organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(6-Bromo-4-oxo-4H-chromen-3-yl)-3,4-di­hydro-2H-1,2,4-benzo­thia­diazine-1,1-dione

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology, D-76133 Karlsruhe, Germany
*Correspondence e-mail: abbas191@gmail.com

(Received 15 October 2010; accepted 1 November 2010; online 6 November 2010)

The mol­ecular structure of the title compound, C16H11BrN2O4S, is very similar to that of the previously reported fluoro analogue [al-Rashida et al. (2010[al-Rashida, M., Nagra, S. A., Khan, I. U., Kostakis, G. & Abbas, G. (2010). Acta Cryst. E66, o2707.]). Acta Cryst. E66, o2707]. The mean planes of the bicyclic chromone system and the benzene ring of the benzothia­diazine derivative make a dihedral angle of 58.23 (8)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked into layers by N—H⋯O and C—H⋯O hydrogen bonds, generating an infinite two-dimensional network.

Related literature

For background to the importance of the 1,2,4-benzothia­diazine-1,1-dioxide ring system in pharmaceutical and medicinal chemistry, see: Zhu et al. (2005[Zhu, Z., Zhu, S., Liu, D., Cao, T., Wang, L. & Tepel, M. (2005). Hypertension, 45, 233-239.]); Kamal et al. (2007a[Kamal, A., Ahmed, S. K., Reddy, K. S., Khan, M. N. A., Shetty, R. V. C. R. N. C., Siddhardha, B., Murty, U. S. N., China, A. & Nagaraja, V. (2007a). Lett. Drug Des. Discov. 4, 550-556.]). For a survey on the anti­microbial activity of benzothia­diazine derivatives, see: Di Bella et al. (1983)[Di Bella, M., Monzani, A., Andrisano, M. G., Fabio, U. & Quaglio, G. P. (1983). Farmaco, 38, 466-472.]; Kamal et al. (2007a[Kamal, A., Ahmed, S. K., Reddy, K. S., Khan, M. N. A., Shetty, R. V. C. R. N. C., Siddhardha, B., Murty, U. S. N., China, A. & Nagaraja, V. (2007a). Lett. Drug Des. Discov. 4, 550-556.],b[Kamal, A., Khan, M. N. A., Reddy, K. S., Rohini, K., Sastry, G. N., Sateesh, B. & Sridhar, B. (2007b). Bioorg. Med. Chem. Lett. 17, 5400-5405.]). The sulfonamide group is an active pharmacophore, see: Weisman & Brown (1964)[Weisman, R. A. & Brown, G. M. (1964). J. Biol. Chem. 239, 326-331.]. For related structures, see: al-Rashida et al. (2009[al-Rashida, M., Tahir, M. N., Nagra, S. A., Imran, M. & Iqbal, J. (2009). Acta Cryst. E65, o1818-o1819.], 2010[al-Rashida, M., Nagra, S. A., Khan, I. U., Kostakis, G. & Abbas, G. (2010). Acta Cryst. E66, o2707.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrN2O4S

  • Mr = 407.24

  • Monoclinic, P 21 /n

  • a = 7.0778 (4) Å

  • b = 8.6070 (6) Å

  • c = 25.6290 (16) Å

  • β = 94.607 (3)°

  • V = 1556.24 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 296 K

  • 0.28 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.475, Tmax = 0.540

  • 17309 measured reflections

  • 3873 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.103

  • S = 0.98

  • 3873 reflections

  • 223 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O4 0.79 (3) 2.59 (3) 2.987 (3) 113 (3)
N4—H4A⋯O3i 0.79 (3) 2.23 (3) 2.999 (3) 164 (3)
C13—H13⋯O3i 0.93 2.54 (1) 3.314 (4) 141 (1)
N2—H2A⋯O2 0.84 (2) 2.67 (3) 3.222 (4) 124 (2)
C2—H2⋯O2 0.93 2.41 (1) 3.330 (4) 169 (1)
N2—H2A⋯O4 0.84 (2) 2.12 (3) 2.903 (4) 154 (3)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 1,2,4-benzothiadiazine-1,1-dioxide ring system is of considerable importance in medicinal and pharmaceutical chemistry (Zhu et al., 2005; Kamal et al., 2007a). Novel products from reactions of 4- and 2-aminobenzenesulfonamide with 6-(un)substituted-4-oxo-4H-1-benzopyran-3-carboxaldehyde have already been reported by us (Mariya-al-Rashida et al., 2009, 2010). In continuation of our project, the crystal structure of the title compound is reported here (Fig. 1).

In the crystal structure, the two rings of the chromone system (Br1, O1, O4, C2—C10) are coplanar making a dihedral angle of 1.0 (2)°. The carbon atom C11 deviates from the mean plane of the chromone ring by 0.016 (4) Å. The phenyl ring (C12—C17) of the benzothiadiazine moiety and the atoms S1, N4 and C11 are almost planar as well (rms deviation = 0.007) and make a dihedral angle of 58.23 (8)° with the mean plane of the bicyclic chromone system. The crystal structure is stabilized by intra- and intermolecular N—H···O and C—H···O hydrogen bonds which link the molecules into an infinite two-dimensional network (Fig. 2).

Related literature top

For background to the importance of the 1,2,4-benzothiadiazine-1,1-dioxide ring system in pharmaceutical and medicinal chemistry, see: Zhu et al. (2005); Kamal et al. (2007a). For a survey on the antimicrobial activity of benzothiadiazine derivatives, see: Di Bella et al. (1983); Kamal et al. (2007a,b). The sulfonamide group is an active pharmacophore, see: Weisman & Brown (1964). For related structures, see: al-Rashida et al. (2009, 2010).

For related literature, see: Kamal et al. (2007).

Experimental top

A solution of 2-aminobenzenesulfonamide (1.0 mmol) in 10 ml e thanol was slowly added to the stirred solution of 6-bromo-4-oxo-4H-1-benzopyran-3-carboxaldehyde (1.0 mmol) containing catalytic amount of p-toluene sulfonic acid (p-TsOH) and refluxed for 3 hrs. The resulting product was isolated by filtration, washed with ethanol, dried and recrystallized from hot ethanol and acetone (1:1) (yield 77%, m.p. 496 K).

Refinement top

The H atoms attached to N were located in a difference Fourier map and their coordinates were refined, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.98 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The 1,2,4-benzothiadiazine-1,1-dioxide ring system is of considerable importance in medicinal and pharmaceutical chemistry (Zhu et al., 2005; Kamal et al., 2007a). Novel products from reactions of 4- and 2-aminobenzenesulfonamide with 6-(un)substituted-4-oxo-4H-1-benzopyran-3-carboxaldehyde have already been reported by us (Mariya-al-Rashida et al., 2009, 2010). In continuation of our project, the crystal structure of the title compound is reported here (Fig. 1).

In the crystal structure, the two rings of the chromone system (Br1, O1, O4, C2—C10) are coplanar making a dihedral angle of 1.0 (2)°. The carbon atom C11 deviates from the mean plane of the chromone ring by 0.016 (4) Å. The phenyl ring (C12—C17) of the benzothiadiazine moiety and the atoms S1, N4 and C11 are almost planar as well (rms deviation = 0.007) and make a dihedral angle of 58.23 (8)° with the mean plane of the bicyclic chromone system. The crystal structure is stabilized by intra- and intermolecular N—H···O and C—H···O hydrogen bonds which link the molecules into an infinite two-dimensional network (Fig. 2).

For background to the importance of the 1,2,4-benzothiadiazine-1,1-dioxide ring system in pharmaceutical and medicinal chemistry, see: Zhu et al. (2005); Kamal et al. (2007a). For a survey on the antimicrobial activity of benzothiadiazine derivatives, see: Di Bella et al. (1983); Kamal et al. (2007a,b). The sulfonamide group is an active pharmacophore, see: Weisman & Brown (1964). For related structures, see: al-Rashida et al. (2009, 2010).

For related literature, see: Kamal et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing hydrogen bonds as dashed lines.
3-(6-Bromo-4-oxo-4H-chromen-3-yl)-3,4-dihydro-2H-1,2,4- benzothiadiazine-1,1-dione top
Crystal data top
C16H11BrN2O4SF(000) = 816
Mr = 407.24Dx = 1.738 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2932 reflections
a = 7.0778 (4) Åθ = 3.1–22.1°
b = 8.6070 (6) ŵ = 2.80 mm1
c = 25.6290 (16) ÅT = 296 K
β = 94.607 (3)°Needle, white
V = 1556.24 (17) Å30.28 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3873 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.475, Tmax = 0.540k = 118
17309 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1442P]
where P = (Fo2 + 2Fc2)/3
3873 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
C16H11BrN2O4SV = 1556.24 (17) Å3
Mr = 407.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0778 (4) ŵ = 2.80 mm1
b = 8.6070 (6) ÅT = 296 K
c = 25.6290 (16) Å0.28 × 0.28 × 0.22 mm
β = 94.607 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3873 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1969 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.540Rint = 0.058
17309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.50 e Å3
3873 reflectionsΔρmin = 0.51 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.22103 (10)0.73566 (10)0.31055 (3)0.0337 (2)
O21.2394 (3)0.5717 (3)0.30708 (9)0.0463 (6)
O31.3885 (3)0.8294 (3)0.31425 (9)0.0465 (6)
N21.0884 (3)0.7953 (3)0.25943 (10)0.0287 (6)
H2A1.085 (4)0.893 (3)0.2592 (12)0.034*
N40.8018 (3)0.7790 (4)0.30189 (10)0.0371 (7)
H4A0.690 (4)0.780 (4)0.3005 (13)0.045*
Br10.00741 (5)0.67254 (5)0.060030 (16)0.06277 (19)
C50.3194 (4)0.7029 (4)0.13029 (13)0.0350 (8)
H50.26220.62780.14980.042*
C60.2305 (5)0.7577 (4)0.08503 (13)0.0403 (9)
C70.3086 (5)0.8725 (4)0.05590 (14)0.0455 (9)
H70.24290.90990.02560.055*
C80.4824 (5)0.9304 (4)0.07182 (13)0.0424 (9)
H80.53741.00680.05230.051*
C90.5766 (4)0.8743 (4)0.11749 (12)0.0324 (8)
O10.7509 (3)0.9378 (3)0.13110 (8)0.0398 (6)
C100.4984 (4)0.7614 (4)0.14695 (12)0.0287 (7)
C40.6000 (4)0.7086 (4)0.19593 (12)0.0286 (8)
O40.5369 (3)0.6116 (3)0.22456 (9)0.0395 (6)
C30.7845 (4)0.7819 (4)0.20758 (12)0.0272 (7)
C20.8469 (4)0.8871 (4)0.17524 (12)0.0347 (8)
H20.96650.92910.18380.042*
C110.8977 (4)0.7310 (4)0.25680 (12)0.0289 (7)
H110.90660.61740.25680.035*
C120.8888 (4)0.7966 (4)0.35104 (12)0.0295 (8)
C130.7836 (4)0.8366 (4)0.39290 (13)0.0372 (8)
H130.65310.84940.38710.045*
C140.8682 (5)0.8573 (4)0.44190 (14)0.0431 (9)
H140.79420.88250.46910.052*
C161.1691 (5)0.8056 (4)0.41215 (13)0.0402 (9)
H161.29990.79640.41830.048*
C151.0631 (5)0.8417 (4)0.45229 (14)0.0445 (9)
H151.11960.85570.48600.053*
C171.0843 (4)0.7823 (4)0.36172 (12)0.0291 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0158 (4)0.0421 (6)0.0427 (5)0.0059 (4)0.0002 (4)0.0004 (4)
O20.0393 (14)0.0381 (15)0.0622 (17)0.0148 (11)0.0081 (12)0.0055 (12)
O30.0160 (11)0.0624 (17)0.0608 (16)0.0034 (11)0.0001 (11)0.0038 (13)
N20.0172 (13)0.0291 (15)0.0393 (16)0.0005 (12)0.0005 (12)0.0016 (14)
N40.0121 (12)0.070 (2)0.0293 (16)0.0004 (14)0.0002 (13)0.0041 (14)
Br10.0358 (2)0.0836 (4)0.0653 (3)0.0100 (2)0.01830 (19)0.0107 (2)
C50.0287 (17)0.035 (2)0.040 (2)0.0072 (15)0.0010 (16)0.0056 (17)
C60.0290 (19)0.049 (2)0.040 (2)0.0009 (17)0.0140 (16)0.0148 (18)
C70.051 (2)0.046 (2)0.037 (2)0.0006 (19)0.0116 (18)0.0050 (18)
C80.047 (2)0.042 (2)0.036 (2)0.0048 (18)0.0029 (18)0.0077 (17)
C90.0332 (18)0.032 (2)0.0313 (19)0.0038 (15)0.0044 (15)0.0040 (16)
O10.0367 (13)0.0447 (15)0.0367 (14)0.0182 (11)0.0056 (11)0.0071 (11)
C100.0283 (17)0.0265 (19)0.0309 (18)0.0002 (14)0.0009 (15)0.0027 (15)
C40.0250 (17)0.0269 (19)0.0338 (19)0.0007 (14)0.0014 (15)0.0058 (16)
O40.0347 (13)0.0426 (14)0.0406 (14)0.0153 (11)0.0015 (11)0.0104 (12)
C30.0219 (16)0.0315 (19)0.0286 (17)0.0038 (14)0.0034 (14)0.0041 (15)
C20.0283 (18)0.040 (2)0.035 (2)0.0090 (16)0.0022 (16)0.0028 (17)
C110.0171 (15)0.0334 (19)0.0361 (19)0.0019 (14)0.0027 (14)0.0035 (15)
C120.0190 (15)0.038 (2)0.0303 (18)0.0018 (14)0.0024 (14)0.0023 (15)
C130.0213 (16)0.052 (2)0.038 (2)0.0039 (16)0.0010 (15)0.0052 (18)
C140.039 (2)0.051 (2)0.039 (2)0.0055 (17)0.0017 (17)0.0085 (18)
C160.0257 (18)0.048 (2)0.044 (2)0.0029 (16)0.0094 (17)0.0032 (18)
C150.044 (2)0.054 (3)0.033 (2)0.0006 (18)0.0092 (17)0.0068 (18)
C170.0167 (15)0.0338 (19)0.0363 (19)0.0029 (13)0.0010 (14)0.0017 (15)
Geometric parameters (Å, º) top
S1—O21.421 (2)C9—C101.375 (4)
S1—O31.431 (2)O1—C21.345 (4)
S1—N21.632 (3)C10—C41.468 (4)
S1—C171.738 (3)C4—O41.219 (3)
N2—C111.456 (4)C4—C31.459 (4)
N2—H2A0.84 (2)C3—C21.327 (4)
N4—C121.365 (4)C3—C111.504 (4)
N4—C111.446 (4)C2—H20.9300
N4—H4A0.79 (3)C11—H110.9800
Br1—C61.900 (3)C12—C131.398 (4)
C5—C61.359 (4)C12—C171.394 (4)
C5—C101.398 (4)C13—C141.359 (4)
C5—H50.9300C13—H130.9300
C6—C71.380 (5)C14—C151.391 (5)
C7—C81.359 (5)C14—H140.9300
C7—H70.9300C16—C151.357 (5)
C8—C91.387 (4)C16—C171.395 (4)
C8—H80.9300C16—H160.9300
C9—O11.368 (4)C15—H150.9300
O2—S1—O3119.01 (14)O4—C4—C10123.3 (3)
O2—S1—N2108.16 (14)C3—C4—C10114.2 (3)
O3—S1—N2107.20 (14)C2—C3—C4120.3 (3)
O2—S1—C17109.63 (15)C2—C3—C11122.8 (3)
O3—S1—C17109.16 (14)C4—C3—C11117.0 (3)
N2—S1—C17102.36 (14)C3—C2—O1125.2 (3)
C11—N2—S1112.9 (2)C3—C2—H2117.4
C11—N2—H2A111 (2)O1—C2—H2117.4
S1—N2—H2A109 (2)N4—C11—N2110.3 (2)
C12—N4—C11124.3 (2)N4—C11—C3109.6 (2)
C12—N4—H4A115 (3)N2—C11—C3111.0 (3)
C11—N4—H4A120 (3)N4—C11—H11108.6
C6—C5—C10118.8 (3)N2—C11—H11108.6
C6—C5—H5120.6C3—C11—H11108.6
C10—C5—H5120.6N4—C12—C13120.5 (3)
C5—C6—C7122.2 (3)N4—C12—C17122.6 (3)
C5—C6—Br1119.4 (3)C13—C12—C17116.9 (3)
C7—C6—Br1118.5 (2)C14—C13—C12121.3 (3)
C8—C7—C6119.5 (3)C14—C13—H13119.4
C8—C7—H7120.3C12—C13—H13119.4
C6—C7—H7120.3C13—C14—C15121.4 (3)
C7—C8—C9119.2 (3)C13—C14—H14119.3
C7—C8—H8120.4C15—C14—H14119.3
C9—C8—H8120.4C15—C16—C17120.8 (3)
O1—C9—C10122.5 (3)C15—C16—H16119.6
O1—C9—C8116.0 (3)C17—C16—H16119.6
C10—C9—C8121.5 (3)C16—C15—C14118.5 (3)
C2—O1—C9118.0 (2)C16—C15—H15120.7
C9—C10—C5118.8 (3)C14—C15—H15120.7
C9—C10—C4119.8 (3)C16—C17—C12121.0 (3)
C5—C10—C4121.3 (3)C16—C17—S1120.5 (2)
O4—C4—C3122.5 (3)C12—C17—S1118.4 (2)
O2—S1—N2—C1161.9 (2)C9—O1—C2—C31.5 (5)
O3—S1—N2—C11168.6 (2)C12—N4—C11—N235.8 (4)
C17—S1—N2—C1153.8 (2)C12—N4—C11—C3158.3 (3)
C10—C5—C6—C72.0 (5)S1—N2—C11—N461.6 (3)
C10—C5—C6—Br1177.0 (2)S1—N2—C11—C3176.8 (2)
C5—C6—C7—C81.9 (5)C2—C3—C11—N4114.2 (3)
Br1—C6—C7—C8177.2 (3)C4—C3—C11—N466.5 (3)
C6—C7—C8—C90.9 (5)C2—C3—C11—N27.9 (4)
C7—C8—C9—O1179.9 (3)C4—C3—C11—N2171.4 (2)
C7—C8—C9—C100.1 (5)C11—N4—C12—C13177.1 (3)
C10—C9—O1—C20.4 (4)C11—N4—C12—C175.6 (5)
C8—C9—O1—C2179.7 (3)N4—C12—C13—C14178.8 (3)
O1—C9—C10—C5179.9 (3)C17—C12—C13—C141.4 (5)
C8—C9—C10—C50.2 (5)C12—C13—C14—C150.9 (5)
O1—C9—C10—C42.1 (5)C17—C16—C15—C141.0 (5)
C8—C9—C10—C4178.0 (3)C13—C14—C15—C160.3 (5)
C6—C5—C10—C91.2 (5)C15—C16—C17—C120.5 (5)
C6—C5—C10—C4179.0 (3)C15—C16—C17—S1179.9 (3)
C9—C10—C4—O4178.2 (3)N4—C12—C17—C16178.0 (3)
C5—C10—C4—O40.5 (5)C13—C12—C17—C160.6 (5)
C9—C10—C4—C32.0 (4)N4—C12—C17—S11.6 (4)
C5—C10—C4—C3179.7 (3)C13—C12—C17—S1179.0 (2)
O4—C4—C3—C2179.9 (3)O2—S1—C17—C1689.7 (3)
C10—C4—C3—C20.3 (4)O3—S1—C17—C1642.3 (3)
O4—C4—C3—C110.8 (4)N2—S1—C17—C16155.7 (3)
C10—C4—C3—C11179.0 (3)O2—S1—C17—C1290.7 (3)
C4—C3—C2—O11.4 (5)O3—S1—C17—C12137.3 (3)
C11—C3—C2—O1179.3 (3)N2—S1—C17—C1224.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.79 (3)2.59 (3)2.987 (3)113 (3)
N4—H4A···O3i0.79 (3)2.23 (3)2.999 (3)164 (3)
C13—H13···O3i0.932.54 (1)3.314 (4)141 (1)
N2—H2A···O20.84 (2)2.67 (3)3.222 (4)124 (2)
C2—H2···O20.932.41 (1)3.330 (4)169 (1)
N2—H2A···O40.84 (2)2.12 (3)2.903 (4)154 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11BrN2O4S
Mr407.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.0778 (4), 8.6070 (6), 25.6290 (16)
β (°) 94.607 (3)
V3)1556.24 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.28 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.475, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
17309, 3873, 1969
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 0.98
No. of reflections3873
No. of parameters223
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.79 (3)2.59 (3)2.987 (3)113 (3)
N4—H4A···O3i0.79 (3)2.23 (3)2.999 (3)164 (3)
C13—H13···O3i0.93002.542 (2)3.314 (4)140.6 (2)
N2—H2A···O20.84 (2)2.67 (3)3.222 (4)124 (2)
C2—H2···O20.93002.412 (2)3.330 (4)169.3 (2)
N2—H2A···O40.84 (2)2.12 (3)2.903 (4)154 (3)
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional corresponding author, e-mail: maria_al_rashida@hotmail.com.

Acknowledgements

The authors acknowledge the Higher Education Commission (HEC), Islamabad, Pakistan, for financial and GCU, Lahore, for technical suppport.

References

First citational-Rashida, M., Nagra, S. A., Khan, I. U., Kostakis, G. & Abbas, G. (2010). Acta Cryst. E66, o2707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citational-Rashida, M., Tahir, M. N., Nagra, S. A., Imran, M. & Iqbal, J. (2009). Acta Cryst. E65, o1818–o1819.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Bella, M., Monzani, A., Andrisano, M. G., Fabio, U. & Quaglio, G. P. (1983). Farmaco, 38, 466–472.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKamal, A., Ahmed, S. K., Reddy, K. S., Khan, M. N. A., Shetty, R. V. C. R. N. C., Siddhardha, B., Murty, U. S. N., China, A. & Nagaraja, V. (2007a). Lett. Drug Des. Discov. 4, 550–556.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Khan, M. N. A., Reddy, K. S., Rohini, K., Sastry, G. N., Sateesh, B. & Sridhar, B. (2007b). Bioorg. Med. Chem. Lett. 17, 5400–5405.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeisman, R. A. & Brown, G. M. (1964). J. Biol. Chem. 239, 326–331.  PubMed CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Z., Zhu, S., Liu, D., Cao, T., Wang, L. & Tepel, M. (2005). Hypertension, 45, 233–239.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds