metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper(II) bis­­[O,O′-(o-phenyl­ene)di­thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering , 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: fjsh8177@163.com

(Received 8 November 2010; accepted 11 November 2010; online 17 November 2010)

In the title compound, [Cu(C16H36N4)](C6H4O2PS2)2, the CuII cation lies on an inversion center and is chelated by the macrocyclic tetra­amine ligand in a slightly distorted CuN4 square-planar geometry. The axial positions are occupied by two O,O′-(o-phenyl­ene)dithio­phosphate anions with long Cu⋯S distances of 3.0940 (7) Å. Inter­molecular N—H⋯S and C—H⋯O hydrogen bonding is present between the anions and the cation and helps to stabilize the crystal structure.

Related literature

For applications of macrocyclic tetra­amine compounds, see: Groeta et al. (2000[Groeta, A. F., Howard, J. A. K., Maffeo, D., Puschman, H., Walliams, J. A. G. & Yufit, D. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1873-1880.]); Aoki & Kimura (2002[Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129-155.]). For related structures, see: Feng et al. (2009[Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.]); He et al. (2010[He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.]); Xie et al. (2009[Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H36N4)](C6H4O2PS2)2

  • Mr = 754.39

  • Monoclinic, P 21 /c

  • a = 12.3107 (4) Å

  • b = 12.1612 (3) Å

  • c = 12.3703 (4) Å

  • β = 107.136 (3)°

  • V = 1769.78 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 294 K

  • 0.38 × 0.34 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.697, Tmax = 0.761

  • 7203 measured reflections

  • 3621 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.02

  • 3621 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.91 2.62 3.4849 (16) 160
N2—H2⋯S1i 0.91 2.60 3.2715 (16) 132
C1—H1A⋯O1ii 0.97 2.52 3.449 (2) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis and structural investigation of tetraamine macrocycle have attracted much attention due to their wide potential applications (Groeta et al., 2000; Aoki & Kimura, 2002). In our quest for mimetic hydrolases, we have recently reported several structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-hmta)] [(o-C6H4O2)PS2]2, where meso-hmta is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.

The molecular of the title adduct comprises a complex mononuclear [Cu(meso-hmta)]2+ cation and two O,O'-(1,2-phenylene)dithiophosphate anions. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca -4,11-diene. The CuII atom lies on an inversion center and is chelated by tetraamine macrocycle ligand with a relatively undistorted CuN4 square-planar geometry (Fig.1). Two uncoordinated O,O'- (1,2-phenylene)dithiophosphate anions occupy at the axial positions with the longer Cu···S distances of 3.0940 (7) Å, forming an octahedral asymmetric unit. Intermolecular N—H···S hydrogen bonding is present between the anions and the cation and help to stabilize the crystal structure (Table 1). The strain in the O,O'- (1,2-phenylene)dithiophosphate anions is illustrated by the distorted tetrahedral angles of P atoms, which range between 94.43 (7) and 120.01 (4)°.

Related literature top

For applications of macrocyclic tetraamine compounds, see: Groeta et al. (2000); Aoki & Kimura (2002). For related structures, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009).

Experimental top

[Et3NH][(o-C6H4O2)PS2] was prepared by adding P2S5 (0.05 mol, 11.1 g) and catechol (0.1 mol, 11 g) to a solution of triethylamine (15 mL) in 50 mL toluene with stirring. The mixture was stirred for 45 min at 368 K and then refluxed for 15 min. After cooled to room temperature, the precipitate was filtered off and washed successively with methanol, diethyl ether and acetone. The white crystalline product was obtained by recrystallization in hot methanol, yield 79%.

A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11- tetraazacyclotetradecane dihydrate (0.32 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) in 20 ml methanol was quickly added to [Et3NH][(o-C6H4O2)PS2] (2 mmol, 0.61 g) dissolved in 20 ml hot methanol with stirring. The mixture was refluxed for 4 h and cooled to room temperature, the precipitate was filtered off, washed with diethyl ether and recrystallized from benzene to leave a dark-violet solid, which was dissolved in hot methanol and filtered. The filtrate was kept at room temperature and dark-violet block crystals of the title compound suitable for X-ray diffraction studies were obtained after a week.

Refinement top

H atoms on C and N atoms were fixed geometrically and treated as riding, with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl), 0.93 (aromatic) and N—H = 0.91 Å. The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for the other H atoms.

Structure description top

The synthesis and structural investigation of tetraamine macrocycle have attracted much attention due to their wide potential applications (Groeta et al., 2000; Aoki & Kimura, 2002). In our quest for mimetic hydrolases, we have recently reported several structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-hmta)] [(o-C6H4O2)PS2]2, where meso-hmta is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.

The molecular of the title adduct comprises a complex mononuclear [Cu(meso-hmta)]2+ cation and two O,O'-(1,2-phenylene)dithiophosphate anions. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca -4,11-diene. The CuII atom lies on an inversion center and is chelated by tetraamine macrocycle ligand with a relatively undistorted CuN4 square-planar geometry (Fig.1). Two uncoordinated O,O'- (1,2-phenylene)dithiophosphate anions occupy at the axial positions with the longer Cu···S distances of 3.0940 (7) Å, forming an octahedral asymmetric unit. Intermolecular N—H···S hydrogen bonding is present between the anions and the cation and help to stabilize the crystal structure (Table 1). The strain in the O,O'- (1,2-phenylene)dithiophosphate anions is illustrated by the distorted tetrahedral angles of P atoms, which range between 94.43 (7) and 120.01 (4)°.

For applications of macrocyclic tetraamine compounds, see: Groeta et al. (2000); Aoki & Kimura (2002). For related structures, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen-bonds are shown as dashed lines [symmetry code: (i) -x + 1, -y + 1, -z + 1].
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane)copper(II) bis[O,O'-(o-phenylene)dithiophosphate] top
Crystal data top
[Cu(C16H36N4)](C6H4O2PS2)2F(000) = 790
Mr = 754.39Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 4041 reflections
a = 12.3107 (4) Åθ = 3.2–29.2°
b = 12.1612 (3) ŵ = 0.98 mm1
c = 12.3703 (4) ÅT = 294 K
β = 107.136 (3)°Block, dark-violet
V = 1769.78 (9) Å30.38 × 0.34 × 0.28 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3621 independent reflections
Radiation source: fine-focus sealed tube2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 1514
Tmin = 0.697, Tmax = 0.761l = 158
7203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
3621 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C16H36N4)](C6H4O2PS2)2V = 1769.78 (9) Å3
Mr = 754.39Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.3107 (4) ŵ = 0.98 mm1
b = 12.1612 (3) ÅT = 294 K
c = 12.3703 (4) Å0.38 × 0.34 × 0.28 mm
β = 107.136 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3621 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2662 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.761Rint = 0.018
7203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3621 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60607 (18)0.32263 (15)0.63651 (17)0.0421 (5)
H1A0.64600.25300.64380.050*
H1B0.55730.32100.68540.050*
C60.5147 (2)0.85983 (17)0.5043 (2)0.0750 (9)
H6B0.45880.87090.54340.113*
H6A0.48100.87340.42500.113*
H6C0.57700.90960.53360.113*
C30.69922 (17)0.62275 (15)0.67689 (17)0.0385 (5)
C40.62020 (18)0.72195 (15)0.64523 (18)0.0448 (5)
H4A0.56360.71540.68530.054*
H4B0.66470.78720.67390.054*
C20.69001 (16)0.41537 (15)0.67066 (18)0.0417 (5)
H2B0.73150.40940.75030.050*
H2A0.74410.41220.62750.050*
C50.55801 (18)0.74158 (14)0.52163 (18)0.0412 (5)
H50.61160.73050.47770.049*
C80.7587 (2)0.62675 (19)0.80430 (19)0.0669 (7)
H8A0.70310.62140.84450.100*
H8C0.79930.69490.82310.100*
H8B0.81110.56650.82530.100*
C70.78770 (19)0.62258 (17)0.6133 (2)0.0589 (7)
H7B0.84420.56770.64490.088*
H7C0.82320.69360.61980.088*
H7A0.75160.60630.53490.088*
P10.76165 (4)0.41284 (4)0.34491 (4)0.03621 (14)
S10.62560 (5)0.50447 (5)0.31713 (5)0.05140 (17)
S20.77079 (5)0.27519 (4)0.42553 (5)0.04891 (16)
O10.79072 (12)0.39508 (11)0.22398 (12)0.0475 (4)
O20.87362 (11)0.49007 (10)0.40083 (12)0.0452 (4)
C90.91021 (16)0.53308 (17)0.31328 (19)0.0411 (5)
N10.53721 (13)0.33932 (11)0.51843 (12)0.0309 (4)
H10.58490.32630.47590.037*
C100.98455 (17)0.61848 (17)0.3208 (2)0.0554 (6)
H101.01620.65540.38860.067*
C130.8889 (2)0.50583 (19)0.1159 (2)0.0611 (7)
H130.85720.46850.04830.073*
C140.86346 (18)0.47825 (17)0.21245 (19)0.0438 (5)
Cu10.50000.50000.50000.03160 (11)
N20.62678 (12)0.52077 (11)0.64861 (13)0.0315 (4)
H20.58860.52110.70140.038*
C111.0108 (2)0.6478 (2)0.2226 (3)0.0656 (8)
H111.06050.70580.22460.079*
C120.9647 (2)0.5925 (2)0.1231 (3)0.0713 (8)
H120.98440.61330.05900.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0483 (13)0.0289 (10)0.0428 (12)0.0079 (9)0.0039 (10)0.0100 (9)
C60.095 (2)0.0260 (11)0.086 (2)0.0022 (12)0.0002 (17)0.0049 (12)
C30.0387 (11)0.0351 (11)0.0366 (12)0.0048 (9)0.0034 (9)0.0070 (9)
C40.0538 (14)0.0319 (11)0.0451 (13)0.0057 (10)0.0093 (11)0.0101 (10)
C20.0377 (11)0.0350 (11)0.0446 (13)0.0084 (10)0.0001 (10)0.0061 (9)
C50.0477 (13)0.0242 (10)0.0493 (14)0.0043 (9)0.0107 (11)0.0009 (9)
C80.0761 (18)0.0619 (15)0.0461 (15)0.0064 (14)0.0075 (13)0.0119 (12)
C70.0427 (13)0.0543 (14)0.0793 (19)0.0091 (11)0.0173 (13)0.0009 (13)
P10.0333 (3)0.0453 (3)0.0317 (3)0.0046 (2)0.0121 (2)0.0077 (2)
S10.0385 (3)0.0599 (4)0.0593 (4)0.0075 (3)0.0198 (3)0.0164 (3)
S20.0556 (4)0.0443 (3)0.0498 (4)0.0056 (3)0.0203 (3)0.0009 (3)
O10.0522 (9)0.0577 (9)0.0393 (9)0.0202 (8)0.0239 (7)0.0174 (7)
O20.0381 (8)0.0580 (9)0.0381 (8)0.0114 (7)0.0092 (7)0.0122 (7)
C90.0276 (11)0.0434 (12)0.0522 (14)0.0006 (9)0.0116 (10)0.0005 (10)
N10.0352 (8)0.0224 (8)0.0354 (9)0.0057 (7)0.0107 (7)0.0047 (7)
C100.0321 (12)0.0496 (13)0.0775 (19)0.0012 (10)0.0050 (12)0.0001 (13)
C130.0662 (16)0.0712 (17)0.0568 (16)0.0033 (14)0.0352 (14)0.0009 (13)
C140.0371 (12)0.0526 (14)0.0468 (14)0.0015 (10)0.0201 (10)0.0047 (10)
Cu10.03122 (18)0.02070 (16)0.0368 (2)0.00205 (14)0.00057 (14)0.00432 (14)
N20.0308 (9)0.0325 (9)0.0305 (9)0.0028 (7)0.0080 (7)0.0025 (7)
C110.0361 (13)0.0555 (15)0.109 (2)0.0023 (12)0.0270 (15)0.0229 (16)
C120.0622 (17)0.0794 (19)0.087 (2)0.0072 (15)0.0440 (17)0.0226 (16)
Geometric parameters (Å, º) top
C1—H1A0.9700C7—H7A0.9600
C1—H1B0.9700P1—S11.9560 (7)
C1—C21.504 (3)P1—S21.9348 (8)
C1—N11.471 (2)P1—O11.6517 (14)
C6—H6B0.9600P1—O21.6429 (14)
C6—H6A0.9600O1—C141.386 (2)
C6—H6C0.9600O2—C91.392 (2)
C6—C51.527 (3)C9—C101.369 (3)
C3—C41.527 (3)C9—C141.382 (3)
C3—C81.531 (3)N1—C5i1.499 (2)
C3—C71.520 (3)N1—H10.9100
C3—N21.507 (2)N1—Cu12.0047 (13)
C4—H4A0.9700C10—H100.9300
C4—H4B0.9700C10—C111.391 (3)
C4—C51.514 (3)C13—H130.9300
C2—H2B0.9700C13—C141.363 (3)
C2—H2A0.9700C13—C121.393 (3)
C2—N21.483 (2)Cu1—N1i2.0047 (13)
C5—H50.9800Cu1—N22.0466 (15)
C5—N1i1.498 (2)Cu1—N2i2.0466 (15)
C8—H8A0.9600N2—H20.9100
C8—H8C0.9600C11—H110.9300
C8—H8B0.9600C11—C121.370 (4)
C7—H7B0.9600C12—H120.9300
C7—H7C0.9600
C1—C2—H2B110.0S2—P1—S1120.01 (4)
C1—C2—H2A110.0O1—P1—S1108.55 (6)
C1—N1—C5i113.81 (14)O1—P1—S2111.01 (6)
C1—N1—H1105.6O2—P1—S1108.48 (5)
C1—N1—Cu1107.04 (11)O2—P1—S2111.31 (6)
H1A—C1—H1B108.3O2—P1—O194.43 (7)
C6—C5—H5108.4C9—O2—P1108.12 (12)
H6B—C6—H6A109.5C9—C10—H10121.4
H6B—C6—H6C109.5C9—C10—C11117.2 (2)
H6A—C6—H6C109.5C9—C14—O1111.67 (19)
C3—C4—H4A107.7N1—C1—H1A109.9
C3—C4—H4B107.7N1—C1—H1B109.9
C3—C8—H8A109.5N1—C1—C2108.83 (15)
C3—C8—H8C109.5N1i—C5—C6111.41 (17)
C3—C8—H8B109.5N1i—C5—C4110.13 (15)
C3—C7—H7B109.5N1i—C5—H5108.4
C3—C7—H7C109.5N1—Cu1—N1i180.0
C3—C7—H7A109.5N1i—Cu1—N2i85.98 (6)
C3—N2—Cu1123.54 (11)N1—Cu1—N2i94.02 (6)
C3—N2—H2103.1N1—Cu1—N285.98 (6)
C4—C3—C8108.33 (17)N1i—Cu1—N294.02 (6)
C4—C5—C6110.00 (17)C10—C9—O2126.6 (2)
C4—C5—H5108.4C10—C9—C14121.3 (2)
H4A—C4—H4B107.1C10—C11—H11119.4
C2—C1—H1A109.9C13—C14—O1126.3 (2)
C2—C1—H1B109.9C13—C14—C9122.0 (2)
C2—N2—C3115.21 (15)C13—C12—H12119.3
C2—N2—Cu1106.18 (11)C14—O1—P1108.47 (12)
C2—N2—H2103.1C14—C9—O2112.15 (18)
H2B—C2—H2A108.4C14—C13—H13121.5
C5—C6—H6B109.5C14—C13—C12116.9 (2)
C5—C6—H6A109.5Cu1—N1—H1105.6
C5—C6—H6C109.5Cu1—N2—H2103.1
C5—C4—C3118.56 (17)N2—C3—C4107.57 (15)
C5—C4—H4A107.7N2—C3—C8109.63 (16)
C5—C4—H4B107.7N2—C3—C7110.12 (16)
C5i—N1—H1105.6N2—C2—C1108.46 (15)
C5i—N1—Cu1118.17 (12)N2—C2—H2B110.0
H8A—C8—H8C109.5N2—C2—H2A110.0
H8A—C8—H8B109.5N2—Cu1—N2i180.0
H8C—C8—H8B109.5C11—C10—H10121.4
C7—C3—C4111.59 (18)C11—C12—C13121.4 (3)
C7—C3—C8109.55 (19)C11—C12—H12119.3
H7B—C7—H7C109.5C12—C13—H13121.5
H7B—C7—H7A109.5C12—C11—C10121.1 (2)
H7C—C7—H7A109.5C12—C11—H11119.4
C1—C2—N2—C3179.14 (16)S1—P1—O2—C990.46 (12)
C1—C2—N2—Cu138.57 (18)S2—P1—O1—C14135.33 (12)
C1—N1—Cu1—N215.68 (13)S2—P1—O2—C9135.39 (11)
C1—N1—Cu1—N2i164.32 (13)O1—P1—O2—C920.78 (13)
C3—C4—C5—C6162.4 (2)O2—P1—O1—C1420.48 (14)
C3—C4—C5—N1i74.4 (2)O2—C9—C10—C11179.29 (18)
C4—C3—N2—C2178.22 (16)O2—C9—C14—O10.8 (3)
C4—C3—N2—Cu145.3 (2)O2—C9—C14—C13179.1 (2)
C2—C1—N1—C5i173.86 (16)C9—C10—C11—C120.6 (3)
C2—C1—N1—Cu141.42 (18)N1—C1—C2—N254.5 (2)
C5i—N1—Cu1—N2145.70 (14)N1—Cu1—N2—C3149.25 (14)
C5i—N1—Cu1—N2i34.30 (14)N1i—Cu1—N2—C330.75 (14)
C8—C3—C4—C5175.34 (19)N1i—Cu1—N2—C2167.17 (12)
C8—C3—N2—C264.2 (2)N1—Cu1—N2—C212.83 (12)
C8—C3—N2—Cu1162.85 (14)C10—C9—C14—O1179.94 (17)
C7—C3—C4—C554.7 (2)C10—C9—C14—C130.2 (3)
C7—C3—N2—C256.4 (2)C10—C11—C12—C130.7 (4)
C7—C3—N2—Cu176.55 (19)C14—C9—C10—C110.1 (3)
P1—O1—C14—C914.3 (2)C14—C13—C12—C110.4 (4)
P1—O1—C14—C13165.8 (2)N2—C3—C4—C566.2 (2)
P1—O2—C9—C10165.19 (17)C12—C13—C14—O1179.9 (2)
P1—O2—C9—C1415.6 (2)C12—C13—C14—C90.1 (3)
S1—P1—O1—C1490.71 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.912.623.4849 (16)160
N2—H2···S1i0.912.603.2715 (16)132
C1—H1A···O1ii0.972.523.449 (2)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H36N4)](C6H4O2PS2)2
Mr754.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.3107 (4), 12.1612 (3), 12.3703 (4)
β (°) 107.136 (3)
V3)1769.78 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.38 × 0.34 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.697, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
7203, 3621, 2662
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.02
No. of reflections3621
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.37

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.912.623.4849 (16)159.5
N2—H2···S1i0.912.603.2715 (16)131.5
C1—H1A···O1ii0.972.523.449 (2)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (No. 08X01, No. 10X05) and the Science and Technology Committee of Sichuan Province, China (No. 2010GZ0130).

References

First citationAoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroeta, A. F., Howard, J. A. K., Maffeo, D., Puschman, H., Walliams, J. A. G. & Yufit, D. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1873–1880.  Google Scholar
First citationHe, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds