organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-3-Bromo-4-di­allyl­amino-5-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 11 November 2010; accepted 14 November 2010; online 24 November 2010)

The title compound, C20H30BrNO3, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dibromo-5-(S)-(l-menth­yloxy)-2(5H)-furan­one and diallyl­amine in the presence of potassium fluoride. In the mol­ecule, the five-membered furan­one ring is approximately planar [maximum atomic deviation = 0.030 (3) Å], and the six-membered cyclo­hexane ring adopts a chair conformation.

Related literature

The title compound is a derivative of 4-amino-2(5H)-furan­one. For the biological activity of 4-amino-2(5H)-furan­ones, see: Gondela & Walczak (2010[Gondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993-3997.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]); Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]). For asymmetric Michael addition reactions of 2(5H)-furan­one, see: Hoffmann et al. (2006[Hoffmann, N., Bertrand, S., Marinkovi, S. & Pesch, J. (2006). Pure Appl. Chem. 78, 2227-2246.]); He et al. (2006)[He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464-467.]. For the synthesis of the title compound, see: Song et al. (2009[Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804-1810.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30BrNO3

  • Mr = 412.35

  • Orthorhombic, P 21 21 21

  • a = 8.5215 (16) Å

  • b = 11.934 (2) Å

  • c = 20.603 (4) Å

  • V = 2095.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.641, Tmax = 0.729

  • 19608 measured reflections

  • 3640 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.075

  • S = 1.04

  • 3640 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1543 Friedel pairs

  • Flack parameter: 0.001 (9)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 2(5H)-furanone moiety occurs in many natural products exhibiting various biological activities, namely antibiotic cytotoxic and antitumor (Gondela et al., 2010). Recently, owing to their specific activity and high stereoselectivity, chiral 5-S-(l-menthyloxy)-2(5H)-furanones have emerged as significant synthetic intermediates (Hoffmann et al., 2006; Song et al., 2009). At the same time, 4-amino-2(5H)-furanone (or 3-amino-2(5H)-furanone) is an attractive moiety in chemical, pharmaceutical and agrochemical research (Tanoury et al., 2008; Kimura et al., 2000).

Therefore we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone and diallylamine in the present of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound which has four chiral centers (C11(S), C9(R), C4(S), C7(R)) contains a five-membered furanone ring and a six-membered rings connected each other via C11—O3—C9 ether bond. The furanone ring of C11—O2—C14—C13—C12 is approximately planar, whereas the six-membered ring displays a chair conformation.

Related literature top

The title compound is a derivative of the 4-amino-2(5H)-furanone. For the biological activity of 4-amino-2(5H)-furanones, see: Gondela et al. (2010); Tanoury et al. (2008); Kimura et al. (2000). For asymmetric Michael addition reactions of 2(5H)-furanone, see: Hoffmann et al. (2006); He et al. (2006). For the synthesis of the title compound, see: Song et al. (2009).

Experimental top

The precursor 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran (2.0 mL) under nitrogen atmosphere, tetrahydrofuran solution of diallylamine (3.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.645 g (78.3%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

The 2(5H)-furanone moiety occurs in many natural products exhibiting various biological activities, namely antibiotic cytotoxic and antitumor (Gondela et al., 2010). Recently, owing to their specific activity and high stereoselectivity, chiral 5-S-(l-menthyloxy)-2(5H)-furanones have emerged as significant synthetic intermediates (Hoffmann et al., 2006; Song et al., 2009). At the same time, 4-amino-2(5H)-furanone (or 3-amino-2(5H)-furanone) is an attractive moiety in chemical, pharmaceutical and agrochemical research (Tanoury et al., 2008; Kimura et al., 2000).

Therefore we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone and diallylamine in the present of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound which has four chiral centers (C11(S), C9(R), C4(S), C7(R)) contains a five-membered furanone ring and a six-membered rings connected each other via C11—O3—C9 ether bond. The furanone ring of C11—O2—C14—C13—C12 is approximately planar, whereas the six-membered ring displays a chair conformation.

The title compound is a derivative of the 4-amino-2(5H)-furanone. For the biological activity of 4-amino-2(5H)-furanones, see: Gondela et al. (2010); Tanoury et al. (2008); Kimura et al. (2000). For asymmetric Michael addition reactions of 2(5H)-furanone, see: Hoffmann et al. (2006); He et al. (2006). For the synthesis of the title compound, see: Song et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
(S)-3-Bromo-4-diallylamino-5-[(1R,2S,5R)- 2-isopropyl-5-methylcyclohexyloxy]furan-2(5H)-one top
Crystal data top
C20H30BrNO3F(000) = 864
Mr = 412.35Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3500 reflections
a = 8.5215 (16) Åθ = 2.6–20.9°
b = 11.934 (2) ŵ = 1.98 mm1
c = 20.603 (4) ÅT = 298 K
V = 2095.2 (7) Å3Block, colourless
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scanθmax = 24.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.641, Tmax = 0.729k = 1414
19608 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.P)2 + 0.1072P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3640 reflectionsΔρmax = 0.28 e Å3
230 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1543 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (9)
Crystal data top
C20H30BrNO3V = 2095.2 (7) Å3
Mr = 412.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5215 (16) ŵ = 1.98 mm1
b = 11.934 (2) ÅT = 298 K
c = 20.603 (4) Å0.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2660 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.729Rint = 0.078
19608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.21 e Å3
3640 reflectionsAbsolute structure: Flack (1983), 1543 Friedel pairs
230 parametersAbsolute structure parameter: 0.001 (9)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27706 (5)0.04364 (3)0.92085 (2)0.07258 (18)
O30.2972 (3)0.36270 (16)0.96994 (9)0.0435 (5)
O20.3680 (3)0.21670 (19)1.03849 (10)0.0574 (7)
O10.2726 (3)0.0470 (2)1.06339 (12)0.0797 (8)
C40.2198 (4)0.5548 (3)0.97362 (17)0.0567 (9)
H40.11290.52950.98340.068*
C90.3298 (4)0.4689 (3)1.00221 (16)0.0479 (9)
H90.43810.49110.99270.057*
C80.3107 (4)0.4579 (3)1.07491 (17)0.0579 (8)
H8A0.38780.40511.09110.070*
H8B0.20740.42771.08420.070*
C60.2203 (5)0.6563 (3)1.0818 (2)0.0822 (12)
H6A0.11260.63501.09070.099*
H6B0.23940.72841.10210.099*
C30.2302 (4)0.5667 (3)0.89958 (18)0.0670 (11)
H30.22620.49060.88190.080*
C50.2427 (5)0.6670 (3)1.0096 (2)0.0798 (13)
H5A0.34760.69491.00100.096*
H5B0.16850.72140.99280.096*
C20.3854 (5)0.6182 (4)0.8759 (2)0.0923 (14)
H2A0.39090.69520.88920.138*
H2B0.39030.61400.82940.138*
H2C0.47190.57760.89430.138*
C100.3028 (6)0.5538 (4)1.1835 (2)0.1184 (18)
H10A0.19840.52611.19060.178*
H10B0.31540.62431.20540.178*
H10C0.37740.50091.20030.178*
C70.3301 (4)0.5697 (3)1.1109 (2)0.0727 (12)
H70.43820.59561.10460.087*
C120.3881 (3)0.1916 (2)0.92585 (17)0.0411 (7)
C110.4052 (4)0.2769 (3)0.98021 (15)0.0441 (8)
H110.51240.30650.98190.053*
C130.3321 (4)0.0962 (3)0.95381 (17)0.0468 (9)
C140.3192 (4)0.1112 (3)1.02266 (19)0.0557 (10)
N10.4230 (3)0.2185 (2)0.86442 (14)0.0512 (8)
C160.6441 (5)0.3143 (3)0.81261 (19)0.0658 (11)
H160.72540.28300.83660.079*
C170.6743 (6)0.3435 (3)0.7539 (2)0.0898 (14)
H17A0.59600.37510.72830.108*
H17B0.77440.33290.73690.108*
C150.4897 (4)0.3267 (3)0.84513 (18)0.0547 (10)
H15A0.50200.37340.88330.066*
H15B0.41750.36420.81590.066*
C180.3789 (5)0.1460 (3)0.81058 (17)0.0659 (11)
H18A0.39650.06870.82310.079*
H18B0.44670.16200.77390.079*
C190.2127 (6)0.1588 (4)0.7897 (2)0.0828 (13)
H190.18140.11840.75340.099*
C200.1081 (6)0.2206 (4)0.8173 (2)0.0991 (16)
H20A0.13400.26260.85380.119*
H20B0.00670.22320.80060.119*
C10.0902 (5)0.6287 (4)0.8715 (2)0.0987 (16)
H1A0.09170.70510.88610.148*
H1B0.00490.59340.88570.148*
H1C0.09540.62690.82500.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0696 (3)0.0426 (2)0.1055 (3)0.0069 (2)0.0069 (2)0.0098 (2)
O30.0464 (13)0.0334 (11)0.0508 (13)0.0051 (11)0.0006 (11)0.0065 (10)
O20.0797 (18)0.0465 (14)0.0460 (15)0.0092 (13)0.0040 (13)0.0029 (12)
O10.1046 (19)0.0580 (15)0.0766 (18)0.0109 (18)0.0256 (16)0.0173 (14)
C40.050 (2)0.0383 (18)0.082 (3)0.001 (2)0.008 (2)0.0055 (17)
C90.0412 (19)0.0343 (18)0.068 (3)0.0073 (16)0.0054 (16)0.0098 (17)
C80.055 (2)0.054 (2)0.065 (2)0.0018 (19)0.002 (2)0.011 (2)
C60.071 (3)0.054 (2)0.122 (4)0.005 (2)0.011 (3)0.039 (2)
C30.071 (3)0.046 (2)0.084 (3)0.004 (2)0.012 (2)0.0154 (17)
C50.073 (3)0.040 (2)0.126 (4)0.000 (2)0.007 (3)0.012 (2)
C20.094 (4)0.068 (3)0.115 (4)0.001 (3)0.031 (3)0.028 (3)
C100.141 (4)0.129 (4)0.085 (4)0.017 (4)0.002 (3)0.060 (3)
C70.057 (2)0.071 (3)0.090 (3)0.001 (2)0.007 (2)0.039 (2)
C120.0338 (17)0.0386 (18)0.051 (2)0.0041 (13)0.0021 (18)0.0023 (18)
C110.046 (2)0.0382 (18)0.048 (2)0.0053 (16)0.0020 (17)0.0017 (17)
C130.048 (2)0.0388 (19)0.053 (2)0.0103 (16)0.0032 (17)0.0003 (16)
C140.055 (3)0.039 (2)0.073 (3)0.0175 (18)0.015 (2)0.0080 (19)
N10.0573 (19)0.0478 (17)0.048 (2)0.0038 (15)0.0100 (15)0.0076 (15)
C160.070 (3)0.067 (3)0.061 (3)0.006 (2)0.006 (2)0.009 (2)
C170.107 (4)0.082 (3)0.081 (3)0.005 (3)0.018 (3)0.021 (2)
C150.065 (3)0.046 (2)0.054 (2)0.0049 (18)0.007 (2)0.0010 (17)
C180.084 (3)0.064 (3)0.050 (2)0.014 (2)0.010 (2)0.015 (2)
C190.086 (3)0.097 (3)0.065 (3)0.024 (3)0.017 (3)0.003 (2)
C200.070 (3)0.125 (4)0.103 (4)0.011 (3)0.018 (3)0.037 (4)
C10.099 (4)0.086 (3)0.111 (4)0.017 (3)0.003 (3)0.030 (3)
Geometric parameters (Å, º) top
Br1—C131.862 (3)C10—H10A0.9600
O3—C111.393 (4)C10—H10B0.9600
O3—C91.458 (3)C10—H10C0.9600
O2—C141.365 (4)C7—H70.9800
O2—C111.434 (4)C12—N11.339 (4)
O1—C141.204 (4)C12—C131.362 (4)
C4—C91.509 (4)C12—C111.521 (4)
C4—C31.535 (5)C11—H110.9800
C4—C51.542 (4)C13—C141.434 (5)
C4—H40.9800N1—C181.456 (4)
C9—C81.512 (4)N1—C151.466 (4)
C9—H90.9800C16—C171.285 (5)
C8—C71.535 (5)C16—C151.484 (5)
C8—H8A0.9700C16—H160.9300
C8—H8B0.9700C17—H17A0.9300
C6—C51.505 (5)C17—H17B0.9300
C6—C71.518 (5)C15—H15A0.9700
C6—H6A0.9700C15—H15B0.9700
C6—H6B0.9700C18—C191.488 (6)
C3—C11.518 (5)C18—H18A0.9700
C3—C21.538 (5)C18—H18B0.9700
C3—H30.9800C19—C201.288 (6)
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—H20A0.9300
C2—H2A0.9600C20—H20B0.9300
C2—H2B0.9600C1—H1A0.9600
C2—H2C0.9600C1—H1B0.9600
C10—C71.526 (6)C1—H1C0.9600
C11—O3—C9116.3 (2)C10—C7—C8110.4 (3)
C14—O2—C11109.2 (3)C6—C7—H7108.2
C9—C4—C3114.5 (3)C10—C7—H7108.2
C9—C4—C5108.9 (3)C8—C7—H7108.2
C3—C4—C5112.9 (3)N1—C12—C13132.7 (3)
C9—C4—H4106.7N1—C12—C11120.9 (3)
C3—C4—H4106.7C13—C12—C11106.3 (3)
C5—C4—H4106.7O3—C11—O2110.5 (3)
O3—C9—C4107.1 (2)O3—C11—C12108.5 (2)
O3—C9—C8110.9 (3)O2—C11—C12105.1 (2)
C4—C9—C8112.3 (3)O3—C11—H11110.9
O3—C9—H9108.8O2—C11—H11110.9
C4—C9—H9108.8C12—C11—H11110.9
C8—C9—H9108.8C12—C13—C14109.9 (3)
C9—C8—C7113.1 (3)C12—C13—Br1133.1 (3)
C9—C8—H8A109.0C14—C13—Br1117.0 (2)
C7—C8—H8A109.0O1—C14—O2121.4 (3)
C9—C8—H8B109.0O1—C14—C13129.4 (3)
C7—C8—H8B109.0O2—C14—C13109.2 (3)
H8A—C8—H8B107.8C12—N1—C18121.3 (3)
C5—C6—C7111.8 (3)C12—N1—C15123.6 (3)
C5—C6—H6A109.3C18—N1—C15114.7 (3)
C7—C6—H6A109.3C17—C16—C15125.1 (4)
C5—C6—H6B109.3C17—C16—H16117.4
C7—C6—H6B109.3C15—C16—H16117.4
H6A—C6—H6B107.9C16—C17—H17A120.0
C1—C3—C4112.2 (3)C16—C17—H17B120.0
C1—C3—C2111.1 (3)H17A—C17—H17B120.0
C4—C3—C2113.7 (3)N1—C15—C16112.2 (3)
C1—C3—H3106.4N1—C15—H15A109.2
C4—C3—H3106.4C16—C15—H15A109.2
C2—C3—H3106.4N1—C15—H15B109.2
C6—C5—C4112.7 (3)C16—C15—H15B109.2
C6—C5—H5A109.1H15A—C15—H15B107.9
C4—C5—H5A109.1N1—C18—C19113.9 (4)
C6—C5—H5B109.1N1—C18—H18A108.8
C4—C5—H5B109.1C19—C18—H18A108.8
H5A—C5—H5B107.8N1—C18—H18B108.8
C3—C2—H2A109.5C19—C18—H18B108.8
C3—C2—H2B109.5H18A—C18—H18B107.7
H2A—C2—H2B109.5C20—C19—C18126.2 (5)
C3—C2—H2C109.5C20—C19—H19116.9
H2A—C2—H2C109.5C18—C19—H19116.9
H2B—C2—H2C109.5C19—C20—H20A120.0
C7—C10—H10A109.5C19—C20—H20B120.0
C7—C10—H10B109.5H20A—C20—H20B120.0
H10A—C10—H10B109.5C3—C1—H1A109.5
C7—C10—H10C109.5C3—C1—H1B109.5
H10A—C10—H10C109.5H1A—C1—H1B109.5
H10B—C10—H10C109.5C3—C1—H1C109.5
C6—C7—C10112.2 (3)H1A—C1—H1C109.5
C6—C7—C8109.5 (3)H1B—C1—H1C109.5
C11—O3—C9—C4168.3 (2)C13—C12—C11—O3113.1 (3)
C11—O3—C9—C868.9 (3)N1—C12—C11—O2176.3 (3)
C3—C4—C9—O356.2 (3)C13—C12—C11—O25.0 (3)
C5—C4—C9—O3176.3 (3)N1—C12—C13—C14178.5 (3)
C3—C4—C9—C8178.1 (3)C11—C12—C13—C143.0 (4)
C5—C4—C9—C854.4 (4)N1—C12—C13—Br10.3 (6)
O3—C9—C8—C7175.2 (3)C11—C12—C13—Br1178.8 (3)
C4—C9—C8—C755.4 (4)C11—O2—C14—O1175.5 (3)
C9—C4—C3—C1164.3 (3)C11—O2—C14—C133.6 (4)
C5—C4—C3—C170.3 (4)C12—C13—C14—O1178.8 (3)
C9—C4—C3—C268.5 (4)Br1—C13—C14—O12.6 (5)
C5—C4—C3—C256.9 (4)C12—C13—C14—O20.2 (4)
C7—C6—C5—C457.1 (4)Br1—C13—C14—O2178.3 (2)
C9—C4—C5—C655.9 (4)C13—C12—N1—C1810.4 (5)
C3—C4—C5—C6175.7 (3)C11—C12—N1—C18167.9 (3)
C5—C6—C7—C10177.1 (3)C13—C12—N1—C15177.2 (3)
C5—C6—C7—C854.0 (4)C11—C12—N1—C154.5 (5)
C9—C8—C7—C653.5 (4)C12—N1—C15—C16120.4 (3)
C9—C8—C7—C10177.6 (3)C18—N1—C15—C1666.7 (4)
C9—O3—C11—O285.9 (3)C17—C16—C15—N1117.8 (4)
C9—O3—C11—C12159.4 (2)C12—N1—C18—C1980.9 (4)
C14—O2—C11—O3111.6 (3)C15—N1—C18—C1992.2 (4)
C14—O2—C11—C125.2 (3)N1—C18—C19—C204.7 (7)
N1—C12—C11—O365.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···N10.932.532.854 (6)101
C18—H18A···Br10.972.623.322 (4)129
C15—H15A···O30.972.503.081 (4)118
C8—H8A···O20.972.503.015 (4)113
C3—H3···O30.982.452.891 (4)107

Experimental details

Crystal data
Chemical formulaC20H30BrNO3
Mr412.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.5215 (16), 11.934 (2), 20.603 (4)
V3)2095.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.641, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
19608, 3640, 2660
Rint0.078
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.075, 1.04
No. of reflections3640
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21
Absolute structureFlack (1983), 1543 Friedel pairs
Absolute structure parameter0.001 (9)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993–3997.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464–467.  CAS Google Scholar
First citationHoffmann, N., Bertrand, S., Marinkovi, S. & Pesch, J. (2006). Pure Appl. Chem. 78, 2227–2246.  Web of Science CrossRef CAS Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.  Google Scholar
First citationTanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds