organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­methyl-1,1′-[(1,3-dihy­dr­oxy­propane-2,2-di­yl)di­methyl­­idene]diimidazolium bis­­(hexa­fluoro­phosphate)

aDepartment of Light Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 30 October 2010; accepted 17 November 2010; online 24 November 2010)

The title compound, C13H22N4O22+·2PF6, was prepared by the anion exchange of the dibromide ionic liquid with potassium hexa­fluoro­phosphate. The two imidazole rings are each planar (r.m.s. deviations = 0.0016 and 0.0060 Å) and make a dihedral angle of 45.3 (18)°. Intra­molecular O—H⋯F hydrogen bonds occur. Inter­molecular C—H⋯F, O—H⋯O and C—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For properties and applications of ionic liquids, see: Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]). For dicationic ionic liquids, see: Liang et al. (2008[Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.]); Geng et al. (2010[Geng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.]). For the synthesis of the title compound, see: Cai et al. (2007[Cai, Y. Q., Lu, Y., Liu, Y. & Gao, G. H. (2007). Catal. Lett. 119, 154-158.]); Cai & Liu, (2009[Cai, Y. Q. & Liu, Y. (2009). Monatsh. Chem. 140, 39-44.]). For bond-length data, see: Allen et al., (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H22N4O22+·2PF6

  • Mr = 556.29

  • Orthorhombic, P n a 21

  • a = 14.622 (3) Å

  • b = 12.504 (3) Å

  • c = 12.165 (2) Å

  • V = 2224.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.940, Tmax = 0.969

  • 4082 measured reflections

  • 2152 independent reflections

  • 1861 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.123

  • S = 1.00

  • 4082 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1930 Friedel pairs

  • Flack parameter: 0.01 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F10 0.82 2.32 3.001 (8) 141
O2—H2A⋯O1i 0.82 1.97 2.787 (6) 175
C2—H2B⋯F7i 0.93 2.41 3.261 (11) 152
C13—H13B⋯O2ii 0.96 2.54 3.186 (7) 125
Symmetry codes: (i) [-x+2, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CAD-4 (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids (ILs) have enjoyed considerable research interests in recent years because of their unique properties (Welton, 1999). Geminal dicationic ILs have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional ILs (Liang et al., 2008).

As part of our ongoing studies on new Geminal dicationic ILs (Geng et al., 2010), we here report the crystal structure of the title compound I.

The atom-numbering scheme of I is shown in Fig. 1. There are exist intramolecular C—H···O and O—H···F hydrogen bonds, while intermolecular C—H···F, O—H···O and C—H···O hydrogen bonds stablize the crystal structure. All bond lengths are within normal ranges (Allen et al., 1987). The imidazole ring is planar, with r.m.s. deviation 0.0016Å. The dihedral angles between two imidazole ring is 45.3 (18)°. There exist intermolecular C—H···F hydrogen bonds between hexafluorophosphate anions and imidazolium cations (Table 1, Fig. 1 and Fig. 2).

Related literature top

For properties and applications of ionic liquids, see: Welton (1999). For dicationic ionic liquids, see: Liang et al. (2008); Geng et al. (2010). For the synthesis of the title compound, see: Cai et al. (2007); Cai & Liu, (2009). For bond-length data, see: Allen et al., (1987).

Experimental top

A mixture of 1-methylimidazole (2.05 g, 25 mmol) and 2,2-bis(bromomethyl)-propane-1,3-diol (2.60 g, 10 mmol) were stirred vigorously at 423 K for 8 h. After cooling to room temperature, the crude product was washed with acetonitrile. The resulting solid collected by filtration was treated with water (20 ml) as well as KPF6 (3.68 g, 20 mmol) and the reaction mixture was stirred at room temperature for 1 h. After filtration, the white solid was washed with ethanol and dried in vacuo to give the title compound I (5.02 g, 91%)(Cai et al., 2007; Cai & Liu, 2009). M.p. 497–500 K. Crystals of I suitable for X-ray diffraction study were obtained by slow evaporation of methanol solution. 1H NMR (DMSO, δ, p.p.m.) 8.96 (s, 2 H), 7.72 (d, 2 H), 7.60 (d, 2 H), 5.29 (s, 2 H) 4.24 (s, 4 H), 3.87 (s, 6 H), 3.12 (s, 4 H).

Refinement top

In the both hexafluorophosphate groups, fluorine atoms have strong oscillations, while central P atoms are fixed. All H atoms were positioned geometrically, with C—H = 0.93Å, 0.96Å and 0.97Å for aromatic, methyl, methylene H, respectively. H atoms of hydroxy-groups were positioned geometrically too with O—H = 0.82Å. During refinement these H atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.2 for aromatic and methylene H atoms and x = 1.5 for methyl and hydroxyl H atoms.

Structure description top

Ionic liquids (ILs) have enjoyed considerable research interests in recent years because of their unique properties (Welton, 1999). Geminal dicationic ILs have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional ILs (Liang et al., 2008).

As part of our ongoing studies on new Geminal dicationic ILs (Geng et al., 2010), we here report the crystal structure of the title compound I.

The atom-numbering scheme of I is shown in Fig. 1. There are exist intramolecular C—H···O and O—H···F hydrogen bonds, while intermolecular C—H···F, O—H···O and C—H···O hydrogen bonds stablize the crystal structure. All bond lengths are within normal ranges (Allen et al., 1987). The imidazole ring is planar, with r.m.s. deviation 0.0016Å. The dihedral angles between two imidazole ring is 45.3 (18)°. There exist intermolecular C—H···F hydrogen bonds between hexafluorophosphate anions and imidazolium cations (Table 1, Fig. 1 and Fig. 2).

For properties and applications of ionic liquids, see: Welton (1999). For dicationic ionic liquids, see: Liang et al. (2008); Geng et al. (2010). For the synthesis of the title compound, see: Cai et al. (2007); Cai & Liu, (2009). For bond-length data, see: Allen et al., (1987).

Computing details top

Data collection: CAD-4 (Enraf–Nonius, 1989); cell refinement: CAD-4 (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I showing the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of I. Hydrogen bonds are drawn by dashed lines. Symmetry codes: (i) 2-x, 1-y, 1/2+z; (ii) -1/2+x, 1/2-y, z.
3,3'-Dimethyl-1,1'-[(1,3-dihydroxypropane-2,2-diyl)dimethylidene]diimidazolium bis(hexafluorophosphate) top
Crystal data top
C13H22N4O22+·2PF6Dx = 1.661 Mg m3
Mr = 556.29Melting point = 497–500 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 14.622 (3) Åθ = 9–13°
b = 12.504 (3) ŵ = 0.31 mm1
c = 12.165 (2) ÅT = 295 K
V = 2224.2 (8) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
F(000) = 1128
Data collection top
Enraf–Nonius CAD-4
diffractometer
1861 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ–scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.940, Tmax = 0.969l = 1414
4082 measured reflections3 standard reflections every 200 reflections
2152 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.20 e Å3
4082 reflectionsΔρmin = 0.17 e Å3
298 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.105 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1930 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (16)
Crystal data top
C13H22N4O22+·2PF6V = 2224.2 (8) Å3
Mr = 556.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.622 (3) ŵ = 0.31 mm1
b = 12.504 (3) ÅT = 295 K
c = 12.165 (2) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1861 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.940, Tmax = 0.9693 standard reflections every 200 reflections
4082 measured reflections intensity decay: 1%
2152 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.17 e Å3
4082 reflectionsAbsolute structure: Flack (1983), 1930 Friedel pairs
298 parametersAbsolute structure parameter: 0.01 (16)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8641 (3)0.5204 (5)0.2865 (3)0.119 (2)
H1A0.81040.53620.27560.179*
N11.0848 (6)0.8302 (5)0.4610 (6)0.103 (2)
C11.1347 (5)0.9027 (6)0.5270 (7)0.123 (3)
H1B1.11270.97400.51440.185*
H1C1.19830.89890.50820.185*
H1D1.12680.88450.60300.185*
O21.0931 (3)0.4708 (3)0.5634 (3)0.0826 (14)
H2A1.10250.47400.62980.124*
N21.0515 (4)0.6773 (4)0.3942 (5)0.0724 (16)
C21.1092 (6)0.7153 (6)0.4672 (6)0.092 (3)
H2B1.15250.68040.51010.111*
N30.9585 (3)0.2977 (4)0.4254 (4)0.0595 (13)
C31.0013 (6)0.7562 (7)0.3474 (7)0.101 (2)
H3A0.95770.74670.29270.121*
N40.8598 (4)0.1738 (4)0.4570 (4)0.0708 (15)
C41.0258 (6)0.8556 (7)0.3952 (8)0.098 (3)
H4A1.00270.92330.38010.117*
C51.0500 (4)0.5689 (4)0.3557 (5)0.0593 (15)
H5A1.11080.53850.36310.071*
H5B1.03420.56840.27830.071*
C60.9823 (3)0.4998 (4)0.4183 (4)0.0402 (12)
C71.0003 (4)0.4992 (5)0.5411 (4)0.0649 (16)
H7A0.98770.56950.57120.078*
H7B0.95980.44840.57650.078*
C80.8832 (3)0.5271 (5)0.3995 (4)0.0580 (15)
H8A0.84450.47780.43980.070*
H8B0.87090.59900.42570.070*
C91.0043 (4)0.3873 (4)0.3704 (5)0.0637 (15)
H9A0.98720.38660.29340.076*
H9B1.06980.37600.37440.076*
C100.9922 (5)0.2325 (5)0.5067 (5)0.0652 (19)
H10A1.04930.23870.53970.078*
C110.9291 (5)0.1587 (6)0.5303 (6)0.081 (2)
H11A0.93200.10740.58550.098*
C120.8786 (4)0.2570 (4)0.3921 (5)0.0599 (16)
H12A0.84280.28210.33440.072*
C130.7815 (5)0.1020 (6)0.4552 (6)0.109 (3)
H13A0.73970.12430.39880.164*
H13B0.75130.10400.52520.164*
H13C0.80190.03050.44040.164*
P10.72571 (13)0.35606 (18)0.68464 (19)0.0911 (6)
F10.7669 (3)0.4744 (3)0.6875 (5)0.1535 (18)
F20.6868 (3)0.2424 (3)0.6720 (5)0.1459 (18)
F30.6246 (3)0.4001 (4)0.6840 (4)0.1420 (16)
F40.7290 (3)0.3498 (5)0.8136 (3)0.151 (2)
F50.7254 (4)0.3651 (4)0.5546 (4)0.140 (2)
F60.8266 (2)0.3132 (4)0.6825 (5)0.1478 (18)
P20.64385 (14)0.33975 (18)0.1878 (2)0.0992 (7)
F70.7457 (4)0.3277 (4)0.1659 (6)0.179 (2)
F80.6282 (7)0.3840 (8)0.0811 (7)0.355 (7)
F90.6598 (5)0.3032 (5)0.3039 (4)0.220 (3)
F100.6708 (5)0.4574 (5)0.2350 (7)0.238 (4)
F110.6079 (10)0.2399 (7)0.1625 (8)0.390 (8)
F120.5486 (5)0.3672 (9)0.2204 (9)0.314 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.069 (3)0.240 (6)0.049 (2)0.047 (4)0.006 (2)0.014 (3)
N10.109 (6)0.068 (5)0.131 (6)0.036 (5)0.018 (5)0.028 (4)
C10.117 (7)0.105 (6)0.147 (8)0.006 (6)0.008 (7)0.006 (6)
O20.054 (3)0.125 (4)0.069 (3)0.022 (3)0.011 (2)0.016 (3)
N20.065 (4)0.067 (4)0.086 (4)0.006 (3)0.021 (3)0.005 (3)
C20.090 (6)0.085 (6)0.102 (6)0.023 (5)0.021 (5)0.031 (5)
N30.063 (3)0.050 (3)0.066 (3)0.011 (3)0.019 (3)0.010 (3)
C30.085 (6)0.110 (6)0.108 (6)0.009 (6)0.028 (5)0.005 (6)
N40.061 (3)0.087 (4)0.065 (3)0.029 (3)0.006 (3)0.009 (3)
C40.077 (6)0.100 (7)0.116 (8)0.008 (5)0.038 (5)0.012 (6)
C50.053 (3)0.053 (3)0.071 (4)0.004 (3)0.009 (3)0.004 (3)
C60.047 (3)0.036 (2)0.037 (3)0.012 (3)0.006 (3)0.005 (2)
C70.061 (4)0.092 (4)0.042 (3)0.000 (3)0.003 (3)0.020 (3)
C80.047 (3)0.087 (4)0.041 (3)0.021 (3)0.004 (3)0.015 (3)
C90.068 (4)0.075 (4)0.048 (3)0.007 (4)0.005 (3)0.002 (3)
C100.071 (5)0.052 (4)0.072 (5)0.003 (4)0.016 (4)0.005 (3)
C110.087 (5)0.089 (5)0.069 (5)0.014 (5)0.003 (4)0.004 (4)
C120.067 (4)0.025 (2)0.088 (4)0.004 (3)0.020 (4)0.001 (3)
C130.077 (5)0.133 (7)0.118 (6)0.067 (5)0.007 (4)0.008 (5)
P10.0748 (13)0.1251 (16)0.0734 (12)0.0271 (12)0.0068 (14)0.0219 (14)
F10.166 (4)0.136 (3)0.159 (4)0.059 (3)0.010 (4)0.044 (4)
F20.170 (4)0.120 (3)0.148 (4)0.072 (3)0.012 (4)0.026 (4)
F30.077 (3)0.234 (5)0.116 (3)0.002 (3)0.004 (3)0.021 (4)
F40.117 (4)0.264 (7)0.073 (3)0.014 (4)0.002 (3)0.007 (4)
F50.135 (5)0.198 (6)0.087 (4)0.029 (4)0.016 (3)0.012 (3)
F60.067 (3)0.206 (5)0.170 (4)0.001 (3)0.014 (4)0.073 (4)
P20.0872 (16)0.1174 (17)0.0929 (15)0.0272 (13)0.0190 (16)0.0416 (15)
F70.130 (5)0.235 (6)0.171 (5)0.026 (4)0.038 (5)0.041 (6)
F80.375 (14)0.489 (14)0.201 (8)0.219 (11)0.182 (9)0.238 (9)
F90.263 (8)0.293 (8)0.104 (5)0.080 (7)0.052 (5)0.083 (5)
F100.206 (7)0.153 (5)0.355 (12)0.041 (5)0.034 (7)0.001 (7)
F110.70 (2)0.233 (7)0.241 (9)0.308 (11)0.025 (13)0.029 (8)
F120.111 (5)0.491 (15)0.340 (14)0.080 (7)0.002 (6)0.009 (12)
Geometric parameters (Å, º) top
O1—C81.406 (6)C6—C71.518 (7)
O1—H1A0.8200C6—C91.556 (8)
N1—C41.219 (9)C7—H7A0.9700
N1—C11.413 (9)C7—H7B0.9700
N1—C21.482 (10)C8—H8A0.9700
C1—H1B0.9600C8—H8B0.9700
C1—H1C0.9600C9—H9A0.9700
C1—H1D0.9600C9—H9B0.9700
O2—C71.428 (7)C10—C111.336 (8)
O2—H2A0.8200C10—H10A0.9300
N2—C21.314 (8)C11—H11A0.9300
N2—C31.354 (9)C12—H12A0.9300
N2—C51.434 (6)C13—H13A0.9600
C2—H2B0.9300C13—H13B0.9600
N3—C121.338 (6)C13—H13C0.9600
N3—C101.372 (7)P1—F21.538 (4)
N3—C91.467 (7)P1—F61.570 (4)
C3—C41.419 (11)P1—F41.572 (4)
C3—H3A0.9300P1—F31.578 (4)
N4—C121.335 (7)P1—F51.586 (5)
N4—C111.363 (8)P1—F11.598 (4)
N4—C131.454 (7)P2—F111.390 (6)
C4—H4A0.9300P2—F81.429 (6)
C5—C61.519 (6)P2—F121.489 (7)
C5—H5A0.9700P2—F91.503 (5)
C5—H5B0.9700P2—F71.521 (6)
C6—C81.506 (6)P2—F101.628 (6)
C8—O1—H1A109.5H8A—C8—H8B108.3
C4—N1—C1124.8 (9)N3—C9—C6115.2 (4)
C4—N1—C2117.1 (8)N3—C9—H9A108.5
C1—N1—C2118.0 (8)C6—C9—H9A108.5
N1—C1—H1B109.5N3—C9—H9B108.5
N1—C1—H1C109.5C6—C9—H9B108.5
H1B—C1—H1C109.5H9A—C9—H9B107.5
N1—C1—H1D109.5C11—C10—N3108.5 (6)
H1B—C1—H1D109.5C11—C10—H10A125.8
H1C—C1—H1D109.5N3—C10—H10A125.8
C7—O2—H2A109.5C10—C11—N4106.1 (6)
C2—N2—C3111.6 (7)C10—C11—H11A126.9
C2—N2—C5124.9 (6)N4—C11—H11A126.9
C3—N2—C5122.9 (7)N4—C12—N3107.3 (5)
N2—C2—N199.3 (7)N4—C12—H12A126.4
N2—C2—H2B130.3N3—C12—H12A126.4
N1—C2—H2B130.3N4—C13—H13A109.5
C12—N3—C10107.8 (5)N4—C13—H13B109.5
C12—N3—C9123.4 (5)H13A—C13—H13B109.5
C10—N3—C9128.2 (5)N4—C13—H13C109.5
N2—C3—C4109.2 (8)H13A—C13—H13C109.5
N2—C3—H3A125.4H13B—C13—H13C109.5
C4—C3—H3A125.4F2—P1—F691.8 (3)
C12—N4—C11109.9 (6)F2—P1—F493.7 (3)
C12—N4—C13129.4 (6)F6—P1—F488.3 (3)
C11—N4—C13120.7 (6)F2—P1—F388.6 (3)
N1—C4—C3102.7 (9)F6—P1—F3178.7 (4)
N1—C4—H4A128.7F4—P1—F392.9 (3)
C3—C4—H4A128.7F2—P1—F588.0 (3)
N2—C5—C6112.6 (4)F6—P1—F590.6 (3)
N2—C5—H5A109.1F4—P1—F5178.0 (3)
C6—C5—H5A109.1F3—P1—F588.1 (3)
N2—C5—H5B109.1F2—P1—F1175.5 (4)
C6—C5—H5B109.1F6—P1—F187.8 (3)
H5A—C5—H5B107.8F4—P1—F190.8 (3)
C8—C6—C7108.5 (4)F3—P1—F191.7 (3)
C8—C6—C5114.9 (4)F5—P1—F187.5 (3)
C7—C6—C5112.5 (4)F11—P2—F895.0 (6)
C8—C6—C9110.3 (4)F11—P2—F1284.9 (6)
C7—C6—C9109.2 (4)F8—P2—F1290.2 (6)
C5—C6—C9101.1 (4)F11—P2—F989.6 (5)
O2—C7—C6110.6 (4)F8—P2—F9174.9 (6)
O2—C7—H7A109.5F12—P2—F988.0 (5)
C6—C7—H7A109.5F11—P2—F7104.1 (7)
O2—C7—H7B109.5F8—P2—F792.1 (5)
C6—C7—H7B109.5F12—P2—F7170.5 (5)
H7A—C7—H7B108.1F9—P2—F788.9 (4)
O1—C8—C6109.0 (4)F11—P2—F10169.1 (6)
O1—C8—H8A109.9F8—P2—F1090.5 (5)
C6—C8—H8A109.9F12—P2—F1085.6 (5)
O1—C8—H8B109.9F9—P2—F1084.6 (4)
C6—C8—H8B109.9F7—P2—F1085.1 (3)
C3—N2—C2—N11.7 (7)C7—C6—C8—O1175.8 (5)
C5—N2—C2—N1173.0 (5)C5—C6—C8—O157.2 (7)
C4—N1—C2—N21.5 (9)C9—C6—C8—O156.3 (6)
C1—N1—C2—N2178.1 (6)C12—N3—C9—C693.2 (6)
C2—N2—C3—C41.6 (9)C10—N3—C9—C696.3 (7)
C5—N2—C3—C4173.1 (6)C8—C6—C9—N366.1 (6)
C1—N1—C4—C3177.0 (7)C7—C6—C9—N353.0 (6)
C2—N1—C4—C30.6 (10)C5—C6—C9—N3171.8 (5)
N2—C3—C4—N10.5 (9)C12—N3—C10—C116.0 (7)
C2—N2—C5—C695.0 (7)C9—N3—C10—C11177.7 (6)
C3—N2—C5—C694.7 (7)N3—C10—C11—N44.7 (8)
N2—C5—C6—C868.1 (6)C12—N4—C11—C101.8 (8)
N2—C5—C6—C756.8 (6)C13—N4—C11—C10176.3 (6)
N2—C5—C6—C9173.2 (5)C11—N4—C12—N31.8 (7)
C8—C6—C7—O2178.5 (5)C13—N4—C12—N3179.7 (6)
C5—C6—C7—O253.2 (6)C10—N3—C12—N44.7 (7)
C9—C6—C7—O258.2 (6)C9—N3—C12—N4176.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.972.562.910 (7)101
C9—H9A···O10.972.462.831 (8)102
O1—H1A···F100.822.323.001 (8)141
O2—H2A···O1i0.821.972.787 (6)175
C2—H2B···F7i0.932.413.261 (11)152
C13—H13B···O2ii0.962.543.186 (7)125
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H22N4O22+·2PF6
Mr556.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)14.622 (3), 12.504 (3), 12.165 (2)
V3)2224.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.940, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4082, 2152, 1861
Rint0.067
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.123, 1.00
No. of reflections4082
No. of parameters298
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17
Absolute structureFlack (1983), 1930 Friedel pairs
Absolute structure parameter0.01 (16)

Computer programs: CAD-4 (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.972.562.910 (7)101.3
C9—H9A···O10.972.462.831 (8)102.4
O1—H1A···F100.822.323.001 (8)140.7
O2—H2A···O1i0.821.972.787 (6)175.2
C2—H2B···F7i0.932.413.261 (11)151.8
C13—H13B···O2ii0.962.543.186 (7)124.9
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Foundation for Young Teachers Scholarship of Nanjing University of Technology, Jiangsu, China (grant No. 39729005), The authors thank the Centre of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCai, Y. Q. & Liu, Y. (2009). Monatsh. Chem. 140, 39–44.  Web of Science CrossRef CAS Google Scholar
First citationCai, Y. Q., Lu, Y., Liu, Y. & Gao, G. H. (2007). Catal. Lett. 119, 154–158.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds