metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-2-[1-(eth­­oxy­imino)­eth­yl]-1-naphtho­lato-κ2N,O1}copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 10 November 2010; accepted 16 November 2010; online 24 November 2010)

In the title complex, [Cu(C14H14NO2)2], the discrete complex mol­ecules have crystallographic inversion symmetry. The slightly distorted square-planar coordination sphere of the CuII atom comprises two phenolate O atoms and two oxime N atoms from two bidentate–chelate 2-[1-(eth­oxy­imino)­eth­yl]-1-naphtho­late O-ethyl oxime (L) ligands [Cu—O = 1.8919 (17) Å and Cu—N = 1.988 (2) Å]. The two naphthalene ring systems in the mol­ecule are parallel, with a perpendicular inter­planar spacing of 1.473 (2) Å, while each complex unit forms links to four other mol­ecules via inter­molecular methyl C—H⋯π inter­actions, giving an infinite cross-linked layered supra­molecular structure

Related literature

For background to oximes, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]); Dong et al. (2007[Dong, W.-K., Feng, J.-H. & Yang, X.-Q. (2007). Synth. React. Inorg. Met. Org. Nano-Chem. 37, 189-192.], 2008[Dong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650-654.]). For related structures, see: Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]); Dong, Zhao et al. (2009[Dong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234-236.]). For the synthesis of the title complex, see: Dong, Tong et al. (2009[Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.]). For the biological activity of copper(II) complexes, see: Karmaka et al. (2007[Karmaka, R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2007). J. Mol. Struct. 826, 75-81.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H14NO2)2]

  • Mr = 520.06

  • Monoclinic, P 21 /c

  • a = 11.317 (1) Å

  • b = 7.1092 (8) Å

  • c = 15.171 (2) Å

  • β = 96.317 (1)°

  • V = 1213.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.912

  • 6095 measured reflections

  • 2130 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.081

  • S = 1.01

  • 2130 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.96 2.66 3.530 (3) 151
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxime-type compounds are a versatile class of organic ligands widely used in coordination and analytical chemistry and extraction metallurgy (Dong et al., 2007; Dong et al., 2008; Chaudhuri, 2003). Due to their chelating ability and positive redox potential, many copper(II) complexes are generally biologically active (Karmaka et al., 2007). As part of our ongoing research into the transition metal complexes with oxime-type ligands (Dong, Tong et al., 2009), we report here the synthesis and crystal structures of the title CuII complex with 1-(1-hydroxynapthalen-2-yl)ethanone O-ethyl oxime (HL), the title compound [Cu(C14H14NO2)2] (I) (Fig. 1).

In the crystal structure of (I) the discrete complex molecules have inversion symmetry, the slightly distorted square-planar four-coordinate trans-CuN2O2 coordination sphere comprising two phenolic O-atoms and two oxime N-atoms from two bidentate-chelate L- ligands [Cu(1)—O(2), 1.8919 (17) Å; Cu(1)—N(1), 1.988 (2) Å]. These bond distances are within the normal range observed in a similar CuII complex (Dong, Zhao et al., 2009). The two naphthalene rings of the ligands in the complex molecule are parallel with a perpendicular interplanar spacing of 1.473 (2) Å. In the crystal structure, the complex molecules are linked by intermolecular methyl C—H···π interactions involving the naphthalene ring C5—C14, with a C3—H3A···π ring centroid separation of 3.715 (2) Å. Thus, every complex molecule forms links with four other adjacent molecules giving an infinite supramolecular layer structure (Fig. 2).

Related literature top

For background to oximes, see: Chaudhuri (2003); Dong et al. (2007); Dong et al. (2008). For related structures, see: Zhao et al. (2009); Dong, Zhao et al. (2009). For the synthesis of the title complex, see: Dong, Tong et al. (2009). For the biological activity of copper(II) complexes, see: Karmaka et al. (2007).

Experimental top

1-(1-Hydroxynapthalen-2-yl)ethanone O-ethyl oxime (HL) was synthesized using a method similar to one reported previously (Zhao et al., 2009). Yield, 62.9%. m.p. 315–316 K. Anal. Calcd for C14H15NO2: C, 73.34; H, 6.59; N,6.11%. Found: C, 73.30; H, 6.52; N, 6.22%. A solution of CuII acetate monohydrate (2.5 mg, 0.012 mmol) in methanol (3 ml) was added dropwise to a solution of HL (5.6 mg, 0.023 mmol) and 99% triethylamine (0.025 ml) in methanol (3 ml) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly after which the filtrate was allowed to stand at room temperature for about two weeks. The solvent was partially evaporated and brown single crystals suitable for X-ray crystallographic analysis were obtained. Anal. Calcd. for [Cu(L)2] (C28H28CuN2O4): C, 64.66; H, 5.43; N, 5.39; Cu, 12.22%. Found: C, 64.70; H, 5.49; N, 5.33; Cu, 12.20%.

Refinement top

H atoms were placed in calculated positions and non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), C—H = 0.97 Å (CH2) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

Oxime-type compounds are a versatile class of organic ligands widely used in coordination and analytical chemistry and extraction metallurgy (Dong et al., 2007; Dong et al., 2008; Chaudhuri, 2003). Due to their chelating ability and positive redox potential, many copper(II) complexes are generally biologically active (Karmaka et al., 2007). As part of our ongoing research into the transition metal complexes with oxime-type ligands (Dong, Tong et al., 2009), we report here the synthesis and crystal structures of the title CuII complex with 1-(1-hydroxynapthalen-2-yl)ethanone O-ethyl oxime (HL), the title compound [Cu(C14H14NO2)2] (I) (Fig. 1).

In the crystal structure of (I) the discrete complex molecules have inversion symmetry, the slightly distorted square-planar four-coordinate trans-CuN2O2 coordination sphere comprising two phenolic O-atoms and two oxime N-atoms from two bidentate-chelate L- ligands [Cu(1)—O(2), 1.8919 (17) Å; Cu(1)—N(1), 1.988 (2) Å]. These bond distances are within the normal range observed in a similar CuII complex (Dong, Zhao et al., 2009). The two naphthalene rings of the ligands in the complex molecule are parallel with a perpendicular interplanar spacing of 1.473 (2) Å. In the crystal structure, the complex molecules are linked by intermolecular methyl C—H···π interactions involving the naphthalene ring C5—C14, with a C3—H3A···π ring centroid separation of 3.715 (2) Å. Thus, every complex molecule forms links with four other adjacent molecules giving an infinite supramolecular layer structure (Fig. 2).

For background to oximes, see: Chaudhuri (2003); Dong et al. (2007); Dong et al. (2008). For related structures, see: Zhao et al. (2009); Dong, Zhao et al. (2009). For the synthesis of the title complex, see: Dong, Tong et al. (2009). For the biological activity of copper(II) complexes, see: Karmaka et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title complex with the atom numbering scheme [Symmetry code: (A) -x + 1, -y + 1, -z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title complex with C—H···π interactions shown as dashed lines.
Bis{(E)-2-[1-(ethoxyimino)ethyl]-1-naphtholato- κ2N,O1}copper(II) top
Crystal data top
[Cu(C14H14NO2)2]F(000) = 542
Mr = 520.06Dx = 1.424 Mg m3
Monoclinic, P21/cMelting point = 315–316 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.317 (1) ÅCell parameters from 1730 reflections
b = 7.1092 (8) Åθ = 2.7–25.5°
c = 15.171 (2) ŵ = 0.94 mm1
β = 96.317 (1)°T = 298 K
V = 1213.1 (2) Å3Block-like, brown
Z = 20.17 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2130 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1013
Tmin = 0.857, Tmax = 0.912k = 88
6095 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0342P)2]
where P = (Fo2 + 2Fc2)/3
2130 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Cu(C14H14NO2)2]V = 1213.1 (2) Å3
Mr = 520.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.317 (1) ŵ = 0.94 mm1
b = 7.1092 (8) ÅT = 298 K
c = 15.171 (2) Å0.17 × 0.15 × 0.10 mm
β = 96.317 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1490 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.912Rint = 0.044
6095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2130 reflectionsΔρmin = 0.21 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.03833 (17)
N10.63479 (18)0.5872 (3)0.58534 (14)0.0381 (6)
O10.75134 (16)0.6050 (3)0.55763 (12)0.0514 (6)
O20.39686 (15)0.6209 (3)0.57215 (12)0.0462 (5)
C10.7502 (3)0.7498 (5)0.49108 (19)0.0576 (9)
H1A0.71310.86270.51110.069*
H1B0.70520.70810.43650.069*
C20.8761 (3)0.7901 (6)0.4756 (2)0.0789 (12)
H2A0.91790.84260.52840.118*
H2B0.87700.87810.42770.118*
H2C0.91410.67540.46080.118*
C30.7501 (2)0.6552 (4)0.72791 (18)0.0479 (8)
H3A0.78420.54010.75210.072*
H3B0.73440.73760.77540.072*
H3C0.80470.71490.69260.072*
C40.6356 (2)0.6131 (4)0.67096 (17)0.0359 (7)
C50.4124 (2)0.6230 (4)0.65963 (17)0.0371 (7)
C60.5233 (2)0.6069 (4)0.71082 (17)0.0343 (6)
C70.5266 (3)0.5992 (4)0.80539 (17)0.0416 (7)
H70.59940.58060.83910.050*
C80.4279 (3)0.6180 (4)0.84775 (19)0.0468 (8)
H80.43450.61270.90930.056*
C90.3147 (3)0.6458 (4)0.79925 (19)0.0436 (7)
C100.3059 (2)0.6458 (4)0.70468 (18)0.0397 (7)
C110.1938 (3)0.6651 (4)0.6560 (2)0.0525 (9)
H110.18780.66520.59440.063*
C120.0930 (3)0.6838 (5)0.6976 (2)0.0690 (11)
H120.01930.69410.66420.083*
C130.1009 (3)0.6873 (5)0.7907 (3)0.0701 (11)
H130.03240.70160.81880.084*
C140.2079 (3)0.6699 (4)0.8396 (2)0.0597 (9)
H140.21170.67380.90120.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0347 (3)0.0528 (3)0.0283 (3)0.0002 (3)0.00671 (19)0.0033 (3)
N10.0276 (12)0.0548 (15)0.0336 (13)0.0001 (11)0.0112 (10)0.0019 (11)
O10.0376 (11)0.0795 (16)0.0378 (12)0.0024 (11)0.0064 (9)0.0103 (11)
O20.0370 (11)0.0722 (15)0.0297 (11)0.0050 (10)0.0047 (9)0.0089 (10)
C10.057 (2)0.068 (2)0.049 (2)0.0095 (18)0.0098 (16)0.0089 (18)
C20.063 (2)0.115 (3)0.062 (2)0.026 (2)0.0169 (18)0.010 (2)
C30.0407 (17)0.061 (2)0.0410 (17)0.0053 (15)0.0005 (14)0.0029 (15)
C40.0426 (17)0.0317 (17)0.0331 (16)0.0011 (13)0.0028 (13)0.0029 (13)
C50.0412 (17)0.0341 (17)0.0373 (17)0.0041 (13)0.0106 (13)0.0056 (13)
C60.0407 (16)0.0330 (16)0.0304 (15)0.0024 (13)0.0089 (13)0.0023 (13)
C70.0496 (18)0.0411 (18)0.0343 (16)0.0036 (15)0.0058 (14)0.0022 (14)
C80.067 (2)0.044 (2)0.0312 (16)0.0051 (16)0.0149 (15)0.0029 (14)
C90.0541 (19)0.0359 (18)0.0441 (18)0.0057 (14)0.0203 (15)0.0037 (14)
C100.0414 (17)0.0389 (18)0.0407 (17)0.0043 (13)0.0133 (14)0.0066 (13)
C110.0437 (19)0.070 (2)0.0452 (19)0.0008 (16)0.0136 (15)0.0055 (16)
C120.047 (2)0.095 (3)0.067 (3)0.0030 (19)0.0158 (18)0.005 (2)
C130.052 (2)0.088 (3)0.076 (3)0.001 (2)0.034 (2)0.003 (2)
C140.077 (2)0.058 (2)0.050 (2)0.0055 (19)0.035 (2)0.0022 (17)
Geometric parameters (Å, º) top
Cu1—O21.8919 (17)C4—C61.467 (3)
Cu1—O2i1.8919 (17)C5—C61.406 (4)
Cu1—N11.988 (2)C5—C101.459 (3)
Cu1—N1i1.988 (2)C6—C71.432 (3)
N1—C41.311 (3)C7—C81.355 (3)
N1—O11.433 (2)C7—H70.9300
O1—C11.441 (3)C8—C91.419 (4)
O2—C51.320 (3)C8—H80.9300
C1—C21.497 (4)C9—C141.425 (4)
C1—H1A0.9700C9—C101.427 (4)
C1—H1B0.9700C10—C111.403 (4)
C2—H2A0.9600C11—C121.369 (4)
C2—H2B0.9600C11—H110.9300
C2—H2C0.9600C12—C131.406 (4)
C3—C41.506 (3)C12—H120.9300
C3—H3A0.9600C13—C141.355 (4)
C3—H3B0.9600C13—H130.9300
C3—H3C0.9600C14—H140.9300
O2—Cu1—O2i180.00 (8)C6—C4—C3119.9 (2)
O2—Cu1—N187.68 (8)O2—C5—C6124.6 (2)
O2i—Cu1—N192.32 (8)O2—C5—C10116.5 (2)
O2—Cu1—N1i92.32 (8)C6—C5—C10118.9 (2)
O2i—Cu1—N1i87.68 (8)C5—C6—C7118.7 (2)
N1—Cu1—N1i180.0C5—C6—C4122.1 (2)
C4—N1—O1111.8 (2)C7—C6—C4119.1 (2)
C4—N1—Cu1127.60 (18)C8—C7—C6122.6 (3)
O1—N1—Cu1120.09 (14)C8—C7—H7118.7
N1—O1—C1109.3 (2)C6—C7—H7118.7
C5—O2—Cu1124.36 (17)C7—C8—C9120.8 (3)
O1—C1—C2108.1 (3)C7—C8—H8119.6
O1—C1—H1A110.1C9—C8—H8119.6
C2—C1—H1A110.1C8—C9—C14123.7 (3)
O1—C1—H1B110.1C8—C9—C10118.7 (2)
C2—C1—H1B110.1C14—C9—C10117.6 (3)
H1A—C1—H1B108.4C11—C10—C9119.2 (3)
C1—C2—H2A109.5C11—C10—C5120.7 (2)
C1—C2—H2B109.5C9—C10—C5120.1 (3)
H2A—C2—H2B109.5C12—C11—C10121.2 (3)
C1—C2—H2C109.5C12—C11—H11119.4
H2A—C2—H2C109.5C10—C11—H11119.4
H2B—C2—H2C109.5C11—C12—C13120.1 (3)
C4—C3—H3A109.5C11—C12—H12120.0
C4—C3—H3B109.5C13—C12—H12120.0
H3A—C3—H3B109.5C14—C13—C12120.2 (3)
C4—C3—H3C109.5C14—C13—H13119.9
H3A—C3—H3C109.5C12—C13—H13119.9
H3B—C3—H3C109.5C13—C14—C9121.7 (3)
N1—C4—C6119.5 (2)C13—C14—H14119.2
N1—C4—C3120.5 (2)C9—C14—H14119.2
O2—Cu1—N1—C431.5 (2)C3—C4—C6—C713.8 (4)
O2i—Cu1—N1—C4148.5 (2)C5—C6—C7—C84.0 (4)
O2—Cu1—N1—O1157.06 (19)C4—C6—C7—C8171.1 (3)
O2i—Cu1—N1—O122.94 (19)C6—C7—C8—C90.3 (5)
C4—N1—O1—C1122.4 (3)C7—C8—C9—C14178.8 (3)
Cu1—N1—O1—C164.9 (3)C7—C8—C9—C102.6 (4)
N1—Cu1—O2—C538.7 (2)C8—C9—C10—C11177.3 (3)
N1i—Cu1—O2—C5141.3 (2)C14—C9—C10—C111.4 (4)
N1—O1—C1—C2169.7 (2)C8—C9—C10—C51.7 (4)
O1—N1—C4—C6177.8 (2)C14—C9—C10—C5179.6 (3)
Cu1—N1—C4—C610.2 (4)O2—C5—C10—C110.3 (4)
O1—N1—C4—C30.1 (4)C6—C5—C10—C11179.0 (3)
Cu1—N1—C4—C3171.9 (2)O2—C5—C10—C9178.8 (2)
Cu1—O2—C5—C626.8 (4)C6—C5—C10—C91.9 (4)
Cu1—O2—C5—C10153.96 (19)C9—C10—C11—C120.0 (5)
O2—C5—C6—C7176.0 (3)C5—C10—C11—C12179.0 (3)
C10—C5—C6—C74.7 (4)C10—C11—C12—C131.2 (5)
O2—C5—C6—C48.9 (4)C11—C12—C13—C140.8 (6)
C10—C5—C6—C4170.3 (2)C12—C13—C14—C90.7 (5)
N1—C4—C6—C516.8 (4)C8—C9—C14—C13176.9 (3)
C3—C4—C6—C5161.2 (3)C10—C9—C14—C131.7 (5)
N1—C4—C6—C7168.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1ii0.962.663.530 (3)151
Symmetry code: (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H14NO2)2]
Mr520.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.317 (1), 7.1092 (8), 15.171 (2)
β (°) 96.317 (1)
V3)1213.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.17 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
6095, 2130, 1490
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 1.01
No. of reflections2130
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.962.663.530 (3)151
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11), which is gratefully acknowledged.

References

First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationDong, W.-K., Feng, J.-H. & Yang, X.-Q. (2007). Synth. React. Inorg. Met. Org. Nano-Chem. 37, 189–192.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650–654.  CrossRef Google Scholar
First citationDong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmaka, R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2007). J. Mol. Struct. 826, 75–81.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds