)0.084285 (19)0.28706 (7)0.00858 (8)
Si20.28734 (4)0.16909 (2)0.79054 (7)0.00908 (8)
O10.11555 (10)0.08452 (5)0.2127 (2)0.01077 (18)
O20.11918 (11)0.16575 (6)0.7170 (2)0.01460 (19)
O30.10330 (15)0.00000.7118 (3)0.0131 (3)
O40.35819 (12)0.24732 (6)0.7901 (2)0.0179 (2)
O50.34710 (10)0.12714 (6)0.0742 (2)0.01335 (19)
O60.34473 (10)0.11704 (6)0.57692 (19)0.01358 (19)
O70.34279 (16)0.00000.2884 (3)0.0154 (3)
AM0.5211 (9)0.00000.053 (2)0.0149 (9)*0.104 (4)
AM'0.5562 (10)0.00000.1298 (17)0.0149 (9)*0.187 (11)
A20.50000.0215 (15)0.00000.0149 (9)*0.073 (6)
A10.5386 (18)0.0192 (18)0.103 (4)0.0149 (9)*0.056 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
M10.00812 (19)0.01278 (19)0.00693 (19)0.0000.00151 (14)0.000
M1A0.00812 (19)0.01278 (19)0.00693 (19)0.0000.00151 (14)0.000
M20.00981 (15)0.00801 (14)0.01081 (16)0.0000.00360 (11)0.000
M2A0.00981 (15)0.00801 (14)0.01081 (16)0.0000.00360 (11)0.000
M30.0078 (3)0.0059 (3)0.0063 (3)0.0000.0009 (2)0.000
M3A0.0078 (3)0.0059 (3)0.0063 (3)0.0000.0009 (2)0.000
M4A0.0226 (4)0.0251 (4)0.0224 (4)0.0000.0139 (3)0.000
M4B0.0226 (4)0.0251 (4)0.0224 (4)0.0000.0139 (3)0.000
M4C0.0226 (4)0.0251 (4)0.0224 (4)0.0000.0139 (3)0.000
Si10.00867 (16)0.00776 (15)0.00854 (16)0.00068 (11)0.00063 (12)0.00007 (11)
Si20.00895 (16)0.00906 (15)0.00918 (16)0.00125 (11)0.00213 (12)0.00087 (11)
O10.0088 (4)0.0112 (4)0.0115 (4)0.0013 (3)0.0009 (3)0.0005 (3)
O20.0093 (4)0.0202 (5)0.0138 (5)0.0015 (4)0.0018 (3)0.0031 (4)
O30.0139 (6)0.0114 (6)0.0133 (6)0.0000.0021 (5)0.000
O40.0236 (5)0.0115 (4)0.0186 (5)0.0056 (4)0.0054 (4)0.0012 (4)
O50.0112 (4)0.0171 (5)0.0114 (4)0.0000 (3)0.0021 (3)0.0049 (3)
O60.0115 (4)0.0184 (5)0.0099 (4)0.0004 (3)0.0006 (3)0.0039 (3)
O70.0149 (7)0.0076 (5)0.0227 (7)0.0000.0022 (5)0.000
Geometric parameters (Å, º) top
M1—O3i2.0223 (10)M4A—O5ix3.0160 (12)
M1—O32.0223 (10)Si1—O11.6022 (11)
M1—O22.0551 (11)Si1—O61.6226 (11)
M1—O2ii2.0551 (11)Si1—O51.6240 (10)
M1—O12.1148 (10)Si1—O71.6391 (7)
M1—O1ii2.1148 (10)Si2—O41.5814 (11)
M2—O4iii2.0197 (11)Si2—O21.6166 (11)
M2—O4iv2.0197 (11)Si2—O5x1.6598 (11)
M2—O2v2.1425 (11)Si2—O61.6748 (11)
M2—O2ii2.1425 (11)AM—O7xi2.506 (7)
M2—O1vi2.2554 (10)AM—O5xii2.809 (3)
M2—O12.2554 (10)AM—O5xi2.809 (3)
M3—O3i2.0339 (15)AM—O5viii2.894 (4)
M3—O3v2.0339 (15)AM'—O7xi2.643 (7)
M3—O12.0730 (10)AM'—O6xiii2.671 (6)
M3—O1vi2.0730 (10)AM'—O6xiv2.671 (6)
M3—O1vii2.0730 (10)AM'—O5xii2.809 (4)
M3—O1viii2.0730 (10)A2—O7xi2.463 (4)
M4A—O4ix2.3450 (12)A2—O5viii2.53 (2)
M4A—O4iii2.3450 (12)A2—O5xi2.53 (2)
M4A—O2ii2.3930 (13)A1—O6xiv2.53 (3)
M4A—O22.3930 (13)A1—O5xi2.55 (3)
M4A—O6iii2.6283 (12)A1—O7xi2.644 (17)
M4A—O6ix2.6283 (12)A1—O5viii2.70 (3)
M4A—O5iii3.0160 (12)
O3iM1—O381.68 (6)O1viM2—O176.60 (5)
O3iM1—O2175.50 (5)O3iM3—O3v180.00 (6)
O3—M1—O294.98 (4)O3iM3—O184.47 (4)
O3iM1—O2ii94.98 (4)O3vM3—O195.53 (4)
O3—M1—O2ii175.50 (5)O3iM3—O1vi95.53 (4)
O2—M1—O2ii88.50 (6)O3vM3—O1vi84.47 (4)
O3iM1—O183.68 (5)O1—M3—O1vi84.81 (5)
O3—M1—O196.35 (5)O3iM3—O1vii95.53 (4)
O2—M1—O193.72 (4)O3vM3—O1vii84.47 (4)
O2iiM1—O186.24 (4)O1—M3—O1vii180.00 (6)
O3iM1—O1ii96.35 (5)O1viM3—O1vii95.19 (5)
O3—M1—O1ii83.68 (5)O3iM3—O1viii84.47 (4)
O2—M1—O1ii86.24 (4)O3vM3—O1viii95.53 (4)
O2iiM1—O1ii93.72 (4)O1—M3—O1viii95.19 (5)
O1—M1—O1ii179.95 (6)O1viM3—O1viii180.00 (3)
O4iiiM2—O4iv101.65 (7)O1viiM3—O1viii84.81 (5)
O4iiiM2—O2v92.64 (4)O1—Si1—O6111.41 (5)
O4ivM2—O2v97.47 (4)O1—Si1—O5112.64 (5)
O4iiiM2—O2ii97.47 (4)O6—Si1—O5111.04 (6)
O4ivM2—O2ii92.64 (4)O1—Si1—O7110.92 (6)
O2vM2—O2ii163.97 (6)O6—Si1—O7106.35 (7)
O4iiiM2—O1vi166.32 (4)O5—Si1—O7104.05 (7)
O4ivM2—O1vi91.14 (4)O4—Si2—O2117.68 (6)
O2vM2—O1vi80.77 (4)O4—Si2—O5x110.52 (6)
O2iiM2—O1vi86.65 (4)O2—Si2—O5x108.75 (6)
O4iiiM2—O191.14 (4)O4—Si2—O6106.26 (6)
O4ivM2—O1166.32 (4)O2—Si2—O6108.33 (6)
O2vM2—O186.65 (4)O5x—Si2—O6104.45 (6)
O2iiM2—O180.77 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z1; (v) x, y, z1; (vi) x, y, z; (vii) x, y, z; (viii) x, y, z; (ix) x1/2, y+1/2, z; (x) x, y, z+1; (xi) x+1, y, z; (xii) x+1, y, z; (xiii) x+1, y, z+1; (xiv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaNa3[Mn4(Fe)]Si8O22(OH)2
Mr897.29
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)9.9024 (7), 18.1117 (12), 5.2992 (4)
β (°) 104.034 (4)
V3)922.04 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.847, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
7829, 1977, 1656
Rint0.019
(sin θ/λ)max1)0.795
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.067, 1.08
No. of reflections1977
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.58, 0.59

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), XtalDraw (Downs & Hall-Wallace, 2003), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The authors gratefully acknowledge support of this study by the RRUFF Project, Chevron Texaco, the Carnegie-DOE Alliance Center under cooperative agreement DE FC52–08 N A28554, and the Arizona Science Foundation.

References

First citationAshley, P. M. (1986). Aust. J. Earth Sci. 33, 441–456.  CrossRef Web of Science Google Scholar
First citationBanno, Y. (1997). J. Miner. Petrol. Econ. Geol. 92, 189-194.  CrossRef CAS Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.  CrossRef CAS Google Scholar
First citationFleischer, M. & Nickel, E. H. (1970). Am. Mineral. 55, 1810–1818.  Google Scholar
First citationHawthorne, F. C. (1983). Can. Mineral. 21, 173–480.  CAS Google Scholar
First citationHawthorne, F. C. & Harlow, G. E. (2008). Can. Mineral. 46, 151–162.  Web of Science CrossRef CAS Google Scholar
First citationHawthorne, F. C., Oberti, R., Cannilo, E., Sardone, N. & Zanetti, A. (1995). Am. Mineral. 80, 165–172.  CAS Google Scholar
First citationHawthorne, F. C., Oberti, R., Ungaretti, L. & Grice, J. D. (1996). Am. Mineral. 81, 995–1002.  CAS Google Scholar
First citationHirtopanu, P. (2006). Acta Miner. Petrog. Abstr. Ser. 5, 38.  Google Scholar
First citationKawachi, Y. & Coombs, D. S. (1993). Mineral. Mag. 57, 533–538.  CrossRef CAS Web of Science Google Scholar
First citationKitamura, M. & Morimoto, N. (1972). Acta Cryst. A28, S71.  Google Scholar
First citationLeake, B. E. (1978). Am. Mineral. 63, 1023–1052.  CAS Google Scholar
First citationLeake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J. & Mandarino, J. (1997). Mineral. Mag. 61, 295–321.  CrossRef CAS Web of Science Google Scholar
First citationLeake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. & Whittaker, E. J. W. (2003). Can. Mineral. 41, 1355–1362.  Web of Science CrossRef CAS Google Scholar
First citationMatsubara, S., Miyawaki, R., Kurosawa, M. & Suzuki, Y. (2002). J. Miner. Petrol. Sci. 97, 177–184.  CrossRef CAS Google Scholar
First citationMogessie, A., Ettinger, K. & Leake, B. E. (2004). Mineral. Mag. 68, 825–830.  Web of Science CrossRef CAS Google Scholar
First citationNambu M. K., Tanida K., Kitamura, T. (1969). J. Jpn Assoc. Miner. Petrol. Econ. Geol. 62, 311–328.  Google Scholar
First citationNambu, M., Tanida, K. & Kitamura, T. (1970). Am. Mineral. 55, 1815–1816.  Google Scholar
First citationNambu, M., Tanida, K. & Kitamura, T. (1981). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 37, 205-212.  CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, T., Kato, A., Nambu, M., Tanida, K. & Kitamura, T. (1976). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 31, 2–13.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds