organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-3-hy­dr­oxy-4H-chromen-4-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 29 October 2010; accepted 3 November 2010; online 10 November 2010)

In the crystal structure of the title compound, C15H9FO3, inversely oriented mol­ecules form inversion dimers through pairs of O—H⋯O hydrogen bonds. The benzene ring is twisted at an angle of 12.0 (1)° relative to the 4H-chromene skeleton of the mol­ecule. Adjacent 4H-chromene units are parallel in a given column or oriented at an angle of 50.0 (1)° in neighboring, inversely oriented, columns, forming a herringbone pattern.

Related literature

For general background to fluorescence in flavanol (3-hy­droxy-2-phenyl-4H-chromen-4-one) and its derivatives, see: Demchenko et al. (2002[Demchenko, A. P., Klymchenko, A. S., Pivovarenko, V. G. & Ercelen, S. (2002). Fluorescence Spectroscopy, Imaging and Probes - New Tools in Chemical, Physical and Life Sciences, edited by R. Kraayenhof, A. J. W. G. Viser & H. C. Gerritsen, Vol. 2 (Springer Series on Fluorescence), pp. 101-110. Berlin, Heidelberg: Springer-Verlag.]); Pivovarenko et al. (2005[Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74-78.]); Roshal et al. (2003[Roshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860-5869.]); Sengupta & Kasha (1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]). For related structures, see: Cantrell & Stalzer (1982[Cantrell, J. S. & Stalzer, R. A. (1982). Acta Cryst. B38, 983-984.]); Etter et al. (1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]); Waller et al. (2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]). For the synthesis, see: Smith et al. (1968[Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425-426.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9FO3

  • Mr = 256.22

  • Monoclinic, P 21 /c

  • a = 15.5971 (9) Å

  • b = 3.8790 (2) Å

  • c = 19.1655 (12) Å

  • β = 103.906 (6)°

  • V = 1125.55 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.6 × 0.4 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.956, Tmax = 0.991

  • 7973 measured reflections

  • 1999 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.113

  • S = 1.12

  • 1999 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12 0.83 (3) 2.28 (3) 2.722 (2) 113 (3)
O11—H11⋯O12i 0.83 (3) 2.02 (3) 2.761 (2) 149 (3)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquid phases originating from the Excited State Intramolecular Proton Transfer (ESIPT) phenomenon (Sengupta & Kasha, 1979). Since the fluorescence of flavonols depends strongly on the properties of the medium, the compounds can be applied as analytical probes in chemistry, biochemistry, biology and medicine (Demchenko et al., 2002). Continuing our investigations into this group of compounds (Roshal et al., 2003; Pivovarenko et al., 2005) we now present the crystal structure of a flavonol derivative – 2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4H-chromen-4-one (flavone) moiety are typical of this group of compounds (Cantrell & Stalzer, 1982; Etter et al., 1986; Waller et al., 2003). With respective average deviations from planarity of 0.0147 (2)° and 0.0020 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.0 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986)).

In the crystal structure, the inversely oriented molecules form dimers through a pair of intermolecular O—H···O (Aakeröy et al., 1992) bonds (Table 1, Fig. 2). Dimers oriented in parallel – linked by C—F···π (Dorn et al., 2005) contacts (Table 2, Fig. 2) – are arranged in columns along the b axis which are dispersively stabilized in the crystal lattice. The adjacent 4H-chromene moieties are parallel in a given column or oriented at an angle of 50.0 (1) in the two neighboring, inversely oriented, columns, which forms a herringbone pattern. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

Related literature top

For general background to fluorescence in flavanol (3-hydroxy-2-phenyl-4H-chromen-4-one) and its derivatives, see: Demchenko et al. (2002); Pivovarenko et al. (2005); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Cantrell & Stalzer (1982); Etter et al. (1986); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005). For the synthesis, see: Smith et al. (1968).

Experimental top

The title compound was synthesized following the procedure described by Smith et al., 1968. Briefly, 3-(4-fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-fluorobenzaldehyde in methanol/50% aqueous NaOH (1/1 v/v), precipitated by neutralizing the reaction mixture with aqueous HCl and separated by filtration. The product thus obtained was subjected to oxidative cyclization in alkaline methanol/H2O2 to yield 2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one. The filtered product was purified chromatographically (Silica Gel, chloroform/methanol, 20/1 v/v) and yellow crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. = 442–443 K).

Refinement top

The H atoms of the C—H bonds were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms involved in O—H···O hydrogen bonds were located on a difference map and refined freely with Uiso(H) = 1.2Ueq(O).

Structure description top

3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquid phases originating from the Excited State Intramolecular Proton Transfer (ESIPT) phenomenon (Sengupta & Kasha, 1979). Since the fluorescence of flavonols depends strongly on the properties of the medium, the compounds can be applied as analytical probes in chemistry, biochemistry, biology and medicine (Demchenko et al., 2002). Continuing our investigations into this group of compounds (Roshal et al., 2003; Pivovarenko et al., 2005) we now present the crystal structure of a flavonol derivative – 2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4H-chromen-4-one (flavone) moiety are typical of this group of compounds (Cantrell & Stalzer, 1982; Etter et al., 1986; Waller et al., 2003). With respective average deviations from planarity of 0.0147 (2)° and 0.0020 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.0 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986)).

In the crystal structure, the inversely oriented molecules form dimers through a pair of intermolecular O—H···O (Aakeröy et al., 1992) bonds (Table 1, Fig. 2). Dimers oriented in parallel – linked by C—F···π (Dorn et al., 2005) contacts (Table 2, Fig. 2) – are arranged in columns along the b axis which are dispersively stabilized in the crystal lattice. The adjacent 4H-chromene moieties are parallel in a given column or oriented at an angle of 50.0 (1) in the two neighboring, inversely oriented, columns, which forms a herringbone pattern. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

For general background to fluorescence in flavanol (3-hydroxy-2-phenyl-4H-chromen-4-one) and its derivatives, see: Demchenko et al. (2002); Pivovarenko et al. (2005); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Cantrell & Stalzer (1982); Etter et al. (1986); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005). For the synthesis, see: Smith et al. (1968).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O—H···O hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The O—H···O hydrogen bonds are represented by dashed lines, the C—F···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 2, –z + 1; (ii) x, y – 1, z.]
[Figure 3] Fig. 3. Columns in the crystal structure, viewed along the b axis. The O—H···O interactions are represented by dashed lines, the C—F···π contacts by dotted lines. H atoms not involved in interactions have been omitted.
2-(4-Fluorophenyl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C15H9FO3F(000) = 528
Mr = 256.22Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1729 reflections
a = 15.5971 (9) Åθ = 3.9–25.1°
b = 3.8790 (2) ŵ = 0.12 mm1
c = 19.1655 (12) ÅT = 295 K
β = 103.906 (6)°Plate, yellow
V = 1125.55 (11) Å30.6 × 0.4 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1999 independent reflections
Radiation source: Enhance (Mo) X-ray Source1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.9°
ω scansh = 1814
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 44
Tmin = 0.956, Tmax = 0.991l = 2022
7973 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.833P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1999 reflectionsΔρmax = 0.21 e Å3
176 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C15H9FO3V = 1125.55 (11) Å3
Mr = 256.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.5971 (9) ŵ = 0.12 mm1
b = 3.8790 (2) ÅT = 295 K
c = 19.1655 (12) Å0.6 × 0.4 × 0.05 mm
β = 103.906 (6)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1999 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1729 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.026
7973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.21 e Å3
1999 reflectionsΔρmin = 0.21 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78326 (8)0.9690 (4)0.42669 (7)0.0375 (4)
C20.75381 (12)0.8861 (5)0.48666 (10)0.0305 (5)
C30.66843 (13)0.9437 (6)0.48778 (10)0.0340 (5)
C40.60607 (13)1.0994 (6)0.42768 (11)0.0350 (5)
C50.58939 (13)1.3469 (6)0.30419 (11)0.0376 (5)
H50.53101.40470.30220.045*
C60.62406 (14)1.4144 (6)0.24658 (12)0.0421 (6)
H60.58911.51340.20520.051*
C70.71196 (15)1.3346 (7)0.25000 (12)0.0442 (6)
H70.73541.38160.21080.053*
C80.76441 (14)1.1878 (7)0.31031 (11)0.0423 (6)
H80.82321.13640.31240.051*
C90.64095 (12)1.1912 (5)0.36633 (10)0.0306 (5)
C100.72829 (12)1.1169 (6)0.36824 (10)0.0320 (5)
O110.63946 (10)0.8624 (5)0.54678 (8)0.0542 (5)
H110.585 (2)0.891 (9)0.5380 (16)0.081*
O120.52826 (9)1.1478 (5)0.42954 (9)0.0554 (5)
C130.82586 (12)0.7435 (5)0.54311 (10)0.0306 (5)
C140.91251 (13)0.7678 (6)0.53545 (11)0.0389 (5)
H140.92300.86920.49430.047*
C150.98280 (14)0.6447 (6)0.58754 (11)0.0420 (6)
H151.04020.66230.58180.050*
C160.96660 (13)0.4969 (6)0.64746 (11)0.0369 (5)
C170.88298 (14)0.4651 (6)0.65736 (11)0.0406 (6)
H170.87360.36200.69870.049*
C180.81276 (13)0.5880 (6)0.60519 (11)0.0366 (5)
H180.75570.56670.61160.044*
F191.03595 (8)0.3745 (4)0.69849 (7)0.0561 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (7)0.0598 (10)0.0287 (7)0.0049 (7)0.0097 (6)0.0056 (7)
C20.0284 (10)0.0368 (12)0.0278 (10)0.0038 (9)0.0098 (8)0.0027 (9)
C30.0294 (10)0.0435 (12)0.0310 (10)0.0026 (10)0.0109 (8)0.0009 (10)
C40.0262 (10)0.0423 (12)0.0375 (11)0.0016 (9)0.0095 (9)0.0022 (10)
C50.0281 (10)0.0424 (13)0.0409 (12)0.0012 (9)0.0053 (9)0.0008 (10)
C60.0402 (12)0.0492 (14)0.0346 (11)0.0048 (11)0.0043 (9)0.0049 (11)
C70.0427 (12)0.0580 (15)0.0343 (11)0.0027 (11)0.0140 (10)0.0054 (11)
C80.0314 (11)0.0615 (16)0.0363 (11)0.0035 (11)0.0129 (9)0.0020 (11)
C90.0265 (10)0.0340 (11)0.0314 (10)0.0030 (9)0.0068 (8)0.0043 (9)
C100.0263 (10)0.0402 (12)0.0284 (10)0.0014 (9)0.0045 (8)0.0028 (9)
O110.0303 (8)0.0941 (15)0.0432 (9)0.0096 (9)0.0185 (7)0.0201 (9)
O120.0274 (8)0.0902 (14)0.0523 (10)0.0100 (9)0.0169 (7)0.0174 (10)
C130.0280 (10)0.0351 (11)0.0292 (10)0.0022 (9)0.0081 (8)0.0043 (9)
C140.0331 (11)0.0515 (14)0.0342 (11)0.0001 (10)0.0122 (9)0.0077 (10)
C150.0267 (10)0.0566 (15)0.0429 (12)0.0002 (10)0.0090 (9)0.0054 (11)
C160.0327 (11)0.0424 (13)0.0320 (11)0.0020 (10)0.0010 (9)0.0002 (10)
C170.0392 (12)0.0537 (15)0.0302 (11)0.0035 (11)0.0109 (9)0.0040 (10)
C180.0287 (10)0.0497 (13)0.0328 (11)0.0027 (10)0.0100 (8)0.0006 (10)
F190.0386 (7)0.0798 (11)0.0443 (8)0.0069 (7)0.0013 (6)0.0139 (7)
Geometric parameters (Å, º) top
O1—C101.363 (2)C8—C101.388 (3)
O1—C21.374 (2)C8—H80.9300
C2—C31.355 (3)C9—C101.384 (3)
C2—C131.468 (3)O11—H110.83 (3)
C3—O111.352 (2)C13—C181.392 (3)
C3—C41.449 (3)C13—C141.397 (3)
C4—O121.237 (2)C14—C151.379 (3)
C4—C91.454 (3)C14—H140.9300
C5—C61.367 (3)C15—C161.360 (3)
C5—C91.403 (3)C15—H150.9300
C5—H50.9300C16—F191.358 (2)
C6—C71.392 (3)C16—C171.368 (3)
C6—H60.9300C17—C181.378 (3)
C7—C81.369 (3)C17—H170.9300
C7—H70.9300C18—H180.9300
C10—O1—C2121.01 (15)C5—C9—C4122.85 (18)
C3—C2—O1120.12 (18)O1—C10—C9122.00 (17)
C3—C2—C13129.15 (18)O1—C10—C8116.41 (17)
O1—C2—C13110.73 (16)C9—C10—C8121.58 (19)
O11—C3—C2120.13 (19)C3—O11—H11109 (2)
O11—C3—C4117.82 (17)C18—C13—C14117.60 (18)
C2—C3—C4122.04 (18)C18—C13—C2123.34 (17)
O12—C4—C3121.08 (19)C14—C13—C2119.05 (18)
O12—C4—C9123.13 (19)C15—C14—C13121.43 (19)
C3—C4—C9115.79 (17)C15—C14—H14119.3
C6—C5—C9120.73 (19)C13—C14—H14119.3
C6—C5—H5119.6C16—C15—C14118.73 (19)
C9—C5—H5119.6C16—C15—H15120.6
C5—C6—C7119.7 (2)C14—C15—H15120.6
C5—C6—H6120.1F19—C16—C15118.55 (19)
C7—C6—H6120.1F19—C16—C17119.32 (19)
C8—C7—C6120.9 (2)C15—C16—C17122.1 (2)
C8—C7—H7119.5C16—C17—C18119.08 (19)
C6—C7—H7119.5C16—C17—H17120.5
C7—C8—C10118.86 (19)C18—C17—H17120.5
C7—C8—H8120.6C17—C18—C13121.04 (18)
C10—C8—H8120.6C17—C18—H18119.5
C10—C9—C5118.14 (18)C13—C18—H18119.5
C10—C9—C4119.01 (18)
C10—O1—C2—C31.5 (3)C5—C9—C10—O1179.34 (19)
C10—O1—C2—C13177.75 (18)C4—C9—C10—O11.9 (3)
O1—C2—C3—O11179.95 (19)C5—C9—C10—C81.0 (3)
C13—C2—C3—O110.8 (4)C4—C9—C10—C8177.8 (2)
O1—C2—C3—C41.4 (3)C7—C8—C10—O1179.6 (2)
C13—C2—C3—C4177.7 (2)C7—C8—C10—C90.0 (4)
O11—C3—C4—O121.9 (3)C3—C2—C13—C1811.1 (4)
C2—C3—C4—O12179.5 (2)O1—C2—C13—C18169.68 (19)
O11—C3—C4—C9178.3 (2)C3—C2—C13—C14167.8 (2)
C2—C3—C4—C90.3 (3)O1—C2—C13—C1411.4 (3)
C9—C5—C6—C71.3 (4)C18—C13—C14—C150.4 (3)
C5—C6—C7—C80.2 (4)C2—C13—C14—C15178.6 (2)
C6—C7—C8—C100.4 (4)C13—C14—C15—C160.0 (4)
C6—C5—C9—C101.7 (3)C14—C15—C16—F19179.7 (2)
C6—C5—C9—C4177.0 (2)C14—C15—C16—C170.4 (4)
O12—C4—C9—C10177.9 (2)F19—C16—C17—C18179.6 (2)
C3—C4—C9—C101.9 (3)C15—C16—C17—C180.3 (4)
O12—C4—C9—C50.8 (4)C16—C17—C18—C130.1 (4)
C3—C4—C9—C5179.4 (2)C14—C13—C18—C170.5 (3)
C2—O1—C10—C90.2 (3)C2—C13—C18—C17178.5 (2)
C2—O1—C10—C8179.50 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O120.83 (3)2.28 (3)2.722 (2)113 (3)
O11—H11···O12i0.83 (3)2.02 (3)2.761 (2)149 (3)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H9FO3
Mr256.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.5971 (9), 3.8790 (2), 19.1655 (12)
β (°) 103.906 (6)
V3)1125.55 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.6 × 0.4 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7973, 1999, 1729
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.113, 1.12
No. of reflections1999
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O120.83 (3)2.28 (3)2.722 (2)113 (3)
O11—H11···O12i0.83 (3)2.02 (3)2.761 (2)149 (3)
Symmetry code: (i) x+1, y+2, z+1.
C—F···π interactions (Å, °). top
Cg1 is the centroid of the C13–C18 ring.
XIJI···JX···JX—I···J
C16F19Cg1ii3.888 (2)3.642 (2)69.5 (2)
Symmetry code: (ii) x, y – 1, z.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–0).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationCantrell, J. S. & Stalzer, R. A. (1982). Acta Cryst. B38, 983–984.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemchenko, A. P., Klymchenko, A. S., Pivovarenko, V. G. & Ercelen, S. (2002). Fluorescence Spectroscopy, Imaging and Probes – New Tools in Chemical, Physical and Life Sciences, edited by R. Kraayenhof, A. J. W. G. Viser & H. C. Gerritsen, Vol. 2 (Springer Series on Fluorescence), pp. 101–110. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74–78.  Web of Science CrossRef CAS Google Scholar
First citationRoshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860–5869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425–426.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds