organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3-phenyl­penta­nedioate

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: chemfufeng@126.com

(Received 9 October 2010; accepted 16 October 2010; online 10 November 2010)

In the title compound, C13H16O4, the terminal carboxyl­ate groups are twisted to each other at a dihedral angle of 23.80 (9)°. Weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the a axis.

Related literature

For approximately extended structures of carbon skeleton in penta­nedioate compounds, see: Fun & Chantrapromma (2009[Fun, H.-K. & Chantrapromma, S. (2009). Acta Cryst. E65, o624.]); Karadayı (2008[Karadayı, N. (2008). Acta Cryst. E64, o300.]); Yang et al. (2008[Yang, J.-H., Zhang, J.-M., Chen, Y.-X., Diao, J.-Z. & Peng, Z. (2008). Acta Cryst. E64, o1100.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16O4

  • Mr = 236.26

  • Triclinic, [P \overline 1]

  • a = 5.7944 (2) Å

  • b = 8.7668 (3) Å

  • c = 12.7591 (4) Å

  • α = 92.609 (2)°

  • β = 101.979 (2)°

  • γ = 96.140 (2)°

  • V = 628.86 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 8883 measured reflections

  • 2207 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 1.07

  • 2207 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.97 2.53 3.3987 (19) 149
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We attempted to synthesize a CdII complex with the mixed ligands using hydrothermal conditions. However we were not successful, and the title ester was unexpectedly obtained. Its structure is reported here.

The molecular structure is shown in Fig 1. The phenyl ring is almost perpendicular to the plane of C7, C8 and C11 atoms with a dihedral angle of 88.945 (6)°. The carbon skeleton of the pentanedioate displays an approximately extended structure, similar to those found in the crystal structures of related compounds (Fun & Chantrapromma, 2009; Karadayı, 2008; Yang et al. 2008). The terminal carboxylate groups are twisted to each other with a dihedal angle of 23.80 (9)°.

In the crystal structure, molecules are linked by C–H···O hydrogen bonds into a one-dimensional chain along the a axis (Table 1).

Related literature top

For approximately extended structures of carbon skeleton in pentanedioate compounds, see: Fun & Chantrapromma (2009); Karadayı (2008); Yang et al. (2008).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. An H2O/CH3OH (1:1) solution (8.0 ml) containing mixture of Cd(NO3)2.6H2O (0.1 mmol, 0.0308 mg), 3-phenylglutaric acid (0.1 mmol, 0.0208 g), 1,3-di(4-pyridyl)propane (0.05 mmol, 0.0099 g) and NaOH (0.1 mmol) was sealed in a 23 ml Teflon-lined autoclave, heated at 413 K for 3 days and then cooled to room temperature at 5 K min-1. The colorless crystals were obtained.

Refinement top

All of the H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H)= 1.2 or 1.5Ueq(C).

Structure description top

We attempted to synthesize a CdII complex with the mixed ligands using hydrothermal conditions. However we were not successful, and the title ester was unexpectedly obtained. Its structure is reported here.

The molecular structure is shown in Fig 1. The phenyl ring is almost perpendicular to the plane of C7, C8 and C11 atoms with a dihedral angle of 88.945 (6)°. The carbon skeleton of the pentanedioate displays an approximately extended structure, similar to those found in the crystal structures of related compounds (Fun & Chantrapromma, 2009; Karadayı, 2008; Yang et al. 2008). The terminal carboxylate groups are twisted to each other with a dihedal angle of 23.80 (9)°.

In the crystal structure, molecules are linked by C–H···O hydrogen bonds into a one-dimensional chain along the a axis (Table 1).

For approximately extended structures of carbon skeleton in pentanedioate compounds, see: Fun & Chantrapromma (2009); Karadayı (2008); Yang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional double chain connected by hydrogen bonds in the title complex.
Dimethyl 3-phenylpentanedioate top
Crystal data top
C13H16O4Z = 2
Mr = 236.26F(000) = 252
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7944 (2) ÅCell parameters from 2207 reflections
b = 8.7668 (3) Åθ = 1.6–25.0°
c = 12.7591 (4) ŵ = 0.09 mm1
α = 92.609 (2)°T = 296 K
β = 101.979 (2)°Prism, colorless
γ = 96.140 (2)°0.32 × 0.26 × 0.13 mm
V = 628.86 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
1839 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
φ and ω scansh = 66
8883 measured reflectionsk = 910
2207 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0827P]
where P = (Fo2 + 2Fc2)/3
2207 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H16O4γ = 96.140 (2)°
Mr = 236.26V = 628.86 (4) Å3
Triclinic, P1Z = 2
a = 5.7944 (2) ÅMo Kα radiation
b = 8.7668 (3) ŵ = 0.09 mm1
c = 12.7591 (4) ÅT = 296 K
α = 92.609 (2)°0.32 × 0.26 × 0.13 mm
β = 101.979 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1839 reflections with I > 2σ(I)
8883 measured reflectionsRint = 0.020
2207 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
2207 reflectionsΔρmin = 0.14 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4786 (2)0.22914 (15)0.76660 (10)0.0402 (3)
C20.6254 (3)0.26207 (18)0.69556 (13)0.0551 (4)
H20.72990.19320.68330.066*
C30.6182 (3)0.3963 (2)0.64272 (13)0.0635 (5)
H30.71840.41690.59550.076*
C40.4658 (3)0.49892 (18)0.65906 (13)0.0579 (4)
H40.46100.58860.62290.069*
C50.3203 (3)0.46854 (17)0.72911 (13)0.0578 (4)
H50.21660.53820.74100.069*
C60.3263 (3)0.33451 (16)0.78254 (12)0.0496 (4)
H60.22610.31520.82990.060*
C70.4854 (2)0.08246 (15)0.82520 (11)0.0427 (3)
H70.36520.07990.86920.051*
C80.7273 (3)0.07618 (17)0.89975 (11)0.0488 (4)
H8A0.72610.02200.93190.059*
H8B0.84820.08130.85720.059*
C90.7936 (3)0.20195 (16)0.98715 (11)0.0463 (3)
C101.1203 (4)0.3609 (2)1.09571 (16)0.0793 (6)
H10A1.02430.44391.09310.119*
H10B1.28010.40071.09370.119*
H10C1.11990.31041.16090.119*
C110.4293 (2)0.06163 (16)0.74809 (12)0.0487 (4)
H11A0.53810.05540.69960.058*
H11B0.45730.15070.78920.058*
C120.1809 (3)0.08498 (16)0.68321 (12)0.0474 (3)
C130.0740 (4)0.2120 (3)0.52859 (17)0.0895 (6)
H13A0.16060.28650.56330.134*
H13B0.06410.25490.45930.134*
H13C0.15460.12180.52020.134*
O11.02509 (18)0.25234 (13)1.00486 (9)0.0591 (3)
O20.6623 (2)0.25035 (15)1.03815 (10)0.0713 (4)
O30.1625 (2)0.17144 (14)0.59333 (9)0.0671 (3)
O40.0144 (2)0.03577 (17)0.70777 (11)0.0850 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (7)0.0427 (7)0.0383 (7)0.0014 (6)0.0042 (5)0.0019 (6)
C20.0524 (9)0.0602 (9)0.0589 (9)0.0142 (7)0.0209 (7)0.0101 (7)
C30.0660 (10)0.0697 (11)0.0601 (10)0.0054 (9)0.0240 (8)0.0175 (8)
C40.0665 (10)0.0476 (8)0.0548 (9)0.0017 (7)0.0033 (8)0.0099 (7)
C50.0613 (10)0.0451 (8)0.0673 (10)0.0143 (7)0.0109 (8)0.0005 (7)
C60.0500 (8)0.0464 (8)0.0549 (9)0.0067 (6)0.0167 (7)0.0011 (7)
C70.0403 (7)0.0432 (7)0.0441 (7)0.0044 (6)0.0085 (6)0.0010 (6)
C80.0484 (8)0.0486 (8)0.0477 (8)0.0108 (6)0.0041 (6)0.0026 (6)
C90.0467 (8)0.0503 (8)0.0414 (7)0.0086 (6)0.0061 (6)0.0080 (6)
C100.0702 (12)0.0790 (12)0.0741 (12)0.0042 (10)0.0060 (10)0.0174 (10)
C110.0474 (8)0.0435 (8)0.0542 (8)0.0066 (6)0.0083 (7)0.0007 (6)
C120.0487 (8)0.0417 (7)0.0511 (8)0.0011 (6)0.0120 (7)0.0007 (6)
C130.0772 (13)0.0980 (15)0.0754 (13)0.0134 (11)0.0073 (10)0.0194 (11)
O10.0474 (6)0.0657 (7)0.0592 (7)0.0014 (5)0.0048 (5)0.0079 (5)
O20.0604 (7)0.0865 (9)0.0668 (7)0.0044 (6)0.0206 (6)0.0181 (6)
O30.0603 (7)0.0713 (7)0.0625 (7)0.0036 (6)0.0047 (6)0.0208 (6)
O40.0469 (7)0.1122 (11)0.0901 (9)0.0096 (7)0.0109 (6)0.0360 (8)
Geometric parameters (Å, º) top
C1—C61.3803 (18)C8—H8B0.9700
C1—C21.3855 (19)C9—O21.1962 (17)
C1—C71.5166 (18)C9—O11.3357 (18)
C2—C31.383 (2)C10—O11.441 (2)
C2—H20.9300C10—H10A0.9600
C3—C41.364 (2)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.366 (2)C11—C121.492 (2)
C4—H40.9300C11—H11A0.9700
C5—C61.385 (2)C11—H11B0.9700
C5—H50.9300C12—O41.1908 (18)
C6—H60.9300C12—O31.3244 (18)
C7—C111.5283 (19)C13—O31.444 (2)
C7—C81.5299 (19)C13—H13A0.9600
C7—H70.9800C13—H13B0.9600
C8—C91.492 (2)C13—H13C0.9600
C8—H8A0.9700
C6—C1—C2117.79 (13)C7—C8—H8B108.7
C6—C1—C7121.06 (12)H8A—C8—H8B107.6
C2—C1—C7121.15 (12)O2—C9—O1123.14 (14)
C3—C2—C1120.70 (14)O2—C9—C8125.79 (14)
C3—C2—H2119.7O1—C9—C8111.03 (12)
C1—C2—H2119.7O1—C10—H10A109.5
C4—C3—C2120.75 (15)O1—C10—H10B109.5
C4—C3—H3119.6H10A—C10—H10B109.5
C2—C3—H3119.6O1—C10—H10C109.5
C3—C4—C5119.34 (14)H10A—C10—H10C109.5
C3—C4—H4120.3H10B—C10—H10C109.5
C5—C4—H4120.3C12—C11—C7114.15 (11)
C4—C5—C6120.37 (14)C12—C11—H11A108.7
C4—C5—H5119.8C7—C11—H11A108.7
C6—C5—H5119.8C12—C11—H11B108.7
C1—C6—C5121.05 (14)C7—C11—H11B108.7
C1—C6—H6119.5H11A—C11—H11B107.6
C5—C6—H6119.5O4—C12—O3122.43 (15)
C1—C7—C11112.33 (11)O4—C12—C11125.58 (14)
C1—C7—C8111.83 (11)O3—C12—C11111.98 (12)
C11—C7—C8108.24 (11)O3—C13—H13A109.5
C1—C7—H7108.1O3—C13—H13B109.5
C11—C7—H7108.1H13A—C13—H13B109.5
C8—C7—H7108.1O3—C13—H13C109.5
C9—C8—C7114.04 (11)H13A—C13—H13C109.5
C9—C8—H8A108.7H13B—C13—H13C109.5
C7—C8—H8A108.7C9—O1—C10117.15 (13)
C9—C8—H8B108.7C12—O3—C13116.62 (14)
C6—C1—C2—C30.0 (2)C1—C7—C8—C961.88 (15)
C7—C1—C2—C3179.85 (14)C11—C7—C8—C9173.87 (12)
C1—C2—C3—C40.3 (3)C7—C8—C9—O240.5 (2)
C2—C3—C4—C50.5 (3)C7—C8—C9—O1141.58 (13)
C3—C4—C5—C60.4 (3)C1—C7—C11—C1266.14 (15)
C2—C1—C6—C50.1 (2)C8—C7—C11—C12169.91 (12)
C7—C1—C6—C5179.92 (14)C7—C11—C12—O424.7 (2)
C4—C5—C6—C10.1 (2)C7—C11—C12—O3156.52 (12)
C6—C1—C7—C11121.25 (14)O2—C9—O1—C105.2 (2)
C2—C1—C7—C1158.94 (17)C8—C9—O1—C10172.73 (14)
C6—C1—C7—C8116.81 (14)O4—C12—O3—C133.8 (2)
C2—C1—C7—C862.99 (17)C11—C12—O3—C13175.03 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.533.3987 (19)149
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H16O4
Mr236.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7944 (2), 8.7668 (3), 12.7591 (4)
α, β, γ (°)92.609 (2), 101.979 (2), 96.140 (2)
V3)628.86 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.26 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8883, 2207, 1839
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 1.07
No. of reflections2207
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.533.3987 (19)148.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shaanxi Provinces of China (SJ08B11).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K. & Chantrapromma, S. (2009). Acta Cryst. E65, o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N. (2008). Acta Cryst. E64, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J.-H., Zhang, J.-M., Chen, Y.-X., Diao, J.-Z. & Peng, Z. (2008). Acta Cryst. E64, o1100.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds