metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(2,6-dihy­dr­oxy­benzoato-κ2O1,O1′)bis­­(2,6-dihy­dr­oxy­benzoato-κO1)bis­­(1,10-phenanthroline-κ2N,N′)lanthanum(III)–1,10-phenanthroline (1/1)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 5 November 2010; accepted 15 November 2010; online 20 November 2010)

In the title compound, [La(C7H5O4)3(C12H8N2)3(H2O)2]·C12H8N2, the LaIII atom is coordinated by four N atoms from two chelating 1,10-phenanthroline (phen) ligands, four O atoms from three 2,6-dihy­droxy­benzoate (DHB) anions (one monodentate, the other bidentate) and two water O atoms, completing a distorted LaN4O6 bicapped square-anti­prismatic geometry. Within the mononuclear complex mol­ecule, intra­molecular ππ stacking inter­actions are observed, the first between a coordinated phen mol­ecule and a DHB ligand [centroid–centroid distance = 3.7291 (16) Å], and the second between a coordinated phen mol­ecule and an uncoordinated phen ligand [centroid–centroid distance = 3.933 (2) Å]. Inter­molecular ππ stacking is observed between adjacent complexes [inter­planar distance = 3.461 (3) Å]. Intra- and inter­molecular O—H⋯O hydrogen bonds are observed in the DHB ligands and between a water mol­ecule and DHB ligands, respectively. O—H⋯N hydrogen bonds are also observed in the DHB ligands and between uncoordinated phen mol­ecules and aqua ligands.

Related literature

For background to the chemistry of lanthanide-based metal-organic frameworks, see: dos Santos et al. (2008[Santos, C. M. G. dos, Harte, A. J., Quinn, S. J. & Gunnlaugsson, T. (2008). Coord. Chem. Rev. 252, 2512—2527.]). For related structures, see: Nie et al. (2010[Nie, J.-J., Pan, T.-T., Su, J.-R. & Xu, D.-J. (2010). Acta Cryst. E66, m760-m761.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]); Zheng & Jin (2003[Zheng, X. & Jin, L. (2003). Polyhedron, 22, 2617-2619.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C7H5O4)3(C12H8N2)3(H2O)2]·C12H8N2

  • Mr = 1174.88

  • Monoclinic, P 21 /c

  • a = 13.9735 (3) Å

  • b = 19.6751 (3) Å

  • c = 18.6337 (3) Å

  • β = 98.059 (2)°

  • V = 5072.37 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 291 K

  • 0.50 × 0.46 × 0.42 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.])] Tmin = 0.657, Tmax = 0.699

  • 32940 measured reflections

  • 10312 independent reflections

  • 7901 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.05

  • 10312 reflections

  • 721 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O9 0.82 1.83 2.557 (3) 147
O12—H12⋯O10 0.82 1.80 2.520 (3) 146
O3—H3⋯O1 0.82 1.84 2.576 (3) 149
O7—H7⋯O5 0.82 1.82 2.545 (3) 147
O8—H8⋯O6 0.82 1.85 2.575 (4) 147
O4—H4⋯O2 0.82 1.78 2.512 (3) 147
O13—H13A⋯O10 0.87 (1) 1.92 (2) 2.704 (3) 150 (4)
O13—H13B⋯O2 0.86 (4) 2.11 (3) 2.762 (3) 132 (4)
O14—H14A⋯N6 0.86 (2) 1.96 (2) 2.793 (4) 162 (4)
O14—H14B⋯N5 0.83 (2) 2.26 (4) 2.824 (4) 125 (4)

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of lanthanide-based metal-organic frameworks is currently of great interest because of their unusual coordination characteristics and optical and magnetic properties (Santos et al. 2008). Herein, we report on the preparation and the single-crystal X-ray structure of the novel mononuclear mixed-ligand complex [La(C7H5O4)3 (C12H8N2)2(H2O)2][C12H8N2].

The mononuclear structure is shown in Fig. 1. The ten-coordinated geometry of the LaIII ion is completed by four 2, 6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two water O atoms. In one unit cell, there are four complex molecules.The complex forms a ten-coordinated pseudo-bicapped square antiprismatic structure in which the set O6, N3, O14 and N1 and the set N2, O9, N4 and O1 form two approximate squares, respectively. The ninth coordinating atom O5 and tenth coordinating atom O13 are above and under the two planes formed by O6, N3, O14 and N1 and N2, O9, N4 and O1, respectively, and locate at bicapped positions. The O5–La–O13 is 173.32 (7)° close to 180°. Because the coordinating atom O5 is excluded by O6, N3, O14 and N1 (formed above the plane) the bond distance of LaIII–O5 [2.800 (2) Å] is longer than the LaIII–O6 [2.633 (2) Å].

The uncoordinated phen is stabilized by O—H···N hydrogen bonds (Table 1 & Fig. 1) and π - π stacking (Fig. 2) with the coordinated phen [Cg3 - Cg4 distance = 3.7291 (16) Å, Cg denotes the centroid of ring N6 / C45 - C49 for Cg3, N3 / C1 - C5 for Cg4]. Partial overlap between DHB and phen ligand is observed in the molecular structure, which suggests the existence of intramolecular π-π stacking [Fig. 2, Cg1 - Cg2 distance = 3.933 (2) Å, Cg denotes the centroid of ring C39 - C44 for Cg1, N1 / C13 - C16 / C57 for Cg2]. Intermolecular π - π stacking is also present in the crystal structure, the face-to-face distance between nearly parallel [dihedral angle = 0.11 (4) °] partial overlapping N3-phen and N3i-phen rings is 3.461 (3) Å [symmetry code: (i) 1 - x, - y, - z].

O—H···O hydrogen bonds helping to stabilize the crystal structure are observed in the DHB ligands and between a water molecule and DHB ligands (Table 1 & Fig. 1).

Related literature top

For background to the chemistry of lanthanide-based metal-organic frameworks, see: dos Santos et al. (2008). For related structures, see: Nie et al. (2010); Li et al. (2005); Zheng et al. (2003).

Experimental top

Each reagent was commercially available and of analytical grade. La(NO3)3.6H2O (0.136 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5 mmol), 1,10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in a water-ethanol solution (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Pink single crystals were obtained from the filtrate after 3 d.

Refinement top

The H atoms of water molecules were located in a difference Fourier map and refined with O—H distance restraints of 0.87 (1) Å for O13 and 0.85 (2) Å for O14. The distances between La and the water H13a and H13b (H14a and H14b) atoms were restrained to be equal with an effective stand deviation 0.02. The distances between H13a and H13b (H14a and H14b) were further restrained to 1.40 (0.04) [1.39 (0.04)] Å. Other H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with Uiso (H) = 1.2Ueq (C) and Uiso(H) = 1.5Ueq (O). The anisotropic displacement parameters in the direction of some bonds were restrained to be equalinstruction [instruction DELU 0.001 0.001 O1 C38 O2 C38 O4 C44 C38 C39 C41 C42].

Structure description top

The chemistry of lanthanide-based metal-organic frameworks is currently of great interest because of their unusual coordination characteristics and optical and magnetic properties (Santos et al. 2008). Herein, we report on the preparation and the single-crystal X-ray structure of the novel mononuclear mixed-ligand complex [La(C7H5O4)3 (C12H8N2)2(H2O)2][C12H8N2].

The mononuclear structure is shown in Fig. 1. The ten-coordinated geometry of the LaIII ion is completed by four 2, 6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two water O atoms. In one unit cell, there are four complex molecules.The complex forms a ten-coordinated pseudo-bicapped square antiprismatic structure in which the set O6, N3, O14 and N1 and the set N2, O9, N4 and O1 form two approximate squares, respectively. The ninth coordinating atom O5 and tenth coordinating atom O13 are above and under the two planes formed by O6, N3, O14 and N1 and N2, O9, N4 and O1, respectively, and locate at bicapped positions. The O5–La–O13 is 173.32 (7)° close to 180°. Because the coordinating atom O5 is excluded by O6, N3, O14 and N1 (formed above the plane) the bond distance of LaIII–O5 [2.800 (2) Å] is longer than the LaIII–O6 [2.633 (2) Å].

The uncoordinated phen is stabilized by O—H···N hydrogen bonds (Table 1 & Fig. 1) and π - π stacking (Fig. 2) with the coordinated phen [Cg3 - Cg4 distance = 3.7291 (16) Å, Cg denotes the centroid of ring N6 / C45 - C49 for Cg3, N3 / C1 - C5 for Cg4]. Partial overlap between DHB and phen ligand is observed in the molecular structure, which suggests the existence of intramolecular π-π stacking [Fig. 2, Cg1 - Cg2 distance = 3.933 (2) Å, Cg denotes the centroid of ring C39 - C44 for Cg1, N1 / C13 - C16 / C57 for Cg2]. Intermolecular π - π stacking is also present in the crystal structure, the face-to-face distance between nearly parallel [dihedral angle = 0.11 (4) °] partial overlapping N3-phen and N3i-phen rings is 3.461 (3) Å [symmetry code: (i) 1 - x, - y, - z].

O—H···O hydrogen bonds helping to stabilize the crystal structure are observed in the DHB ligands and between a water molecule and DHB ligands (Table 1 & Fig. 1).

For background to the chemistry of lanthanide-based metal-organic frameworks, see: dos Santos et al. (2008). For related structures, see: Nie et al. (2010); Li et al. (2005); Zheng et al. (2003).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure, showing the atom-labelling scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 15% probablility level and H atoms are shown as small spheres of arbitraty radii. Some H atoms are omitted for clarity. Bonds in overlapping phenantholine rings are shown as red dashed lines.
[Figure 2] Fig. 2. Extensive π···π stacking interaction between DHB and phen, phen and phen. Cg (light green sphere) denotes the centroid of six-membered ring: Cg1 = C39 - C44, Cg2 = N1 / C13 - C16 / C57, Cg3 = N6 / C45 - C49, Cg4 = N3 / C1 - C5. Pink dashed lines show the π - π stacking between ligands [symmetry codes: (i) 1 - x, - y, - z].
Diaqua(2,6-dihydroxybenzoato-κ2O1,O1')bis(2,6- dihydroxybenzoato-κO1)bis(1,10-phenanthroline-κ2N, N')lanthanum(III)–1,10-phenanthroline (1/1) top
Crystal data top
[La(C7H5O4)3(C12H8N2)3(H2O)2]·C12H8N2F(000) = 2384
Mr = 1174.88Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19311 reflections
a = 13.9735 (3) Åθ = 3.0–29.1°
b = 19.6751 (3) ŵ = 0.92 mm1
c = 18.6337 (3) ÅT = 291 K
β = 98.059 (2)°Block, pink
V = 5072.37 (16) Å30.50 × 0.46 × 0.42 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
10312 independent reflections
Radiation source: Enhance (Mo) X-ray Source7901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9149 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO (Oxford Diffraction, 2006)]
k = 2422
Tmin = 0.657, Tmax = 0.699l = 2323
32940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
10312 reflections(Δ/σ)max = 0.001
721 parametersΔρmax = 0.95 e Å3
25 restraintsΔρmin = 0.49 e Å3
Crystal data top
[La(C7H5O4)3(C12H8N2)3(H2O)2]·C12H8N2V = 5072.37 (16) Å3
Mr = 1174.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9735 (3) ŵ = 0.92 mm1
b = 19.6751 (3) ÅT = 291 K
c = 18.6337 (3) Å0.50 × 0.46 × 0.42 mm
β = 98.059 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
10312 independent reflections
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO (Oxford Diffraction, 2006)]
7901 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.699Rint = 0.022
32940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03125 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.95 e Å3
10312 reflectionsΔρmin = 0.49 e Å3
721 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.370753 (10)0.081073 (8)0.238632 (7)0.03468 (6)
O90.53465 (13)0.13343 (10)0.21766 (10)0.0453 (4)
O130.51050 (13)0.01072 (11)0.30096 (9)0.0464 (5)
O140.21124 (15)0.03227 (12)0.17926 (10)0.0547 (5)
O10.31357 (14)0.00908 (10)0.32214 (10)0.0490 (5)
N20.43187 (17)0.13969 (12)0.37167 (11)0.0439 (5)
O110.55321 (16)0.25517 (13)0.17366 (15)0.0744 (7)
H110.52500.22030.18250.112*
N30.38115 (16)0.08988 (11)0.09173 (11)0.0406 (5)
O20.42323 (16)0.01459 (13)0.42242 (12)0.0710 (6)
N40.40066 (16)0.03365 (12)0.15917 (11)0.0444 (5)
O50.23093 (17)0.17180 (11)0.17268 (11)0.0627 (6)
O120.83139 (16)0.12522 (14)0.27052 (17)0.0824 (8)
H120.79170.09430.26780.124*
O60.36459 (15)0.21446 (12)0.22776 (11)0.0613 (6)
O100.66549 (16)0.07249 (11)0.25757 (13)0.0582 (6)
O30.13794 (19)0.04061 (15)0.33528 (14)0.0836 (7)
H30.18460.03130.31490.100*
O70.07660 (16)0.24216 (15)0.15335 (17)0.0860 (8)
H70.11220.20970.14910.129*
N10.23691 (17)0.12766 (12)0.32674 (12)0.0472 (6)
C50.37874 (18)0.03313 (15)0.05045 (13)0.0395 (6)
C530.0631 (3)0.0425 (4)0.1339 (3)0.117 (2)
H530.04010.03470.18250.140*
C260.2802 (2)0.34560 (17)0.23416 (15)0.0546 (8)
C570.2677 (2)0.14228 (14)0.39758 (14)0.0459 (7)
O80.37449 (19)0.34162 (15)0.26058 (17)0.0866 (8)
H80.39470.30360.25280.130*
C250.2286 (2)0.28831 (14)0.20674 (13)0.0410 (6)
C320.68839 (19)0.18505 (14)0.22081 (14)0.0424 (6)
C210.5021 (3)0.16812 (17)0.51614 (17)0.0680 (10)
H210.52620.17680.56440.082*
C60.38765 (18)0.03198 (15)0.08544 (14)0.0412 (6)
C10.3779 (2)0.14897 (16)0.05841 (14)0.0482 (7)
H10.38120.18820.08660.058*
C310.62605 (19)0.12679 (15)0.23241 (14)0.0410 (6)
C390.2617 (2)0.02689 (15)0.43750 (16)0.0533 (6)
C300.1304 (2)0.29608 (18)0.18138 (16)0.0558 (8)
C200.3690 (2)0.14768 (14)0.42102 (14)0.0444 (7)
N60.14051 (19)0.0521 (2)0.03302 (15)0.0701 (9)
C160.2025 (3)0.15139 (17)0.44877 (18)0.0618 (9)
O40.37425 (19)0.00989 (16)0.54696 (13)0.0834 (8)
H40.41040.00740.51600.100*
C240.2765 (2)0.22140 (16)0.20203 (14)0.0476 (7)
C330.7897 (2)0.18107 (17)0.23974 (18)0.0575 (8)
C100.3959 (2)0.15344 (17)0.07953 (19)0.0619 (9)
H100.39370.19380.05330.074*
C70.3848 (2)0.09133 (16)0.04329 (16)0.0506 (7)
C230.5250 (2)0.14743 (16)0.39463 (15)0.0538 (8)
H230.56780.14240.36100.065*
C110.4098 (2)0.15506 (17)0.1532 (2)0.0637 (9)
H11A0.41770.19620.17790.076*
C40.3692 (2)0.03634 (16)0.02681 (14)0.0457 (7)
C190.4028 (3)0.16075 (16)0.49545 (16)0.0585 (9)
C30.3653 (2)0.09972 (18)0.05871 (15)0.0575 (8)
H3A0.35980.10350.10890.069*
N50.1552 (2)0.0787 (2)0.0868 (2)0.0816 (10)
C270.2349 (4)0.40856 (18)0.2342 (2)0.0768 (12)
H270.26890.44700.25190.092*
C370.6493 (2)0.24582 (17)0.18986 (16)0.0537 (7)
C80.3719 (3)0.08552 (19)0.03447 (18)0.0632 (9)
H8A0.36820.12480.06250.076*
C380.3389 (2)0.01706 (16)0.39193 (15)0.0510 (6)
C290.0853 (3)0.3571 (2)0.1822 (2)0.0738 (10)
H290.01950.36100.16580.089*
C360.7088 (3)0.29931 (19)0.1764 (2)0.0799 (11)
H360.68270.33900.15470.096*
C220.5633 (3)0.16273 (17)0.46626 (17)0.0634 (9)
H220.62940.16910.47930.076*
C120.4120 (2)0.09409 (15)0.19086 (18)0.0545 (8)
H12A0.42210.09570.24120.065*
C440.2853 (3)0.02329 (18)0.51560 (18)0.0641 (8)
C20.3696 (2)0.15638 (18)0.01716 (16)0.0591 (8)
H20.36720.19930.03820.071*
C430.2142 (3)0.0313 (2)0.55818 (19)0.0827 (12)
H430.22800.02810.60840.099*
C490.1184 (2)0.0010 (3)0.01247 (18)0.0718 (11)
C180.3357 (4)0.1663 (2)0.54486 (18)0.0800 (12)
H180.35800.17300.59380.096*
C500.1264 (2)0.0668 (3)0.0140 (2)0.0785 (13)
C90.3650 (2)0.02496 (19)0.06744 (16)0.0601 (9)
H90.35730.02300.11780.072*
C130.1424 (2)0.12352 (18)0.3062 (2)0.0614 (8)
H130.12070.11370.25790.074*
C400.1652 (3)0.03815 (18)0.41086 (19)0.0700 (10)
C170.2401 (4)0.1622 (2)0.5229 (2)0.0884 (14)
H170.19760.16640.55680.106*
C340.8477 (3)0.2355 (2)0.2272 (2)0.0786 (11)
H340.91430.23300.24030.094*
C350.8069 (3)0.2928 (2)0.1955 (3)0.0868 (12)
H350.84680.32870.18650.104*
C140.0735 (3)0.13304 (19)0.3526 (2)0.0745 (11)
H140.00790.13030.33540.089*
C450.1328 (3)0.1150 (3)0.0061 (2)0.0856 (13)
H450.14880.15080.03810.103*
C280.1376 (4)0.4122 (2)0.2073 (2)0.0817 (13)
H280.10690.45420.20630.098*
C480.0860 (3)0.0128 (3)0.0888 (2)0.0863 (14)
C520.0727 (4)0.1068 (4)0.1105 (3)0.1101 (19)
H520.06000.14250.14320.132*
C150.1046 (3)0.1464 (2)0.4234 (2)0.0811 (12)
H150.05970.15230.45540.097*
C470.0801 (3)0.0789 (3)0.1119 (2)0.1025 (18)
H470.06000.08810.16070.123*
C460.1027 (3)0.1308 (3)0.0659 (2)0.1003 (15)
H460.09840.17560.08180.120*
C420.1231 (4)0.0438 (3)0.5259 (3)0.1072 (16)
H420.07550.05000.55550.129*
C560.1608 (3)0.1414 (3)0.1106 (3)0.1047 (16)
H560.17910.14830.16000.126*
C410.0965 (3)0.0482 (3)0.4522 (3)0.1018 (14)
H410.03320.05770.43210.122*
C510.1028 (3)0.1210 (3)0.0347 (3)0.1021 (16)
C540.1127 (4)0.1855 (4)0.0061 (4)0.125 (2)
H540.09950.22190.03780.151*
C550.1403 (4)0.1999 (3)0.0653 (4)0.125 (2)
H550.14550.24410.08310.150*
H13B0.508 (2)0.016 (2)0.337 (2)0.187*
H13A0.5699 (11)0.017 (3)0.293 (3)0.187*
H14B0.206 (3)0.0096 (11)0.182 (3)0.187*
H14A0.193 (3)0.047 (2)0.1363 (16)0.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.03296 (9)0.04413 (10)0.02695 (8)0.00167 (7)0.00423 (6)0.00339 (7)
O90.0333 (10)0.0576 (12)0.0443 (10)0.0030 (9)0.0034 (8)0.0076 (9)
O130.0440 (11)0.0558 (12)0.0392 (10)0.0019 (10)0.0052 (8)0.0067 (9)
O140.0448 (12)0.0729 (15)0.0441 (11)0.0047 (11)0.0020 (9)0.0077 (11)
O10.0521 (11)0.0527 (12)0.0416 (8)0.0008 (10)0.0042 (7)0.0015 (9)
N20.0494 (14)0.0491 (14)0.0330 (11)0.0024 (11)0.0049 (10)0.0041 (10)
O110.0539 (14)0.0711 (16)0.0948 (17)0.0002 (12)0.0019 (13)0.0358 (15)
N30.0424 (13)0.0481 (14)0.0317 (11)0.0012 (10)0.0067 (9)0.0054 (10)
O20.0567 (10)0.0873 (17)0.0637 (13)0.0137 (13)0.0094 (9)0.0200 (13)
N40.0443 (13)0.0493 (14)0.0388 (12)0.0021 (11)0.0028 (10)0.0036 (11)
O50.0808 (16)0.0539 (14)0.0533 (12)0.0039 (12)0.0092 (11)0.0055 (11)
O120.0392 (13)0.0785 (18)0.128 (2)0.0056 (12)0.0071 (14)0.0211 (17)
O60.0531 (14)0.0692 (15)0.0630 (13)0.0147 (11)0.0124 (11)0.0122 (11)
O100.0422 (11)0.0540 (14)0.0795 (16)0.0048 (10)0.0126 (10)0.0134 (11)
O30.0801 (11)0.0850 (11)0.0841 (11)0.0047 (9)0.0056 (8)0.0049 (9)
O70.0500 (14)0.094 (2)0.110 (2)0.0117 (14)0.0042 (14)0.0016 (18)
N10.0469 (14)0.0509 (15)0.0460 (13)0.0008 (12)0.0142 (11)0.0006 (11)
C50.0311 (14)0.0556 (17)0.0325 (12)0.0028 (12)0.0067 (11)0.0088 (13)
C530.081 (3)0.205 (7)0.067 (3)0.043 (4)0.019 (2)0.040 (4)
C260.063 (2)0.060 (2)0.0407 (15)0.0021 (17)0.0079 (15)0.0002 (15)
C570.0634 (19)0.0373 (15)0.0411 (14)0.0029 (14)0.0217 (14)0.0012 (12)
O80.0741 (18)0.090 (2)0.0882 (18)0.0214 (14)0.0142 (15)0.0110 (17)
C250.0459 (16)0.0460 (16)0.0325 (13)0.0034 (13)0.0108 (11)0.0045 (12)
C320.0401 (15)0.0479 (16)0.0405 (14)0.0038 (13)0.0102 (12)0.0037 (13)
C210.103 (3)0.056 (2)0.0383 (16)0.012 (2)0.0135 (18)0.0127 (15)
C60.0326 (14)0.0520 (17)0.0389 (13)0.0009 (12)0.0048 (11)0.0087 (13)
C10.0576 (19)0.0488 (18)0.0386 (14)0.0009 (14)0.0087 (13)0.0023 (13)
C310.0392 (16)0.0506 (17)0.0346 (13)0.0024 (13)0.0106 (11)0.0013 (13)
C390.0711 (14)0.0353 (15)0.0578 (11)0.0019 (15)0.0236 (10)0.0032 (14)
C300.0511 (19)0.066 (2)0.0521 (17)0.0020 (17)0.0137 (14)0.0103 (16)
C200.067 (2)0.0359 (15)0.0314 (13)0.0047 (14)0.0119 (13)0.0039 (11)
N60.0432 (16)0.117 (3)0.0491 (15)0.0096 (17)0.0048 (13)0.0182 (19)
C160.077 (2)0.0528 (19)0.064 (2)0.0040 (17)0.0375 (18)0.0104 (16)
O40.0902 (17)0.102 (2)0.0572 (13)0.0043 (17)0.0078 (11)0.0098 (15)
C240.0527 (18)0.0587 (19)0.0332 (13)0.0005 (15)0.0125 (13)0.0038 (14)
C330.0423 (17)0.059 (2)0.073 (2)0.0022 (16)0.0151 (15)0.0038 (17)
C100.063 (2)0.051 (2)0.071 (2)0.0026 (16)0.0066 (17)0.0184 (17)
C70.0450 (17)0.057 (2)0.0504 (16)0.0009 (14)0.0086 (13)0.0160 (15)
C230.059 (2)0.059 (2)0.0416 (15)0.0050 (16)0.0020 (14)0.0096 (14)
C110.067 (2)0.0455 (19)0.077 (2)0.0053 (16)0.0052 (18)0.0001 (17)
C40.0418 (16)0.064 (2)0.0317 (13)0.0021 (14)0.0074 (12)0.0074 (14)
C190.095 (3)0.0451 (18)0.0349 (15)0.0059 (17)0.0076 (16)0.0062 (13)
C30.062 (2)0.081 (2)0.0300 (14)0.0061 (17)0.0077 (14)0.0003 (15)
N50.0498 (18)0.102 (3)0.090 (3)0.0112 (18)0.0001 (17)0.018 (2)
C270.124 (4)0.050 (2)0.059 (2)0.013 (2)0.021 (2)0.0079 (16)
C370.0485 (17)0.0566 (19)0.0572 (17)0.0034 (15)0.0118 (14)0.0075 (16)
C80.067 (2)0.075 (2)0.0478 (17)0.0051 (18)0.0102 (16)0.0289 (18)
C380.0524 (12)0.0526 (17)0.0471 (10)0.0018 (15)0.0044 (8)0.0066 (14)
C290.064 (2)0.079 (3)0.082 (2)0.023 (2)0.0244 (19)0.021 (2)
C360.070 (3)0.056 (2)0.117 (3)0.0068 (19)0.024 (2)0.019 (2)
C220.073 (2)0.059 (2)0.0507 (18)0.0082 (17)0.0154 (17)0.0119 (16)
C120.061 (2)0.050 (2)0.0510 (17)0.0053 (15)0.0017 (15)0.0000 (14)
C440.0784 (17)0.058 (2)0.0593 (11)0.0001 (18)0.0201 (13)0.0059 (17)
C20.071 (2)0.065 (2)0.0427 (16)0.0013 (17)0.0129 (15)0.0098 (16)
C430.098 (3)0.104 (3)0.0522 (19)0.008 (3)0.033 (2)0.001 (2)
C490.0383 (18)0.127 (4)0.0511 (19)0.016 (2)0.0109 (15)0.019 (2)
C180.130 (4)0.078 (3)0.0379 (17)0.010 (3)0.031 (2)0.0184 (17)
C500.0347 (17)0.130 (4)0.072 (2)0.018 (2)0.0104 (17)0.044 (3)
C90.068 (2)0.078 (2)0.0352 (14)0.0054 (19)0.0098 (14)0.0178 (17)
C130.0479 (19)0.070 (2)0.070 (2)0.0009 (17)0.0200 (16)0.0016 (18)
C400.080 (3)0.062 (2)0.067 (2)0.006 (2)0.006 (2)0.0046 (18)
C170.128 (4)0.085 (3)0.067 (2)0.019 (3)0.063 (3)0.025 (2)
C340.047 (2)0.067 (3)0.124 (3)0.0140 (18)0.022 (2)0.009 (2)
C350.071 (3)0.058 (2)0.137 (4)0.022 (2)0.034 (3)0.002 (2)
C140.050 (2)0.076 (3)0.103 (3)0.0011 (18)0.030 (2)0.007 (2)
C450.061 (2)0.133 (4)0.064 (2)0.003 (3)0.0139 (19)0.003 (3)
C280.112 (4)0.069 (3)0.072 (2)0.039 (3)0.038 (2)0.016 (2)
C480.051 (2)0.156 (5)0.054 (2)0.031 (3)0.0153 (17)0.033 (3)
C520.081 (3)0.171 (5)0.081 (3)0.048 (4)0.020 (3)0.066 (4)
C150.083 (3)0.079 (3)0.094 (3)0.001 (2)0.056 (2)0.014 (2)
C470.069 (3)0.182 (6)0.060 (2)0.028 (3)0.019 (2)0.001 (3)
C460.071 (3)0.154 (5)0.077 (3)0.002 (3)0.015 (2)0.018 (3)
C420.097 (4)0.133 (4)0.103 (2)0.016 (3)0.052 (3)0.010 (3)
C560.062 (3)0.122 (4)0.126 (4)0.014 (3)0.002 (3)0.004 (4)
C410.079 (3)0.125 (4)0.109 (2)0.022 (3)0.040 (3)0.017 (3)
C510.064 (3)0.132 (5)0.114 (4)0.032 (3)0.025 (3)0.050 (4)
C540.074 (3)0.134 (6)0.171 (6)0.029 (4)0.026 (4)0.057 (5)
C550.077 (3)0.116 (5)0.177 (6)0.018 (3)0.001 (4)0.008 (5)
Geometric parameters (Å, º) top
La1—O142.534 (2)O4—C441.324 (4)
La1—O132.5381 (18)O4—H40.8200
La1—O12.5601 (19)C33—C341.383 (5)
La1—O92.5904 (18)C10—C111.360 (5)
La1—O62.633 (2)C10—C71.394 (4)
La1—N22.759 (2)C10—H100.9300
La1—N42.763 (2)C7—C81.439 (4)
La1—N32.767 (2)C23—C221.400 (4)
La1—O52.800 (2)C23—H230.9300
La1—N12.810 (2)C11—C121.388 (4)
La1—C243.093 (3)C11—H11A0.9300
O9—C311.275 (3)C4—C31.379 (5)
O13—H13B0.86 (4)C4—C91.421 (4)
O13—H13A0.872 (10)C19—C181.408 (5)
O14—H14B0.829 (19)C3—C21.354 (4)
O14—H14A0.858 (19)C3—H3A0.9300
O1—C381.308 (3)N5—C561.308 (6)
N2—C231.320 (3)N5—C501.380 (5)
N2—C201.367 (3)C27—C281.384 (6)
O11—C371.347 (4)C27—H270.9300
O11—H110.8200C37—C361.386 (5)
N3—C11.316 (3)C8—C91.338 (5)
N3—C51.354 (3)C8—H8A0.9300
O2—C381.235 (3)C29—C281.353 (6)
N4—C121.327 (4)C29—H290.9300
N4—C61.361 (3)C36—C351.374 (5)
O5—C241.249 (3)C36—H360.9300
O12—C331.335 (4)C22—H220.9300
O12—H120.8200C12—H12A0.9300
O6—C241.264 (3)C44—C431.365 (5)
O10—C311.262 (3)C2—H20.9300
O3—C401.407 (4)C43—C421.351 (6)
O3—H30.8200C43—H430.9300
O7—C301.362 (4)C49—C501.422 (6)
O7—H70.8200C49—C481.449 (5)
N1—C131.325 (4)C18—C171.343 (6)
N1—C571.360 (3)C18—H180.9300
C5—C41.428 (3)C50—C511.409 (6)
C5—C61.435 (4)C9—H90.9300
C53—C521.339 (8)C13—C141.393 (5)
C53—C481.385 (7)C13—H130.9300
C53—H530.9300C40—C411.327 (5)
C26—O81.342 (4)C17—H170.9300
C26—C271.392 (5)C34—C351.359 (5)
C26—C251.396 (4)C34—H340.9300
C57—C161.421 (4)C35—H350.9300
C57—C201.425 (4)C14—C151.356 (5)
O8—H80.8200C14—H140.9300
C25—C301.396 (4)C45—C461.385 (6)
C25—C241.485 (4)C45—H450.9300
C32—C371.404 (4)C28—H280.9300
C32—C331.412 (4)C48—C471.370 (6)
C32—C311.474 (4)C52—C511.442 (7)
C21—C221.353 (5)C52—H520.9300
C21—C191.394 (5)C15—H150.9300
C21—H210.9300C47—C461.342 (7)
C6—C71.405 (4)C47—H470.9300
C1—C21.404 (4)C46—H460.9300
C1—H10.9300C42—C411.375 (6)
C39—C401.388 (5)C42—H420.9300
C39—C441.448 (4)C56—C551.434 (7)
C39—C381.476 (4)C56—H560.9300
C30—C291.358 (5)C41—H410.9300
C20—C191.424 (4)C51—C541.376 (8)
N6—C491.323 (5)C54—C551.361 (8)
N6—C451.333 (6)C54—H540.9300
C16—C151.387 (5)C55—H550.9300
C16—C171.423 (5)
O14—La1—O13124.49 (7)O6—C24—La157.20 (16)
O14—La1—O170.88 (6)C25—C24—La1163.66 (17)
O13—La1—O168.27 (6)O12—C33—C34118.7 (3)
O14—La1—O9145.79 (6)O12—C33—C32121.0 (3)
O13—La1—O969.28 (6)C34—C33—C32120.3 (3)
O1—La1—O9136.48 (6)C11—C10—C7120.0 (3)
O14—La1—O6109.08 (7)C11—C10—H10120.0
O13—La1—O6126.41 (7)C7—C10—H10120.0
O1—La1—O6136.70 (6)C10—C7—C6117.7 (3)
O9—La1—O667.17 (6)C10—C7—C8123.1 (3)
O14—La1—N2133.88 (7)C6—C7—C8119.1 (3)
O13—La1—N272.27 (7)N2—C23—C22124.2 (3)
O1—La1—N280.05 (6)N2—C23—H23117.9
O9—La1—N278.49 (6)C22—C23—H23117.9
O6—La1—N269.82 (7)C10—C11—C12118.7 (3)
O14—La1—N469.29 (7)C10—C11—H11A120.7
O13—La1—N468.61 (6)C12—C11—H11A120.7
O1—La1—N480.98 (7)C3—C4—C9122.8 (3)
O9—La1—N492.33 (6)C3—C4—C5117.8 (3)
O6—La1—N4141.15 (7)C9—C4—C5119.4 (3)
N2—La1—N4140.53 (7)C21—C19—C18122.6 (3)
O14—La1—N375.93 (7)C21—C19—C20118.0 (3)
O13—La1—N3110.07 (6)C18—C19—C20119.4 (3)
O1—La1—N3135.14 (6)C2—C3—C4120.1 (3)
O9—La1—N369.86 (6)C2—C3—H3A119.9
O6—La1—N382.36 (6)C4—C3—H3A119.9
N2—La1—N3144.11 (7)C56—N5—C50119.3 (4)
N4—La1—N359.21 (7)C28—C27—C26118.1 (4)
O14—La1—O562.17 (7)C28—C27—H27121.0
O13—La1—O5173.32 (7)C26—C27—H27121.0
O1—La1—O5116.77 (6)O11—C37—C36117.4 (3)
O9—La1—O5104.92 (6)O11—C37—C32121.8 (3)
O6—La1—O546.96 (6)C36—C37—C32120.8 (3)
N2—La1—O5103.71 (7)C9—C8—C7121.6 (3)
N4—La1—O5115.73 (6)C9—C8—H8A119.2
N3—La1—O569.88 (6)C7—C8—H8A119.2
O14—La1—N176.23 (7)O2—C38—O1124.1 (3)
O13—La1—N1116.29 (6)O2—C38—C39117.9 (3)
O1—La1—N165.22 (6)O1—C38—C39118.0 (3)
O9—La1—N1129.30 (7)C28—C29—C30118.9 (4)
O6—La1—N172.69 (7)C28—C29—H29120.6
N2—La1—N159.08 (7)C30—C29—H29120.6
N4—La1—N1137.96 (7)C35—C36—C37118.9 (4)
N3—La1—N1133.57 (7)C35—C36—H36120.5
O5—La1—N164.40 (7)C37—C36—H36120.5
O14—La1—C2485.46 (8)C21—C22—C23118.5 (3)
O13—La1—C24149.76 (8)C21—C22—H22120.7
O1—La1—C24126.36 (7)C23—C22—H22120.7
O9—La1—C2488.26 (7)N4—C12—C11123.8 (3)
O6—La1—C2423.79 (7)N4—C12—H12A118.1
N2—La1—C2483.89 (7)C11—C12—H12A118.1
N4—La1—C24134.64 (7)O4—C44—C43118.8 (3)
N3—La1—C2478.80 (7)O4—C44—C39121.4 (3)
O5—La1—C2423.81 (7)C43—C44—C39119.8 (3)
N1—La1—C2462.62 (7)C3—C2—C1118.6 (3)
C31—O9—La1143.79 (17)C3—C2—H2120.7
La1—O13—H13B125 (2)C1—C2—H2120.7
La1—O13—H13A123 (2)C42—C43—C44118.6 (4)
H13B—O13—H13A111 (4)C42—C43—H43120.7
La1—O14—H14B116 (3)C44—C43—H43120.7
La1—O14—H14A114 (3)N6—C49—C50119.4 (3)
H14B—O14—H14A112 (4)N6—C49—C48121.3 (5)
C38—O1—La1128.55 (18)C50—C49—C48119.2 (4)
C23—N2—C20117.8 (2)C17—C18—C19121.4 (3)
C23—N2—La1120.41 (17)C17—C18—H18119.3
C20—N2—La1120.35 (18)C19—C18—H18119.3
C37—O11—H11109.5N5—C50—C51120.9 (5)
C1—N3—C5117.7 (2)N5—C50—C49119.9 (4)
C1—N3—La1121.26 (17)C51—C50—C49119.2 (5)
C5—N3—La1120.66 (17)C8—C9—C4121.1 (3)
C12—N4—C6117.5 (2)C8—C9—H9119.5
C12—N4—La1120.74 (19)C4—C9—H9119.5
C6—N4—La1120.83 (18)N1—C13—C14124.0 (3)
C24—O5—La191.38 (18)N1—C13—H13118.0
C33—O12—H12109.5C14—C13—H13118.0
C24—O6—La199.00 (19)C41—C40—C39124.2 (4)
C40—O3—H3109.5C41—C40—O3117.3 (4)
C30—O7—H7109.5C39—C40—O3118.5 (3)
C13—N1—C57117.4 (3)C18—C17—C16121.4 (3)
C13—N1—La1121.97 (19)C18—C17—H17119.3
C57—N1—La1119.32 (18)C16—C17—H17119.3
N3—C5—C4121.8 (3)C35—C34—C33119.7 (3)
N3—C5—C6119.0 (2)C35—C34—H34120.1
C4—C5—C6119.2 (2)C33—C34—H34120.1
C52—C53—C48122.7 (5)C34—C35—C36122.2 (3)
C52—C53—H53118.7C34—C35—H35118.9
C48—C53—H53118.7C36—C35—H35118.9
O8—C26—C27118.4 (3)C15—C14—C13118.4 (3)
O8—C26—C25121.1 (3)C15—C14—H14120.8
C27—C26—C25120.5 (3)C13—C14—H14120.8
N1—C57—C16122.2 (3)N6—C45—C46124.8 (5)
N1—C57—C20118.6 (2)N6—C45—H45117.6
C16—C57—C20119.2 (3)C46—C45—H45117.6
C26—O8—H8109.5C29—C28—C27122.6 (4)
C26—C25—C30117.9 (3)C29—C28—H28118.7
C26—C25—C24121.6 (3)C27—C28—H28118.7
C30—C25—C24120.5 (3)C47—C48—C53123.8 (5)
C37—C32—C33117.9 (3)C47—C48—C49117.3 (4)
C37—C32—C31121.2 (3)C53—C48—C49119.0 (5)
C33—C32—C31120.8 (3)C53—C52—C51120.3 (5)
C22—C21—C19120.2 (3)C53—C52—H52119.8
C22—C21—H21119.9C51—C52—H52119.9
C19—C21—H21119.9C14—C15—C16120.7 (3)
N4—C6—C7122.3 (3)C14—C15—H15119.6
N4—C6—C5118.1 (2)C16—C15—H15119.6
C7—C6—C5119.6 (2)C46—C47—C48121.5 (5)
N3—C1—C2123.9 (3)C46—C47—H47119.3
N3—C1—H1118.1C48—C47—H47119.3
C2—C1—H1118.1C47—C46—C45117.5 (5)
O10—C31—O9122.6 (3)C47—C46—H46121.3
O10—C31—C32118.5 (2)C45—C46—H46121.3
O9—C31—C32118.9 (3)C43—C42—C41124.2 (4)
C40—C39—C44116.1 (3)C43—C42—H42117.9
C40—C39—C38124.5 (3)C41—C42—H42117.9
C44—C39—C38119.3 (3)N5—C56—C55124.0 (5)
C29—C30—O7117.4 (3)N5—C56—H56118.0
C29—C30—C25122.0 (3)C55—C56—H56118.0
O7—C30—C25120.6 (3)C40—C41—C42117.0 (4)
N2—C20—C19121.3 (3)C40—C41—H41121.5
N2—C20—C57119.3 (2)C42—C41—H41121.5
C19—C20—C57119.4 (3)C54—C51—C50116.5 (6)
C49—N6—C45117.7 (4)C54—C51—C52123.9 (6)
C15—C16—C57117.3 (3)C50—C51—C52119.6 (6)
C15—C16—C17123.6 (3)C55—C54—C51124.8 (6)
C57—C16—C17119.1 (3)C55—C54—H54117.6
C44—O4—H4109.5C51—C54—H54117.6
O5—C24—O6119.4 (3)C54—C55—C56114.4 (6)
O5—C24—C25120.8 (3)C54—C55—H55122.8
O6—C24—C25119.8 (3)C56—C55—H55122.8
O5—C24—La164.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O90.821.832.557 (3)147
O12—H12···O100.821.802.520 (3)146
O3—H3···O10.821.842.576 (3)149
O7—H7···O50.821.822.545 (3)147
O8—H8···O60.821.852.575 (4)147
O4—H4···O20.821.782.512 (3)147
O13—H13A···O100.87 (1)1.92 (2)2.704 (3)150 (4)
O13—H13B···O20.86 (4)2.11 (3)2.762 (3)132 (4)
O14—H14A···N60.86 (2)1.96 (2)2.793 (4)162 (4)
O14—H14B···N50.83 (2)2.26 (4)2.824 (4)125 (4)

Experimental details

Crystal data
Chemical formula[La(C7H5O4)3(C12H8N2)3(H2O)2]·C12H8N2
Mr1174.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.9735 (3), 19.6751 (3), 18.6337 (3)
β (°) 98.059 (2)
V3)5072.37 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.50 × 0.46 × 0.42
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
[ABSPACK in CrysAlis PRO (Oxford Diffraction, 2006)]
Tmin, Tmax0.657, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
32940, 10312, 7901
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.05
No. of reflections10312
No. of parameters721
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.49

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O90.821.832.557 (3)147.2
O12—H12···O100.821.802.520 (3)145.9
O3—H3···O10.821.842.576 (3)148.6
O7—H7···O50.821.822.545 (3)147.4
O8—H8···O60.821.852.575 (4)147.0
O4—H4···O20.821.782.512 (3)147.2
O13—H13A···O100.872 (10)1.92 (2)2.704 (3)150 (4)
O13—H13B···O20.856 (40)2.11 (3)2.762 (3)132 (4)
O14—H14A···N60.858 (19)1.96 (2)2.793 (4)162 (4)
O14—H14B···N50.829 (19)2.26 (4)2.824 (4)125 (4)
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNie, J.-J., Pan, T.-T., Su, J.-R. & Xu, D.-J. (2010). Acta Cryst. E66, m760–m761.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSantos, C. M. G. dos, Harte, A. J., Quinn, S. J. & Gunnlaugsson, T. (2008). Coord. Chem. Rev. 252, 2512—2527.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X. & Jin, L. (2003). Polyhedron, 22, 2617–2619.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds