organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­chloro­benzyl­­idene)-2-methyl­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn

(Received 21 October 2010; accepted 26 October 2010; online 6 November 2010)

In the title hydrazone compound, C15H12Cl2N2O, the dihedral angle between the two benzene rings is 12.2 (2)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming forming C(4) chains propagating in [001].

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For the crystal structures of related compounds, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O

  • Mr = 307.17

  • Monoclinic, P 21 /c

  • a = 7.563 (1) Å

  • b = 25.729 (2) Å

  • c = 8.174 (2) Å

  • β = 115.771 (2)°

  • V = 1432.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.957

  • 7436 measured reflections

  • 3040 independent reflections

  • 1529 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.097

  • S = 0.85

  • 3040 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (1) 2.03 (1) 2.892 (3) 159 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 12.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8 and N1—N2—C8—C9 are 3.1 (2), 12.2 (2), and 3.0 (2)°, respectively. All the bond lengths have normal values (Allen et al., 1987) and are comparable to those in the similar hydrazone compound reported recently (Tang, 2010).

In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For the crystal structures of related compounds, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987).

Experimental top

2,4-Dichlorobenzaldehyde (0.1 mmol, 19.1 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl H and 1.2 for all other H atoms.

Structure description top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 12.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8 and N1—N2—C8—C9 are 3.1 (2), 12.2 (2), and 3.0 (2)°, respectively. All the bond lengths have normal values (Allen et al., 1987) and are comparable to those in the similar hydrazone compound reported recently (Tang, 2010).

In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For the crystal structures of related compounds, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.
N'-(2,4-Dichlorobenzylidene)-2-methylbenzohydrazide top
Crystal data top
C15H12Cl2N2OF(000) = 632
Mr = 307.17Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.563 (1) ÅCell parameters from 1160 reflections
b = 25.729 (2) Åθ = 2.7–24.3°
c = 8.174 (2) ŵ = 0.45 mm1
β = 115.771 (2)°T = 298 K
V = 1432.4 (4) Å3Block, colourless
Z = 40.15 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3040 independent reflections
Radiation source: fine-focus sealed tube1529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 96
Tmin = 0.936, Tmax = 0.957k = 3228
7436 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C15H12Cl2N2OV = 1432.4 (4) Å3
Mr = 307.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.563 (1) ŵ = 0.45 mm1
b = 25.729 (2) ÅT = 298 K
c = 8.174 (2) Å0.15 × 0.13 × 0.10 mm
β = 115.771 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1529 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.957Rint = 0.089
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.22 e Å3
3040 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30785 (12)0.05472 (3)0.66289 (10)0.0762 (3)
Cl20.23133 (11)0.02731 (3)0.01806 (10)0.0694 (3)
H20.424 (4)0.2371 (10)0.803 (2)0.080*
N10.3080 (3)0.21618 (9)0.5418 (2)0.0400 (5)
N20.4152 (3)0.24626 (9)0.6931 (3)0.0412 (6)
O10.4719 (3)0.30767 (7)0.5227 (2)0.0506 (5)
C10.1513 (3)0.13548 (10)0.4312 (3)0.0354 (6)
C20.1547 (3)0.08202 (11)0.4558 (3)0.0411 (7)
C30.0400 (4)0.04854 (11)0.3178 (3)0.0455 (7)
H30.04740.01280.33630.055*
C40.0840 (3)0.06916 (12)0.1541 (3)0.0422 (7)
C50.0965 (4)0.12162 (12)0.1234 (3)0.0473 (7)
H50.18320.13500.01140.057*
C60.0214 (4)0.15428 (11)0.2613 (3)0.0438 (7)
H60.01420.18990.24030.053*
C70.2715 (3)0.17057 (11)0.5775 (3)0.0392 (7)
H70.32150.15950.69760.047*
C80.4929 (4)0.29150 (10)0.6711 (3)0.0375 (6)
C90.6141 (4)0.31927 (10)0.8446 (3)0.0367 (6)
C100.5972 (4)0.37312 (11)0.8577 (3)0.0419 (7)
C110.7197 (5)0.39632 (12)1.0223 (4)0.0587 (8)
H110.70960.43201.03530.070*
C120.8536 (5)0.36888 (15)1.1652 (4)0.0649 (9)
H120.93440.38591.27200.078*
C130.8691 (4)0.31614 (14)1.1512 (4)0.0601 (9)
H130.96020.29721.24820.072*
C140.7481 (4)0.29148 (11)0.9917 (3)0.0472 (7)
H140.75640.25560.98270.057*
C150.4557 (4)0.40581 (11)0.7048 (4)0.0604 (9)
H15A0.43800.43860.75160.091*
H15B0.33170.38820.64750.091*
H15C0.50680.41150.61740.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0772 (6)0.0571 (6)0.0563 (5)0.0056 (4)0.0065 (4)0.0130 (4)
Cl20.0518 (5)0.0768 (6)0.0616 (5)0.0099 (4)0.0080 (4)0.0297 (4)
N10.0466 (14)0.0428 (15)0.0341 (12)0.0087 (12)0.0208 (10)0.0055 (11)
N20.0559 (14)0.0402 (15)0.0316 (12)0.0128 (12)0.0229 (12)0.0057 (11)
O10.0797 (14)0.0437 (13)0.0342 (10)0.0083 (10)0.0301 (10)0.0013 (8)
C10.0309 (14)0.0418 (18)0.0359 (15)0.0042 (13)0.0169 (12)0.0042 (12)
C20.0340 (15)0.0457 (19)0.0390 (15)0.0025 (13)0.0116 (12)0.0008 (13)
C30.0380 (16)0.0406 (19)0.0550 (17)0.0034 (13)0.0175 (14)0.0038 (14)
C40.0309 (15)0.051 (2)0.0421 (16)0.0033 (13)0.0134 (13)0.0131 (14)
C50.0403 (16)0.062 (2)0.0339 (15)0.0094 (15)0.0113 (13)0.0041 (14)
C60.0496 (17)0.0418 (19)0.0391 (16)0.0049 (14)0.0185 (14)0.0018 (13)
C70.0411 (16)0.0446 (19)0.0303 (14)0.0041 (14)0.0139 (12)0.0009 (13)
C80.0429 (16)0.0371 (18)0.0369 (15)0.0020 (13)0.0213 (13)0.0031 (13)
C90.0420 (16)0.0399 (19)0.0355 (15)0.0059 (13)0.0236 (13)0.0013 (12)
C100.0492 (17)0.0383 (19)0.0520 (17)0.0061 (14)0.0348 (15)0.0031 (14)
C110.076 (2)0.050 (2)0.066 (2)0.0191 (18)0.046 (2)0.0198 (18)
C120.074 (2)0.079 (3)0.0475 (19)0.032 (2)0.0317 (19)0.0183 (19)
C130.056 (2)0.077 (3)0.0438 (18)0.0152 (18)0.0183 (16)0.0042 (17)
C140.0507 (17)0.0504 (19)0.0431 (16)0.0092 (15)0.0228 (14)0.0014 (15)
C150.065 (2)0.043 (2)0.079 (2)0.0056 (16)0.0376 (19)0.0034 (17)
Geometric parameters (Å, º) top
Cl1—C21.731 (2)C7—H70.9300
Cl2—C41.737 (2)C8—C91.494 (3)
N1—C71.268 (3)C9—C141.387 (3)
N1—N21.383 (3)C9—C101.400 (3)
N2—C81.351 (3)C10—C111.393 (4)
N2—H20.901 (10)C10—C151.501 (4)
O1—C81.226 (3)C11—C121.364 (4)
C1—C21.389 (3)C11—H110.9300
C1—C61.393 (3)C12—C131.371 (4)
C1—C71.458 (3)C12—H120.9300
C2—C31.384 (3)C13—C141.379 (3)
C3—C41.364 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.368 (3)C15—H15A0.9600
C5—C61.377 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300
C7—N1—N2114.4 (2)O1—C8—C9122.6 (2)
C8—N2—N1118.9 (2)N2—C8—C9114.1 (2)
C8—N2—H2120.6 (18)C14—C9—C10120.0 (2)
N1—N2—H2120.3 (18)C14—C9—C8119.5 (2)
C2—C1—C6116.7 (2)C10—C9—C8120.5 (2)
C2—C1—C7121.9 (2)C11—C10—C9116.9 (3)
C6—C1—C7121.4 (3)C11—C10—C15119.9 (3)
C3—C2—C1122.2 (2)C9—C10—C15123.2 (2)
C3—C2—Cl1117.4 (2)C12—C11—C10122.7 (3)
C1—C2—Cl1120.39 (19)C12—C11—H11118.7
C4—C3—C2118.5 (3)C10—C11—H11118.7
C4—C3—H3120.7C11—C12—C13120.0 (3)
C2—C3—H3120.7C11—C12—H12120.0
C3—C4—C5121.8 (2)C13—C12—H12120.0
C3—C4—Cl2118.6 (2)C12—C13—C14119.2 (3)
C5—C4—Cl2119.6 (2)C12—C13—H13120.4
C4—C5—C6118.9 (2)C14—C13—H13120.4
C4—C5—H5120.5C13—C14—C9121.1 (3)
C6—C5—H5120.5C13—C14—H14119.4
C5—C6—C1121.9 (3)C9—C14—H14119.4
C5—C6—H6119.0C10—C15—H15A109.5
C1—C6—H6119.0C10—C15—H15B109.5
N1—C7—C1120.3 (2)H15A—C15—H15B109.5
N1—C7—H7119.9C10—C15—H15C109.5
C1—C7—H7119.9H15A—C15—H15C109.5
O1—C8—N2123.2 (2)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.03 (1)2.892 (3)159 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O
Mr307.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.563 (1), 25.729 (2), 8.174 (2)
β (°) 115.771 (2)
V3)1432.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
7436, 3040, 1529
Rint0.089
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.097, 0.85
No. of reflections3040
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.901 (10)2.031 (14)2.892 (3)159 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University Research Fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds